综采工作面场景及覆岩垮落的动态虚拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采是一个的复杂时变系统,井下作业环境恶劣,地质条件复杂多变,人、机、环境多种因素相互交错,致使许多传统技术的应用受到严重限制。特别是在综采工作面和采空区,传统的研究方法不仅实验环境难以保证,而且耗资巨大,又相当危险,研究结果也难以得到验证。因此,在这个信息化时代,将虚拟现实技术与煤炭行业相结合,研究科学认知煤矿开采环境的新方法,成为当前解决煤矿安全生产的崭新课题。
     本文将巷道的各种数据信息分为测量数据、断面数据和属性数据三类,按照弧段节点的数据结构将巷道分为巷道体、巷道弧和巷道节点三种元素,建立了巷道弧、节点、导线点、断面和属性五个数据表,并分析了巷道体—巷道弧、巷道弧—节点、巷道体—节点间的拓扑关系。提出基于巷道中线断面建模法,即通过导线点数据计算出巷道中线点坐标,在中线处绘制一系列巷道断面线框模型,并将它们用线段连接起来构成巷道的表面模型,用上、下、左、右四个弧段来描述巷道的断面形态,最后经过纹理影射处理,生成整体巷道的三维模型。
     本文分析了虚拟场景的建模特点和建模方法,选用OpenGL作为建模工具,通过几何建模、形象建模和行为建模三个步骤建立采场设备模型。运用运动学、动力学分析综采设备的运动力学特性,提出使用约束型反向关联运动的方法对液压支架进行行为建模,运用子父体层次模型对采煤机进行行为建模。应用OpenGL提供的选择机制,利用鼠标控制设备上的虚拟控制器,实现液压支架和采煤机的交互操纵。设置系统计时器,利用时钟控制各个综采设备的运行状态,应用三维动画双缓存技术实现生产工艺过程的动态模拟。
     本文总结了我国采场覆岩移动规律的研究成果,对上覆岩层进行了层次划分和结构分类,将顶板分为五类:易垮落松软顶板、中等垮落性顶板1、中等垮落性顶板2、难垮落的坚硬顶板、假塑性弯曲顶板。采用基于面模型的线框模型建模方法,建立了采场覆岩的动态模型。系统能够根据上覆岩层的数据自动判别顶板结构类型,计算并确定出直接顶数目、直接顶厚度、关键层的数目和位置,关键层的破断顺序,基本顶的初次垮落步距和周期垮落步距等参数。系统能够动态模拟采场任意时空位置的覆岩运动,实现了不同结构类型顶板垮落过程的虚拟表示,为研究矿山压力和岩层移动提供了新的思路,可以验证经典的矿山压力假说关于覆岩移动的模型。
     井下场景复杂,逼真的再现导致计算机运行缓慢,本文运用模型简化、实例、单元分割、雾化等技术,提高了画面渲染速度,满足了虚拟现实实时性的要求。设计出场景漫游、视点控制、位置查询、碰撞检测等交互手段,利用Visual C++和OpenGL开发出基于PC机的煤矿井下虚拟现实系统,逼真地再现了综采工作面场景和覆岩垮落过程。
Coal mining is a complex time-varying system, in which various factors such as man, machine, and environment interact with each other, the tough underground work environments, complicated geological conditions and the mixture of different environmental factors give rise to the limitation of many traditional technology, especially in fully-mechanized face and roof. Conventional method had not only to guarantee the experimental environment, but also to demand a large cost while the process is dangerous and the result is hard to verify. Therefore, in the information age, the combination of VR technology and coal industry in researching the scientific cognition of coal mining environment is becoming a new method to solve the safety problem in coal mine production.
     Roadway data information was classified into measurement data, section data and attribute data in the paper. Roadway was classified into three elements: body, arch and node according to data structure of arch and node. Five datasheets of arch, node, traverse point, section and attribute were set up. Topological relations of body-arch, arch-node and body-node were analysised. Section Modeling method based on laneway midline was provided, namely calculate the coordinate of the median point of laneway midline with traverse point data,draw a series of line frame models of the laneway section at the midline; connect them with lines to form laneway surface model; describe the section features with four archs: up, down, left and right; finally 3D Model of the whole roadway was created after treated with texture mapping.
