连续采煤机块段式开采工艺与围岩控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国煤矿大规模粗放性开采,长壁开采后遗留了大量的残留煤柱和不规则块段等煤炭资源,这些煤炭资源的开采主要依赖于连续采煤机短壁机械化开采技术。本文针对现有连续采煤机短壁开采工艺中存在的留设煤柱多,资源回收率低,顶板管理困难(容易形成大面积悬顶,冒落形成飓风对人员和设备都造成威胁)等问题,以神东矿区乌兰木伦煤矿为例,采用理论分析对连采工作面巷道断面、布置方式、煤柱尺寸、采硐参数以及设备配套等方面进行优化设计,提出了连续采采煤机块段式开采工艺,通过数值模拟,实验室相似模拟以及现场矿压观测研究等手段对该工艺条件下的围岩破坏运移规律、顶板控制方式以及通风系统等进行了系统研究。该研究将为连续采煤机工作面设计提供理论依据,也将对矿井边角煤炭资源的安全高效开采,实现煤炭开采技术进步有着非常重要的意义。主要形成结论如下:
     (1)边角块段工作面直接顶单轴抗压强度介于33.07~34.25MPa之间,老顶单轴抗压强度介于61.631~124.222MPa之间。确定工作面支巷长度为80~120m,支巷宽度为5-6m,区段隔离煤柱宽度设计10m,刀间煤柱0.3m~1.5m。
     (2)数值模拟分析认为块段式开采工艺最大垂直应力出现在刀间煤柱上,集中系数达2.25-2.7,采空区面积越大,刀间煤柱应力峰值越大。相似模拟试验表明,块段式开采工作面开采初期,顶板离层量和位移量都很小,回采完毕后容易形成大面积悬顶。随着回采空间的增大,顶板能够充分垮落。
     (3)矿压观测分析表明:支巷口保护煤柱中心应力升高较快且应力值高,而煤柱中心向外的应力升高趋势相对较缓,应力值较小。随着采空区面积增加,煤柱应力增加,采空区密闭后,支巷口保护煤柱边缘部分达到塑性状态,而煤柱中心部分应力继续升高。回采期间,联巷残留三角区和支巷口保护煤柱水平位移均有所增加,采空区密闭后,顶板下沉速度变大,运动加剧。
     (4)该工艺设计时取消刀间煤柱或留设小煤柱,采用四台及以上履带行走式液压行走支架支护顶板,实现了全部垮落法管理顶板,工作面回采率提高了20%以上。在工作面边界设计回风巷道,选择合理的挡风帘和局部通风机等通风设施,保证各用风点的需风量,形成了全风压通风系统。
     (5)通过煤柱支护、支架切顶以及卸压爆破等综合技术可以实现对顶板的管理与控制,即留设不同功能的煤柱,采用多台履带行走式液压支架支护顶板,选择合理的卸压爆破技术实现顶板压力释放,保障工作面的安全生产。
In recent years, with extensive mining methods adopted on a large scale in coalmines in China, a large amount of residual coal pillar and of irregular blocks of coalresources was left after longwall mining. These coal resources exploitation dependsmostly on the continuous miner short-wall mechanized mining technology. Facingsuch problems as too many coal pillars leaving in the continuous miner short-wallmining technology, low recycling rates, and roof management difficulty (easy to causelarge top to flap and cave to form hurricanes which will pose a threat to personnel andequipment), this paper, taking Ulanmulun Coal Mine in Shendong Mining Camp as anexample and based on theoretical analysis, proposes optimized designs of continuousmining roadway section, the layout, size of coal columns, mining caving parameterand equipment supporting; puts forwards the continuous miners’ block miningtechnology; and carries out systemic research on motion laws of damaged rocks,roof controlling ways and the ventilation systems through numerical simulation,laboratory simulation and on-site mining pressure observation. The study will providea theoretical basis for continuous miner faces design, and will have some veryimportant value for safe and high efficiency mining of corner coal resources and makeprogress in coal mining technology. Main conclusions:
     (1) The Single-axle compression strength of Direct roof of Corner blockworkface is between33.07~34.25MPa; the single-axle compression strength of mainroof is between61.631~124.222MPa. After theoretical analysis, the continuousminers’ block mining method is proposed, with the work face divided into severalsmall blocks with branch entry and connection roadways. The branch entry is80-120m long, and5-6m wide; pillars between blocks are10m apart; pillars of every cutare03.-1.5m apart.
