两轮自平衡电动车机械结构设计与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两轮自平衡电动车和两轮自平衡机器人同属于两轮自平衡系统,只是在性能和安全上,前者提出了更多的较为苛刻的要求。近年来国内外对两轮自平衡机器人的控制研究较多,但针对其机械结构的研究却较少,尤其是对两轮自平衡电动车的研究更是少之又少。本文总结了国内外相关领域的研究成果,在此基础上结合车辆设计理论,对两轮自平衡电动车的机械结构进行了建模和分析。所做的具体工作如下:
     1)对两轮自平衡系统进行动力学分析,得到其动态平衡的必要条件,为后续设计和分析提供依据。
     2)对两轮自平衡电动车进行结构设计,克服了国内相关专利的缺点。将中速电机和减速器集成在车轮内部,有利于提高电动车动力性能和工作效率;下沉式悬架设计不但使电动车舒适度增加,还可以降低动平衡控制难度;大量使用铝合金型材作为原材料,使电动车在满足力学性能的前提下重量却被限定在一定范围之内。从设计结果来看,达到了预期的目标。
     3)运用大型有限元分析软件ANSYS对车体中的关键部件进行力学分析。通过分析发现,所有零部件力学性能均满足要求,这说明先期设计是比较合理的。部分零部件刚度和强度裕度较大,通过优化,使其在保证力学性能的前提下重量大幅下降,实现了轻量化设计目的。
     4)针对轻型电动代步工具起动、爬坡时动力不足的问题,本文以研究两轮自平衡电动车为契机,提出了一种全新的可自动换档的结构方案。当车速在某一临界值以下时,以低速档运行,以获得较好的力学性能;当车速达到并超过某一值时,自动换入高速档,以满足速度要求和充分利用电机的转速范围。文中还对这种方案进行了粗建模。为给方案中一个关键部件的详细设计提供依据,文中设计了一台实验机,并附带给出了所有相关图纸。
Both the two-wheeled self-balancing electric vehicle and the two-wheeled self-balancing robot belong to the two-wheeled self-balancing system. Compared with the latter, the two-wheeled self-balancing electric vehicle requires more on performance and security. In recent years, studies of the two-wheeled self-balancing robot are too numerous to mention, and most of them focus on the control but not the structure. As a striking contrast, studies of the two-wheeled self-balancing electric vehicle can rarely be seen. After having summarized the research results of the field, this thesis designed and analyzed the mechanical structure of the two-wheeled self-balancing vehicle successfully. All the work can be listed as below:
     1) After having analyzed the mechanics of two-wheeled self-balancing system, a necessary condition was gained, which provided the basis for the following designs.
     2) A two-wheeled self-balancing electric vehicle was designed, overcoming all the weak points of the relative patents which could be found domestically. The design integrated a medium-speed motor and a reductor in the wheel, which was beneficial to improve the mechanical properties and the efficiency of the motor. The sunken suspension could both improve driving comfort and simplify the control of the dynamic-balance. Aluminum alloy sections were widely used in the design in order to reduce the mass of the vehicle under the premise of enough mechanical properties. The results of the design could meet the pre-requirements properly.
     3) After having analyzed the mechanical properties of the critical components of the vehicle in ANSYS, they were found to have met the requirements. This showed that the design was reasonable to a certain degree. Some of the components had a considerable rigidity or strength margin. After optimizations their mass was reduced largely but the mechanical properties were still satisfactory.
     4) In order to solve the problem of a small-sized transporter's power lack when it starts or climbs a slope, the thesis took the opportunity of researching the two-wheeled self-balancing vehicle, raising a new structure concept which could shift automatically. When the velocity is below the critical value, the vehicle navigates on the lower gear, in order to get a good power performance, and when the velocity exceeds the critical value, the reductor can switch to the higher gear automatically, so as to meet the speed requirement and make good use of the speed range of the motor. Based on this concept, a coarse model of the vehicle was made. In order to provide basis for the design of a critical component in the structure, a testing device was also designed, and all the drawings were given.