     Modeling characteristics and methods of virtual scene were analysised in the paper and OpenGL was chosed as modeling tool. Mine stope equipment model was set up through three steps: geometric modeling, image modeling and behavior modeling. Dynamic characteristic of fully mechanized mining equipments was analysised by using kinematics and dynamics. The behavior modeling of powered supports was set up with the method of constrained inverse kinematics, and shearer was established with the method of father-son hierarchical model. Powered supports and shearer can be controlled with the application of selection mechanism provided by OpenGL and virtual controller operated by mouse. By setting system timing device, using clock to control the operation of mining equipment and the applying of 3D animation double buffer technology, the dynamic simulation of the production process can be achieved at last.
     This paper summarized the research results of movement law of overburden rock, divided the overlying strata into five categories: soft collapsed roof, first medium collapsed roof, second medium collapsed roof, hard roof and bending plastic roof. Based on the model of the line box modeling method, the dynamic model of overburden rock was also established. According to the data of overlying strata, the system can automatically estimate the category of roof structure, calculated and determined parameters such as the number and thickness of immediate roof, and the number and position of key strata, broken order, the first collapse and the cycle collapse pace of the main roof. The overlying strata movement can be simulated no matter which happens at anywhere or on anytime. The system can promote the visualization of the collapse of different roof structure, and it provides us a new idea of studying the underground pressure and the strata movement, which can verify the underground pressure hypothesis about the classical model of overburden rock movement.
     The vivid representation of the complex underground scene result in the declination to computer operation speed, this paper used the simplified models, examples, partition and fog technology to improve the image rendering speed, met the requirement of VR about real-time. It had also designed methods such as scene roaming, spot controlling, position querying and collision detection. By using Visual c++ and OpenGL, the VR- mine system based on the PC was developed, reappear the operation in fully-mechanized scene and collapse of overburden rock realistically.
引文
[1]国家安全生产监督管理总局. http://www. chinasafety. gov.cn. 2006.
    [2]洪炳铭,蔡则苏等.虚拟现实及其应用[M].北京:国防工业出版社,2005.
    [3]王晓楠,王仲海.虚拟现实技术及其应用[J].航空计算技术,2002,32(2):50.
    [4]刘浩.计算机引论[M].济南:山东大学出版社, 2001.
    [5]中华人民共和国国务院.国家中长期科学和技术发展规划纲要. 2006-2020.
    [6] http://www.chinasafety.ac.cn/html/kydt.htm
    [7] Andriani Skopeliti, Lysandros Tsoulos. A Knowledge Based Approach for the Generalization of Linear Features [C]. Proceeding of 20th ICC, Beijing, 2001.
    [8] Burdea.G. Virtual Reality System and Application[C]. Electro’93 International Conference. 1993.
    [9]汪成为等.灵境(虚拟现实)技术的理论、现实及应用[M].北京:清华大学出版,1996:1
    [10]许妙忠.虚拟现实中三维地形建模和可视化技术及算法研究[D],武汉:武汉大学,2003.
    [11] Pilar Herrero etc. Intelligence Virtual Agents keeping Watch in the Battlefield(J), Virtual Reality, 2005, 8(3):185-193.
    [12] Antonio Riganelli etc. A Multi-scale Virtual Reality Approach Chemical Experiments(J). Computer Science. 2003(2658):324-330.
    [13] Richard A.Klein. Virtual Reality Exposure Therapy in the Treatment of Fear of Flying(J). Journal of Contemporary Psychotherapy, 2000, 30(2):195-207.
    [14] Akihiko Shiral etc, Entertainment Application of Human-Scale Virtual Reality System(J). Computer Science, 2004(3333):31-38.
    [15] W. Akl etal, Effience Virtual Reality Design of Quict Underwater Shell(J). Virtual Reality. 2005, 9(1):57-69.