     (2) Numerical simulation analysis shows that the biggest vertical stress of theblock mining method should be in the pillars between every cut, concentrationcoefficient reaching2.25~2.7.The larger the gob area becomes, the higher the stressvalue will be. The analogy simulation tests show that at the beginning of block mining,the quantity of separation and displacement of the roof remains very small and it caneasily form a large unsupported roof. With the recovering space enlarging, the roofcan fully collapse.
     (3) Mining pressure observation shows that the stress increases faster and of ahigh valve in the protective pillar of the branch entry while increases slowly and of a low value from the center to outside. As the gob area enlarges, the stress of the pillarincreases; when the gob area seals, the edge of the protective pillar of the branch entryachieves plastic status while the stress in the center of the pillar goes up continuously.During the recovery period, the displacement of the remaining triangle area in theconnection roadway and the branch entry’s protective pillar intensifies; after the gobarea seals, the roof falling speeds up and moves fiercely.
     (4) This method cancels the pillars between cuts or pre-reserving small pillars,and supports the roof with4or more hydraulic walking crawlers. As a result, thismethod realizes the fully-caving management of the roof; improves the recovery ratioby at least20%; and forms a total ventilation system to assure the required airflow inevery air assumption place through the return airways on the boarder of the work faceand reasonable wind curtain and auxiliary fan etc.
     (5)The roof’s management and control can be realized through such integratedtechniques as pillar support, support topping and pressure-leaking explosion, that is,to pre-reserve pillars of different functions, to use several hydraulic walking crawlersto prop the roof, and to use reasonable pressure-leaking explosion techniques torealize roof pressure-leaking to ensure safe production in the workface.
引文
[1]仲维林.国内外“三下”采煤概况[J].东北煤炭技术,1990,12(4):26-28.
    [2]李凤明,耿德庸.我国村庄下采煤的研究现状、存在问题及发展趋势[J].煤炭科学技术,1999(1):11~13.
    [3]黄乐亭.我国村庄下采煤的现状与发展重点[J].矿山测量,1999,4:3-5.
    [4]王虹,李变荣.我国短壁机械化开采技术发展现状与思考[A].高效、安全、洁净、结构优化实现煤炭工业的可持续发展--中国科协2005年学术年会论文集[C].太原:山西经济出版社,2005.
    [5]吴国基.美国房柱式采煤法和短壁采煤法[J].煤矿设计,1985(3):31-33.
    [6]段维芬.连续采煤机在南非煤矿的应用[J].世界煤炭技术,1986(7):13-14.
    [7]李天真等编译.美国薄煤层采煤设备[M].太原:西山矿务局,1984:89-97.
    [8]陈引亮.美国井工开采技术与装备概况[J].徐煤科技,1985(2):13-14.
    [9] D. Munjeri, Prevention of subsidence using stowing methods[J]. Colliery Guardian,235,245-246,1987.
    [10] Katz AJ,Thompson AH. Fractal sandstone pores:I mplications for conductivity andporeformation[J]. Phys.Rev.Lett.1985,54(12):l325-l328.
    [11]吴维周.试述澳大利亚“汪格维里”采煤方法[J].鸡煤科技,1985(3):8-9.
    [12]黄志安,童海方,张英华.采空区上覆岩层“三带”的界定准则和仿真确定[J].北京科技大学学报,2006,28(7):609-612.
    [13]李晓豁.我国发展连续采煤机的前景[J].矿山机械,2007(35):22-23.
    [14]大同大斗沟煤矿,连续采煤机使用情况汇报,1986.4.
    [15]白士邦,刘文郁.旺格维利采煤法在神东矿区的应用[J].煤矿开采,2006(11):23-26.
    [16]耿兆瑞.连续采煤机房柱短壁采煤方法及设备评价[J].煤炭科学技术,1985(12):21-23.
    [17]唐青松等.旺格维利采煤法在大海则煤矿的成功应用[J].神东科技,2000(2):37-38.