引文
[1]程辉.自行车控制机理与平衡问题研究[D].[硕士学位论文].西安:西安科技大学,2008
    [2]秦宏宇.双轮平等电动车的数学模型建立和总体结构设计[D].[硕士学位论文].洛阳:河南科技大学,2004
    [3]王晓宇.两轮自平衡机器人的研究[D].[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [4]Satoko FURUKI,Shinichi YUTA. Pose Estimation of a Vehicle on Rough Terrain by Using the Sun Direction. IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems,2003
    [5]Y.Ha and S.Yuta.Trajectory Tracking Control for Nabigateion of SelfContained Mobile Inverse Pendulum.IEEE/RSJ/GI int.Conf.Advanced RoBotic Systems and the Real World,1994,September, Vol.3:12-16
    [6]刘斌.两轮自平衡小车软硬件研发与基于模糊线性化模型的变结构控制研究[D].[硕士学位论文].西安:西安电子科技大学,2009
    [7]http://sicl.ucsd.edu/jaschavp/Project.html
    [8]黄永志.两轮移动机器人运动控制系统的设计与实现[D].[硕士学位论文].上海:上海交通大学,2004
    [9]王祯祥.两轮自平衡机器人之前后行走控制[D].[硕士学位论文].台北:国立中央大学,2003
    [10]曹志杰.一种自平衡双轮移动机器人控制系统的设计与实现[D].[硕士学位论文].北京:北京邮电大学,2008
    [11]高林.两轮自平衡机器人建模与仿真[D].[硕士学位论文].哈尔滨:哈尔滨工业大学,2005
    [12]王效杰.基于变结构控制的两轮自平衡小车系统设计与实现[D].[硕士学位论文].西安:西安电子科技大学,2006
    [13]H.Steve. Steve's Legway.http://www.teamhassenplug.org/robots/legway/,2003-1-17
    [14]H.Tirmant,M.Baloh,L.Vermeiren,etal. An Alternative Two Wheeled Vehicle for an Automated Urban Transportation System.Proceedings of the 2002 IEEE International Conference on Intelligent Vehicle Symposium.2002:594-603
    [15]M.Baloh. M.Parent. Modeling and Model Verification of an Intelligent Self-Balancing Two-Wheeled Vehicle for an Autonomous Urban Transportation System. Proceedings of the 2003 IEEE International Conference on Computational Intelligent, Robotics, and Autonomous Systems. Singapore,2003:1-7
    [16]http://www.segway.com
    [17]http://www.people.com.cn/GB/keji/1057/2016890.html.2003-8-14
    [18]屠运武,徐俊艳,张培仁等.自平衡控制系统的建模与仿真[J].系统仿真学报,2004,Vol.16(4):839-841
    [19]屠运武,张先舟,张志坚等.非连续论域模糊控制方法在自平衡系统中的应用[J].小型微型计算机系统.2004,Vol.25(8):1473-1476
    [20]张培仁,屠运武,张先舟等.自平衡两轮电动车[P].中国:CN 1502513A,2004-6-9
    [21]周惠兴等.两轮自平衡电动力[P].中国:CN 201228037Y,2008-6-16
    [22]RICH C O. Balancing a two-wheeled autonomous robot [D]. Perth:University of Western Australia,2003
    [23]MATSUMOTO O,KAJITA S,TANI K. Estimation and control of the attitude of a dynamic mobile robot using internal sensors [J]. Advanced Robotics,1993, Vol.7(2):159-178