    [16] Anton Jezermik etc, A solution to integrate computer-aided design (CAD) and virtual reality (VR)(J) database in design and manufacturing processes. 2003, 22(11-12):768-774.
    [17] Bise, C. J. Emerging technology for training of miners(J). Mining Engineering, 1997, 49(1): 37-41.
    [18] Chakraborty, Pallab R. Bise, Christopher J. Virtual reality based model for task-training of equipment operators in the mining industry(J). Mineral Resources Engineering. 2000, 9(4):437-449.
    [19] Denby B, Schofield D, Walsha T. Virtual reality for the real time visualization of environmental date(C). 27thAPCOM. London. UK.1998.
    [20] Schofield D, Denby B, Willams M, etc. New applications of computer graphics and virtual reality in the minerals industries(C). Mine IT. 1st international conference on information technologies in the minerals industry, National Technical University of Athens, Greece, 1997.
    [21] Crawshaw SAM, Denby B, McClarnon D. The use of virtual reality to simulate room and pillar operations(J). Coal international, 1997,245(1): 20-22.
    [22] Denby B. Schofield D. Role of virtual reality in safety training of mine personnel(J). Mining Engineering, 1999, 28(10):59-64.
    [23] Kizil, M.S.; Hancock, M.G.; Edmunds, O.T. Virtual reality as a training tool(C). Proceedings AusIMM Youth Congress 2001. 2001(2):9-12
    [24] Stothard, P. The Feasibility of Applying Virtual Reality Simulation to the Coal Mining Operations(C). Effective Risk Management for Mining Project Optimisation Conference article, 2003, n5:175-183.
    [25] Biswas, Debabrata, Nil. An integrated virtual reality system for the design of underground roadway support(D). University of New South Wales(Australia). 2001.
    [26] Schmid, Martin, Rossmann. Virtual reality teaching and training systems in mining - Applications and operational experiences(J). Deutsche Montan Technologie GmbH, Essen, Germany. Verlag Glueckauf GmbH, Essen, Germany. 2004(2):39-44.
    [27] Rossmann, Martin. Planning, simulation and real-time depiction of coal-mining processes using a "virtual reality" system(J). Glueckauf Mining Reporter, 2003, n1: 27-31.
    [28] Unver B, Yasitli NE. Simulation of sublevel caving method used in thick coal seam by computer(R). Hacettepe University Scientific Research Unit, Project no: 00 02 602 008, 2002:148 .
    [29] Yasitli NE, Unver B. 3D estimation of stresses around a longwall face by using finite difference method(C). 18th international miningcongress of Turkey, Antalya, 2003:83–86.
    [30] H. Yavuz. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines(J). International Journal of Rock Mechanics & Mining Sciences 2004, (41):193–205.
    [31] N.E. Yasitli, B. Unver. 3D numerical modeling of longwall mining with top-coal caving(J). International Journal of Rock Mechanics & Mining Sciences. 2005, (42):219–235.
    [32]张瑞新.虚拟现实技术及其在采矿工程中的应用[J].中国矿业大学学报,1998,27(3):230-234.
    [33]张瑞新,任延祥.虚拟现实技术在矿山安全工程中的研究进展[J].煤炭学报,1999,24(1):70-73.
    [34]毛杏飞,王斌.虚拟现实在矿业中的应用探讨[J] .企业技术开发, 1998(11):4-7.
    [35]王玉怀,李祥仪.虚拟现实技术及其在矿业中的应用[J].煤炭工程, 2001(11):62-63.
    [36]杨天军,才庆祥.虚拟现实与露天煤矿规划研究[J].矿业快报,2001(2):7-9.
    [37]朱景和等.虚拟现实技术在矿业中的应用[J].有色矿山,2002(3):42-44.
    [38]吴立新,张瑞新,戚宜欣,等.三维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33.
    [39] Li, Qing. Han, Ke-Qi. Shen, Yan-Chun. Research on controllable visualization of mine surface plant and development of virtual environment(J). Journal of China University of Mining &Technology 2002,31(1): 27-29.