    [18]田小明等.旺格维利采煤法和连续运输系统在上湾煤矿的应用[J].神东科技,2001(3):17-18.
    [19]刘克功,徐金海,缪协兴.短壁连续开采技术及其应用[M].北京:煤炭工业出版社,2007:128-139.
    [20]张家生.地表移动及数值分析方法的研究[D].中南工业大学,1992.
    [21]王悦汉,邓喀中,吴侃等.采动岩体动态力学模型[J].岩土力学与工程报,2003,22(3):352-357.
    [22]刘长友,卫建清,万志军.房柱式开采的矿压显现规律及顶板监测[J].中国矿业大学学报,2002(4):388-391.
    [23]左全忠,张世国,张学相.南屯煤矿房柱式开采矿山压力研究[J].山东煤炭科技,2001(1):56-58.
    [24]翟德元,刘学增.房柱式开采覆岩移动机理研究[J].非金属矿,1999,22(2):36-38.
    [25]王安.现代亿吨矿区生产技术[M].北京:煤炭工业出版社,2005:98-128.
    [26]刘义生,方君实,王家臣.地表动态下沉过程实测分析与预测研究[J].矿山压力与顶板管理,2002(3):7~10.
    [27]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2008:76-98.
    [28]伊茂森.短壁机械化开采工艺在神东矿区的实践与工艺研究[C].中国煤炭学会首届短壁机械化开采专业委员会学术研讨会,太原,2003:15-16.
    [29]周茂普,江小军.国产短壁设备在东坡煤矿边角煤开采中的应用[J].矿山机械,2012(3):56-63.
    [30]郝万东,王飞.无煤柱完全垮落短壁机械化开采技术研究[J].煤,2009,18(4):18-24.
    [31] Fu C.W., Nguyen T.T. Models for long-term energy forecasting. Power Engineering SocietyGeneral Meeting,2003, IEEE Volume1,13-17July2003:235-239.
    [32]杨挺青.黏弹性力学[M].武汉:华中理工大学出版社,1990:96-98.
    [33]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003:115-118.
    [34]戴绍诚,李世文,李芬.高产高效综合机械化采煤技术与装备[M].北京:煤炭工业出版社,1998:102-104.
    [35]刘宝琛,颜荣贵.开采引起的矿山岩体移动的基本规律[J].煤炭学报:自然科学版,1981,6(1):39~55.
    [36]神府精煤公司、西安矿业学院.连续采煤机房柱式开采技术[M],1993:81-97.
    [37]徐永忻,王悦汉.短壁开采技术[M].中国矿业学院出版社,1987:78-97.
    [38]金毅.连续采煤机工艺系统设备配套分析[J].中国煤炭,2007(33):8-10.
    [39]温晓林等.Mark-22型连续采煤机房柱式小结[J].西山科技,1986(1):39-40.
    [40]侯朝炯,郭励生.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [41]郭应征,李兆霞.应用力学基础[M].北京:高等教育出版社,2000.
    [42]鹿志发,贺安民等.旺格维利采煤法在神东矿区的应用[J].煤炭科学技术,2002(增刊):29-31.
    [43]缪协兴,陈荣华,浦海.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [44] M. Kaehanov, Elastic Solids with Many Craeks: A simple Method of Analysis,Int.J.SolidsStruetures,Vol.23,No.l,230-243,1987.
    [45] T.Kyoya,Y Iehikawa and T. Kawamoto, A Damage Theory for Diseontinuous RockMass, Proe.sth,Conf.Num.Meeh.inGeomeeh.,Nayoya,VOI.1,469-480,1985.
    [46] KawamotoT.etal.DeformationandFraeturingBehaviorofDiseontinuousRockMassand DamageMechaniesTheory.Int.J.Num.AndAnaly.Meth.Geo.1988,12:l-30.
    [47] Jarrison M,Fames R. Fractal Menger Sponge and Sierpinski Carpet as models forreservoir rock/poresystems:II. Image analysis of natural fractal reservoirrocks[J].Oil-Coal-Shale-Minerals,1993,17(1):1-3.