    [24]哈尔滨工业大学理论力学教研室.理论力学(第六版)[M].北京:高等教育出版社,2002
    [25]孙亮,王嶷然,阮晓钢等.双轮自平衡机器人行走伺服控制算法[J].控制工程,2009(3):227-229
    [26]Nawawi S.W,Ahmad M.N,Osman J.H.S. CONTROLLER DESIGN FOR TWO-WHEELS INVERTED PENDULUM MOILE ROBOT USING SLIDING MODE CONTROL,University of Technology Malaysia,Proceedings of the Second Asia International Symposium on Mechatronics,2006.12
    [27]李京涛,高学山,黄强等.双模式非稳定结构移动机器人.机械工程学报[J],2009(5):147-152
    [28]程刚,屈胜利,刘学超.两轮自平衡小车可控角度的推导研究[J].伺服控制,2008(6):51-53
    [29]阮晓钢,任红格.两轮自平衡机器人动力学建模及其平衡控制[J].计算机应用研究,2009,Vol.26(1):99-101
    [30]李明爱,焦利芳,乔俊飞.自平衡两轮机器人的分层模糊控制[J].控制工程,2009,Vol.16(1):80-82
    [31]王晓守,闫继宏,秦勇等.基于改进遗传算法的两轮自平衡机器人能量优化策略[J].吉林大学学报(工学版),2009,Vol.39(3).830-835
    [32]崔万安.电动自行车构造与原理[M].北京:人民邮电出版社,2008
    [33]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB518-2007.摩托车轮胎[s].北京:中国标准出版社,2008
    [34]孙桓,陈作模.机械原理(第六版)[M].北京:高等教育出版社,2001
    [35]秦曾煌.电工学简明教程[M].北京:高等教育出版社,2007
    [36]李伟.电动自行车再生制动力的分配模型[J].机械制造与自动化,2009,Vol.38(5):133-144
    [37](美)Solidworks公司.Solidworks高级教程[M].北京:机械工业出版社,2007
    [38]陈立亮.材料加工CAD/CAE/CAM技术基础[M].北京:机械工业出版社,2006
    [39]赵玉涛.铝合金车轮制造技术[M].北京:机械工业出版社,2004
    [40]成大先.机械设计手册(轴承卷)[M].北京:化学工业出版社,2004
    [41]濮良贵,纪名刚.机械设计(第七版)[M].北京:高等教育出版社,2001
    [42]王晓伟,潘双夏.电动自行车行驶阻力分析与模拟应用[J].机械,2002(29)(增刊):108-112
    [43]谭建华.电动自行车的电机配置[J].中国自行车,2002(12)
    [44]陈家瑞,马天飞.汽车构造[M].北京:人民交通出版社,2006
    [45]黄景宇.汽车构造教学课件[M].北京:人民交通出版社,2006
    [46]成大先.机械设计手册(弹簧、起重运输件、五金件卷)[M].北京:化学工业出版社,2004
    [47]成大先.机械设计手册(常用工程材料卷)[M].北京:化学工业出版社,2004
    [48]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004
    [49]鲍丙豪,周燕,许桢英.传感器手册[M].北京:化学工业出版社,2008
    [50]张洪信.有限元基础理论与ANSYS应用[M].北京:机械工业出版社,2006
    [51]陈晓霞.ANSYS7.0高级分析[M].北京:机械工业出版社,2004
    [52]徐佩弦.塑料齿轮的设计[J].齿轮,1988,Vol.12(5):29-50
    [53]邹增大,李亚江,孙俊生等.焊接材料、工艺及设备手册[M].北京:化学工业出版社,2008
    [54]成大先.机械设计手册(常用设计资料卷)[M].北京:化学工业出版社,2004
    [55]程耀东.机械振动学[M].杭州:浙江大学出版社,1988
    [56]汪小锋,毕玉春,施凌志.爬坡能力对电动自行车的影响[J].中国水运(理论版),2006,Vol.4(8):157-158
    [57]高一知,李良.XL离心楔块超越离合器[J].矿山机械,2004(3):71-72
    [58]机械工程手册电机工程手册委员会.机械工程手册(机械零部件设计卷)[M].北京:机械工业出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700