    [40]苌道方,韩可琦,魏连江.虚拟现实技术在综采工作面仿真中的应用[J].矿业研究与开发,2004,24(1):41-43.
    [41]熊伟,毛善君,马蔼乃.煤矿虚拟环境的巷道几何建模及关键算法的研究[J].测绘通报,2002(8):15-16.
    [42]毛善君,熊伟.煤矿虚拟环境系统的总体设计及初步实现[J].煤炭学报,2005(10):571-575.
    [43]王宝山,魏占营.煤矿虚拟环境的巷道3维建模研究[J].测绘学院学报,2005,22(3):204-206.
    [44]王宝山,冯永玉.基于OpenGL的三维煤矿虚拟现实系统的实现[J].金属矿山,2005,344(2):61-63.
    [45]李建忠,陈鸿章,隋刚.基于虚拟现实的综采工作面仿真系统研究[J].系统仿真学报,2007,19(18): 4164-4167.
    [46] LI Jian-zhong, CHEN Hong-zhang, ZHANG Jun-wen. Design and Realization of Virtual Reality System of Fully Mechanized Mining Face(C). Proceedings of the 2007’International Symposium on Safety Science and Technology. PART A. 2007: 42-47.
    [47]石永奎,李兴伟.采场覆岩运动仿真系统[J].岩石力学与工程学报,2002,21(增2):2539-2541.
    [48]杨帆,麻凤海,刘书贤,张维廉.采空区岩层移动的动态过程与可视化研究[J].中国地质灾害与防治学报,2005,16(1):84-88.
    [49]毛善君.煤矿地理信息系统数据模型的研究[J],测绘学报,1998,27(4): 331-337.
    [50]龚建雅.矢量与栅格集成的三维数据模型[J],武汉测绘科技大学学报,1997,22(l):7-15
    [51]陈朋根,龚健雅.地质矿山中三维GIS数据模型的应用问题[J].矿山测量, 1999,5(2): 17-18.
    [52]马荣华.矿山地理信息系统中巷道模型的研究[J].测绘学报,2000,29(4): 355-359.
    [53]李海霞,贾建华,杨硕.适合矿井特点的三维数据结构的研究[J].矿山测量,2000,12(4):10-12.
    [54]陈学习,王彦斌.面向煤矿应用的三维GIS空间数据模型研究[J].华北科技学院学报,2003,5(3): 12-16.
    [55]梁建斌,张和生.应用OpenGL进行巷道三维显示研究[J].太原理工大学学报,2006,37(2):142-145.
    [56]徐志强,杨邦荣,王李管,毕林.巷道实体的三维建模研究与实现[J].计算机工程与应用, 2008, 44(6):202-205.
    [57]张志华.矿山测量数据处理与三维巷道建模方法研究[D].陕西:西安科技大学,2006.
    [58]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D].北京:中国人民解放军信息工程大学,2006.
    [59] [美]Richard S. Wright, Jr, Michael Sweet著潇湘工作室译. OPENGL超级宝典[M].北京:人民邮电出版社,2001.
    [60]贾志刚编.精通OPENGL[M].北京:电子工业出版社,1998.
    [61]王瑜. OpenGL在三维造型中的应用:[D].辽宁:大连理工大学,2000.
    [62]张秀山,徐荣花.虚拟现实技术及编程技巧.长沙:国防科技大学出版社, 1999.63-64.
    [63]赵沁平.虚拟现实综述[J].中国科学F辑:信息科学,2009, 39(1):2-46.
    [64] Redersen H. A framework for interactive texturing on curved surfaces[J]. Computer Graphics, 1996, 30(4):295-302.
    [65] Smith A .Planar. 2-pass texture mapping[J]. Computer Graphics, 1987,21(4):11-23.
    [66] Peachey, Darwyn R . Solid texturing of complex surfaces. in :Maureen C, Stone.ed . Proceedings of S IGGRAPH 1985. Anaheim, Califonria. 1985.New York: ACMPress ,1985. 287-296.
    [67]杨克俭,刘舒燕,陈定方.虚拟现实中的建模方法[J].武汉工业大学学报,2001,23(6):47-50.