    [48]刘立民,刘汉龙等.半解析方法用于房柱式开采沉陷的三围计算[J].煤炭学报,2002(5):39-41.
    [49]戴绍诚,李世文等.高产高效综合机械化采煤技术与装备[J].煤炭工业出版社,1998:25-32.
    [50] Su D.W. Finite element modeling of subsidence induced by underground coal mining: Theinfluence of material nonlinearity and shearing along existing planes ofweakness[C].Proceedings10th international conference on ground control in mining[A],1991:145-149.
    [51] L.R.Alejano,P.Ramirez-Oyanguren,J.Taboada.FDM predictive methodlogy for subsidencedue to flat and inclined coal seam mining[J]. International Journal of Rock Mechanics andMining Sciences,1999,36:475-491.
    [52] Montilla D., Medina R. Study on the Electricity Demand in the Northern Zone of AnzoeguiState for Term2005-2024. Transmission&Distribution Conference and Exposition: LatinAmerica,2006. TDC '06. IEEE/PES Aug.2006:1-6.
    [53] Ghanbarian M., Kavehnia F., Askari M. R., Mohammadi A., Keivani H. ApplyingTime-Series Regression to Load Forecasting Using Neuro-Fuzzy Techniques. PowerEngineering, Energy and Electrical Drives,2007. International Conference on12-14April2007:769-773.
    [54] Fu C.W., Nguyen T.T. Models for long-term energy forecasting. Power Engineering SocietyGeneral Meeting,2003, IEEE Volume1,13-17July2003:235-239.
    [55]高延法.矿山岩体力学[M].徐州:中国矿业人学出版社,2000:36-48.
    [56]贾蕴真.柱式开采设计与矿压观测[J].世界煤炭技术,1985(6):22-23.
    [57]翟德元.美国房柱式开采技术[M].北京:煤炭工业出版社,1996:31-58.
    [58] Jarrison M,Fames R. Fractal Menger Sponge and Sierpinski Carpet as models for reservoirrock poresystems: II. Image analysis of natural fractal reservoir rocks[J].Oil-Coal-Shale-Minerals,1993,17(1):1-3.
    [59]刘荣森.房柱式后退采煤法[J].鸡西科技,1985(3):4-5.
    [60]袁灯平,马金荣,董正筑.利用ANSYS进行开采沉陷模拟分析[J].济南大学学报,2001,15(4):336~345.
    [61] Shi G.H, Goodman R.E. Discontinuous Deformation analysis[A].In,Proc.5thU.S. Symp.Rock Mech,1984,269-277.
    [62] Griffith D V, Lane PA. Slope stability an alysis by finite elements[J].Geotechnique,1999,49(3):387-403.
    [63]白履俊.连续采煤工艺与设备[M].山西矿业学院,1986,3.
    [64]钱鸣高.再论采场矿山压力理论[J].中国矿业大学学报,1994(3):10-13.
    [65]赵德深,范学理,刘文生.采煤区覆岩与地表沉陷控制技术研究及展望[J].中国安全科学学报,1998(3):11-14.
    [66] R. C. Pakalnis, P. J. Lunder, S. Vongpaisal. Pillar strength estimation at Western Resources ofH-W Mine—A case study[J].Trans. Inst. Min. Metall,1993:102-103.
    [67] Salamon, M. D. G., A. H. Munro. A study of the strength of coal pillar[J].J. S. Afr. Inst.Min.Metall,1967(5):25-28.
    [68] Salamon. Design of pillar for partial extraction[J].Geotechnical Considerations in MineDesign, Key Centerfor Mines, University of New South Wales,1989.
    [69] Z. T. Bieniawski, W. L. Heerden. The significance of in situ tests on large rockspecimens[J].Int. J. of Rock Mech. and Min. Sc.12,1975.
    [70] R. Kanniganti, C. Haycocks, M. Karmis. Optimizing pillar design in a multi-seamenvironment[C]. Proc. Of14th Conference of Ground Control in Mining,1995.
    [71] R. J. Matetic, G. J. Cheken, J. A. Galek. Design considerations for multiple-seam mining withcase studies of subsidence and pillar load transfer[C].28th US Sym. On Rock Mech,1987.