    [68]郑援,李思昆等.虚拟实体对象的行为建模方法研究[J].国防科技大学学报,1998,20(1):78-82.
    [69] Gerard Hegron. Motion Control in Animation Simulation[C]. Visualizition Computer Graphics Forum, 1989, 8(5):347-352.
    [70] Philip Lee. Strength Guided Motion[J]. Computer Graphics, 1990, 24(4):253-262.
    [71] Sanv Mah. A Constraint-based Reasoning Framework for Dehavioural Animation [C]. Computer Graphics Forum 1994, 13(5):315-324
    [72] James vremer. Simulation and Scenario support for Virtual Environments[J]. Conputer&Graphics 1996, 20(2):199-206.
    [73] S. Yurkovich and M. Widjaja, Fuzzy Controller Synthesis for an Inverted Pendulum System[J].Control Eng. Practice 1996, 4(4):445-469.
    [74]SE-KYONG SONG, DONG-SOO KWON. Efficient formulation approach for the forward kinematics of 3-6 parallel mechanisms[J]. Advanced Robotics 2002, 16(2):191-215.
    [75] P. Baerlocher and R. BoiIic. Inverse Kinematics Techniques for the Interactive Posture Control of Articulated Figures[D].Ecote Polytechnique Federate de Lausanne,2001.
    [76] A. Balestrino, G De Maria, and L. Sciavicco. Robust control of robotic manipulators[C]. in Proceedings of the 9th IFAC World Congress, 1984, 5:2435-2440
    [77] S. Chiaverini. Estimate of the two smallest singular values of the jacobian matrix: Applications to damped least-squares inverse kinematics[J]. 1988, 10:991-1008.
    [78]刘金鹏.虚拟现实系统中的物理建模和行为属性问题研究[D].湖北:武汉理工大学,57-58.
    [79]王国彪高荣液压支架四连杆机构运动学的优化分析[J].阜新矿业学院学报,1991,10(3): 49-53
    [80] [美]William R. Sheman, Alan B. Craig著,魏迎梅,杨冰等译.虚拟现实系统——接口、应用与设计[M].电子工业出版社,2004,198.
    [81]Yamashita, Juli. Yamauchi, Yasushi. Mochimaru, Masaaki. Real-time 3-D model-based navigation system for endoscopic paranasal sinus surgery[J]. IEEE Transactions on Biomedical Engineering. 1999, 46(1):107-116.
    [82]王勇,潘懋. OpenGL的选择机制在三维交互式应用程序开发中的应用[J].计算机系统应用2001(10):23-25.
    [83]金小刚,鲍虎军,彭群生.计算机动画技术综述[J].软件学报,1997,3(4):241-251.
    [84]陆品,石守东,朱根兴.应用OpenGL的仿真动画实现和模型建立[J].机电工程,2002, 19 (4):1-4.
    [85]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:67-68.
    [86]钱鸣高.采场上覆岩层的平衡条件[J].中国矿业大学学报,1981(2):31-40.
    [87] Qian Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control[M].Strata Mechanics, Elsevier Scientific Publishing Company, 1982.13-17.
    [88]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982(2):1-12.
    [89]宋振骐.采场上覆岩层运动的基本规律[J].山东矿院学报,1979(1).
    [90]宋振骐,宋扬等.关于采场支承压力的显现规律及其应用[J].山东矿业学院学报,1982(1):1-25.
    [91]矿山压力研究室.矿山压力和岩层控制理论的研究[J].山东矿业学院学报,1983(2):9-19.
    [92]宋振骐等.实用矿山压力控制[M].徐州:中国矿业大学出版社,1989.
    [93]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [94]钱鸣高.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理, 1994(3):6-10.
    [95]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报, 1995,14(2):97-106.
    [96]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.
    [97]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿业学院学报,1986(4):11-19.
    [98]朱德仁,钱鸣高.长壁工作面老顶断裂的计算机模拟[J].中国矿业学院学报,1987(3):1-9.