    [72]王家臣.岩石开挖工程随机分析原理与应用[J].岩石力学与工程学报,2002,21(增2):2474-2479.
    [73]滕永海,刘克功.五阳煤矿高强度开采条件下地表移动规律研究[J].煤炭科学技术,2002,30(4):9-15.
    [74]戴绍诚,李世文,李芬等.高产高效综合机械化采煤技术与装备[M].北京:煤炭工业出版社,1998.
    [75] Shi Gen-hua. Applications of discontinuous deformation analysis and manifoldmethod[A].In:3rd Int. Conf. on DDA[C].Colorado,USA,1999,3-15.
    [76]阎修璋.煤矿地质学[M].中国矿业人学出版社,1989,6.
    [77]李风仪,韩从发,张国华.岩体开挖与维护[M].中国矿业大学出版社,2003:7-9.
    [78]岑传鸿,窦林名.采场顶板控制及监测技术(二版)[M].中国矿业人学出版社,2001:
    [79]李希建.长房式采煤法在小煤矿中应用的探讨[M].贵州工业大学资源与环境学院,2003.
    [80] Chien(Qian) Minggao. AStudy of the Behaviour of Overlying Strata in Longwall Mining andits Application to Strata Control[M].Elsevier Scientific Publishing Company,1982:13-17.
    [81]李锦生.现代煤矿企业管理[M].中国矿业大学出版社,1996:95-101.
    [82] D.C.Drucker, R.E. Gbison, D.J. Henkel. Soil mechanics and work hardening theories ofplasticity[J].Trans,ASCE,1957,122:338-346.
    [83] Litwiniszyn J. Przemieszczenia gorotworu. w s wietle teorii praw dopodobienstwa.Arch.Gor.Hut. T.Ⅱ,1954.
    [84] Litwiniszyn J. Fundamental principles of the mechanics stochastic medium, Proc.of3Conf.Theo. Appl.Mech,Bongalore,India,1957.
    [85]于健.浅谈短壁机械化开采巷道布置方式[J].陕西煤炭,2005(2):72-75.
    [86] Salstonwicz. A Gorotwor jako osrodeksprezysto-lepki. Arch Gor.1953,330-335.
    [87] Litwiniszy. Application of stochastic processes to mechanics of loose bodies. ArehiumMechaniki Stosowanej.1956:65-73.
    [88]黄志安,童海方,张英华.采空区上覆岩层“三带”的界定准则和仿真确定[J].北京科技大学学报,2006,28(7):609-612.
    [89] D. Schroer. Use of packing materials from waste products[J]. Glueckauf&Translation,123:621-625,1987.
    [90] Anon. Backfilling in German coal mines[J]. Australian Mining,80:24,1988.
    [91] E. W. Hollinderbaeumer, U. Kraemer. Waste disposal and backfilling technology in theGerman hard coal mining industry[J]. Bulk Solids Handling,1994(14):795-798.
    [92] W. Mez, W. Schauenburg. Backfilling of caved-in goafs with pastes for disposal ofresidues[C]. Proceedings of the6th International Symposium on Mining with Backfill,1998:245-248.
    [93]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000:114-117.
    [94]吴立新,王金庄,刘延安等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [95] Smolarski A. A contribution to the mechanics of a horizontal-homogeneous stochasticmedium with inclined layers[J].Bull.Acad.Pol.Sci.,1957:89-126.
    [96] Salamon, M.D.G. Elastic analysis of displacements and stresses induced by the mining ofseam or roof deposits,J.S.Afr,Inst.Min.Metall.1963,63:78-81.
    [97]沙拉蒙.地下工程的岩石力学[M].北京:冶金工业出版社,1982.
    [98] Berry,D.S.,Sales T W,An elastic treatment of ground movement due to mining[J].J.Mech.Phys.Solids,1961,9:52-56.
    [99]周炳杰.连续采煤机在中小煤矿应用的前景[J].机械管理开发,2005(2):33-35.
    [100] Hurt K. New development in rock bolting[J].Colliery Guardian,1994(7):133-143.
    [101] Hankan Stille.Rock support in theory and practice. Rock support in mining andunderground construction[J]. Balkema,Rotterdam,1992:421-438.