    [99]钱鸣高等.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3): 225-230.
    [100]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社, 2000.
    [101]姜福兴,宋振骐,宋扬.老顶的基本结构形式[J].岩石力学与工程学报, 1993, (3):366-379
    [102]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994, (3):270-278.
    [103]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994.
    [104]石平五.试论一些矿压问题的能量原理.第二届煤矿采场矿压理论与实践讨论会征文选编[C].徐州:煤炭工业部矿山压力科技情报中心站,1984.
    [105]吴健,张勇.综放采场支架—围岩关系的新概念[J].煤炭学报,2001,26(4): 350-355.
    [106]姜福兴,Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震研究[J].岩土工程学报,2003,(1):23-25.
    [107]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报, 2004,29(l):7-11.
    [108]吴士良.对采场矿山压力有明显影响的覆岩破坏运动演化规律[D].山东科技大学,2002.
    [109]隋惠权,赵德深.覆岩采动的动态模拟与离层带充填技术研究[J].辽宁工程技术大学学报,2002,21(5):557-559.
    [110]弓培林,靳钟铭.大采高综采采场顶板控制力学模型研究[J].岩石力学与工程学报,2008,27(1):193-198.
    [111]郝海金,张勇,袁宗本.大采高采场整体力学模型及采场矿压显现的影响[J].矿山压力与顶板管理,2003,S3:21-24.
    [112]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467.
    [113]钱鸣高,刘听成.矿山压力及其控制(修订本) [M].北京:煤炭工业出版社, 1991:102-103.
    [114]侯忠杰.断裂带老顶的判别准则及在浅埋煤层中的应用[J].煤炭学报,2003,28(1):8-12.
    [115]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003:102.
    [116]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003, 10.
    [117] Victor J D. Delaunay Triangulation in TIN Creation: A Overview and A Linear-Time Algorithm [J]. GIS, 1993, 7(6):501-524
    [118]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000, 29-59
    [119] Li R X. Date Structure and Application Issues in 3D Geographic Information System[J]. Geomatics,1994,48(3):209-244.
    [120]许斌,张森,历万庆.从序列切片重构3D对象的新方法[J].计算机学报,1994,17(l): 64-71
    [121]朱小弟,李青元,曹代勇.基于OpenGL的切片合成法及其在3D地质模型可视化中的应用[J].测绘学科,2001,26(1):30-32.
    [122]朱小弟.TITIAN三维建模软件.北京东方泰坦科技有限公司产品资料.2001.
    [123]赵树贤.煤矿床可视化构模技术[D].北京:中国矿业大学(北京校区) 1999.
    [124]李清泉.基于混合机构的三维GIS数据模型与空间分析研究[D].武汉测绘科技大学,1998.
    [125]戴吾蛟,邹铮嵘.基于体素的三维GIS数据模型的研究[J].矿山测量,2001(1):20-22
    [126]韩国建,郭达志,金学林.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,21(1):13-17.
    [127] Pilout M,Tempfli K,Molenaar M.A Tetrahedron-Based on 3D Vector Data Model for Geo-information[J]. Advanced Geographic Data Modeling,Delft, Netherlands,1994.
    [128]张煌,白世伟.一种基于三棱柱体体元的三维地层建模方法应用阴.中国图像图形学报,2001,6(3):285-290
    [129]吴立新,张瑞新等. 3维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33.
    [130]齐安文,吴立新,李冰,等一种新的三维地学空间构模方法一类三棱柱法.煤炭学报,2002,27(2):158-163.
    [131]程朋根,龚健雅,史文中,刘少华.基于似三棱柱体的地质体三维建模与应用研究[J].武汉大学学报,2004,29(7):602-607.
    [132]车德福,陈学习,吴立新,徐磊.基于广义三棱柱体元的三维地层建模方法[J].辽宁工程技术大学学报, 2006, 25(1): 36-38.
    [133]李长春,王宝山,薛华柱.基于GTP的煤矿地质体三维建模及剖切[J].煤炭学报,2008,33(11):1718-1721.
    [134] ShiWZ. A Hybrid Model for 3DGIS[J]. Geoimformatics,1996 (1) :400-409.
    [135]李德仁,李清泉.一种三维GIS混合数据结构研究[J].测绘学报,1997,26 (2): 128-133.
    [136]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22 (1):7-15.
    [137]边馥苓,傅仲良,胡自锋.面向对象的栅格矢量一体化的三维数据模型[J].武汉测绘科技大学学报,2000, 25 (4):295-297.
    [138]程朋根,龚健雅.地勘工程三维空间数据模型及其数据结构设计[J].测绘学报,2001,30 (1):74-81.
    [139]李建华,边馥苓.工程地质三维空间建模技术及其应用研究[J].武汉大学学报,信息科学版,2003,28 (1):25-30.
    [140]姜福兴.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004:89.
    [141]任庆东,赵明辉,李龙,陈跃彬.场景模型的建立及快速显示[J].大庆石油学院学报,2002,26(2):56-59.
    [142]雷励星,陈晓明.真实场景的生成与实时绘制技术[J].系统仿真学报,2002,14(3):333-335.
    [143]洪光,李洪儒.虚拟现实系统实时性的研究与综合运用[J].计算机工程与科学2004, 26(6):37-39.
    [144]刘贤梅,黄静,刘晓明.三维动画技木与三维虚拟技木的研究[J].计算机仿真2004, 21(9),128-130.
    [145] Clay S R. Optimization for Real-time Graphics Applications Silicon(J) Graphics Computer System,1996.
    [146]彭群生,鲍虎军,金小刚.计算机真实感图形算法基础[M].北京:科学出版社,1999,364.
    [147] William JS,Jonathan A Z.William EL.Decimation of triangle meches(J). Computer Graphics,1992,26(2):65-69.
    [148] Paul H Charles H.Geometric optimization(J).Computer Graphics. SIGGPAPH 1994.
    [149] Greg T.Re-tiling polygonal surface(J).Computer Graphics.1992, 26(2): 55-64.
    [150] Hoppe H.Derose T.Duchamp T.etal. Mesh optimization.Computer Graphics. SIGGPAPH 1994.
    [151]罗亚波,陈定方.虚拟环境建模及实时性改善方法[J].中国图象图形学报,2001,6(6):587-588.
    [152]王晓东,毕开波.基于Creator的飞行视景三维模型数据库优化技术[J].系统仿真学报, 2007, 19(12): 2716-2719.
    [153] Webster’s New Universal Unabridged Dictionary. New York: Barnes & Noble Books, 1989.
    [154]周昆,童一颖,潘志庚,石教英. VECW:一个虚拟环境的构造和漫游系统[J] .计算机辅助设计与图形学学报,2000,12(5):355-359.
    [155]傅晟,彭群生.一个桌面型虚拟建筑环境实时漫游系统的设计与实现[J].计算机学报,1998,21(9):793-799.
    [156] Noborio H, Fukuda S, Arimoto S.Fast interference check method using octree[J]. Advanced Robotics. 1989, 3(3):193-212.
    [157] Naylor B, Amanatides J, Thibault W. Merging BSP trees yieds polyhedral set operations(C). ACM Computer Graphics(SIGGRAPH’90 Proceedings), 1990, 24(2):115-124.
    [158] Palmerl J,Grimsdale RL. Collision detection for animation using sphere [J]. Computer Graphics Forum, 1995, 14(2): 105-116.
    [159] Chung K, Wang W. Quick collision detection of polytopes in virtual environments [J]. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 1996, 125-131.
    [160] Gottschalk S, Lin M C, Manocha D. OBBTree:A hierarchical structure for rapid interference detection[C].IN: Compute Graphis(SIGGRAPH’96 Proc.), 1996, v30:171-180.
    [161] James T, Klosowski, Martin Held, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs[C]. (SIGGRAPH’96 Proc.), 1996, v30:26-37.
    [162]熊伟,毛善君,马蔼乃.基于观察者的碰撞检测技术在虚拟环境漫游中的应用[J].计算机应用,2002,22(11):6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700