    [102] Hook E,Brown E T.Rock Mechanics for underground mining[M].London Chapman&Hall,1992.
    [103] Peng S S.Coal mine ground control. John Wiley&Sons.Inc. New York,1978.
    [104] Schach R K,Garshol,Heltzen A M.Rock bolting-a practical handbook[M].PergmonPress.1979.
    [105] Willians P.The development of rock bolting in UK coal mines[J].Mining Engineering,1994(5):37-41.
    [106] Hou Zhaojiong,He Yannan,Zhang Yidong.Key technique to compositely supporting theroadway driven along previous goaf with bolts,bar and chain meshes under complexconditions[J].Journal of Coal Science and Engineer (China),1995(1):77-83.
    [107]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [108]何国清,杨伦.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1989:113-115.
    [109]郝忠.大型矿区可持续发展技术[M].北京:科学出版社,2000:98-121.
    [110]赵经彻,何满潮.建筑物下煤炭资源可持续开采战略[M].北京:煤炭工业出版社,2000.
    [111] Y.LUO,S.S.PENG, Mathematical model for predicting final subsidence basin in hillyregions[J].13th conference on ground control in mining,1990.
    [112] Klateseh,H. Mining Subsidence Engineering SPringer Verlag,Berlin,1983.
    [113] Brauner. Subsidence due to underground mining,BureauofMines,USA,1973.
    [114] Sirwardane H J, A numerical procedure for prediction of subsidence caused by longwall119mining[C], Proceedings Fifth international conference on numerical methods inGeomechanics, A.A.Balkema,1985:116-120.
    [115]何满潮等.中国煤矿软岩巷道支护理论与实践[M].徐州:中国矿业大学出版社,1996
    [116]汪云甲,旺应宏,连达军.“三下”开采资源补偿费减征的模型与研究[J].自然资源学报,2002,9(5):616-619.
    [117]侯长祥,冯涛等.矿床“三下一上”开采[M].北京:煤炭工业出版社,2001.
    [118]张玉卓,陈立良,周万茂.村庄下采煤的理论基础——地表沉陷预测与控制[J].煤炭科学技术,1998(4):70-71.
    [119] Berry,D.S.,ground movement considered as an elastic phenomenon, Min.Eng.123,1963,28-43.
    [120] Luan Maotian, Zhang Zhen. FEM-based formulations of discontinuous deformation analysismethod with applications in geomechanics (The advances in computational mechanics).International academic publishers,1996:429-438.
    [121]刘长友,钱鸣高,曹胜根等.采场直接顶的结构力学特性及其刚度[J].中国矿业大学学报,1997(2):20-23.
    [122]刘长友,钱鸣高,曹胜根等.采场支架阻力与顶板下沉量关系的研究[J].矿山压力与顶板管理,1997(3):13-15.
    [123]邹喜正,李华祥.构造应力对巷道布置影响的理论分析[J]煤矿设计,1998(11):17-19.
    [124]史鹏飞,张奋林.大采出率条件下煤柱宽度的确定[J].太原理工大学学报,1998,29(5):461-463.
    [125]刘克功,王家臣,徐金海.短壁机械化开采方法与煤柱稳定性研究[J].中国矿业大学学报,2005,34(1):31-33.
    [126]刘克功,徐金海.短壁开采大断面多交岔点煤巷支护技术[J].矿山压力与顶板管理,2005(2):11-17.
    [127]郭永文.旺格维利采煤工作面顶板管理的探索[J].煤炭工程,2004(5):7-11.
    [128]张金才,郭鑫禾,肖奎仁.条带开采煤柱稳定程度的研究[J].煤矿开采,1994(4):21-25.
    [129]高玮.一种分析条带煤柱稳定性的新思路[J].辽宁工程技术大学学报,2000,19(2):123-125.
    [130]张开智,郭周克.坚硬顶板煤柱稳定性实测分析[J].煤炭科学技术,2002(4):12-15.
    [131]李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程技术大学学报,2003,22(1):7-9.
    [132]卫建清.房柱式开采煤房与煤柱参数的合理确定[J].矿山压力与顶板管理,2003(1):106-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700