Si-Al-Ca-C结构光催化材料制备及降解羟肟酸类捕收剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术与工业的发展,受污染的水资源越来越严重地威胁着人类的健康和生存质量。任何单一的废水处理技术都不能满足越来越高的排放要求。多技术综合处理生活废水、工业废水成为当今水处理的主流技术。借助光催化反应技术已成为研究的主要领域之一。传统光催化是在悬浮体系下应用的,具有易失活、难以分离回收并产生二次污染等问题。本研究制备一种密度小于1、化学性质稳定、在水介质中漂浮且不散失的光催化剂载体,在载体上复合TiO_2,制备出新型光催化材料,并用来降解选矿废水及机理探讨是本文的主要目的。研究内容包括:
     1.选择几种特定物质,以组分A、B、C、D为原料,制备Si-Al-Ca-C结构多孔轻质材料。详细研究了影响多孔轻质材料物化性能的因素。在制备配方探索性研究基础上分别作了单因素条件试验和正交选优实验,筛选出多孔轻质材料最佳制备工艺条件为:组分A含量为10%、组分B含量为40%、组分C含量为10%、组分D含量为40%、粘结剂CMC(工业级CMC-Na)含量为15%(占组分总质量的百分数)、800℃焙烧2h。该多孔轻质基体材料在水介质中漂浮时间为42h,散失率为0.65%,体积密度为0.98kg/m~3,比表面积为2.5039m~2/g,孔隙率为0.0032mL/g,抗压强度为2.64MPa。材料孔道分布均匀广泛,形状规则,孔径最小约5um,最大约100um,90%的孔径在20~60um之间。
     2.以含羟肟酸类捕收剂模拟选矿废水为降解对象,主要考察了各种因素对材料基体复合纳米TiO_2晶体膜的光催化性能影响。基体表面与TiO_2溶胶复合5次,键合温度为700℃,焙烧2h后即为Si-Al-Ca-C基体复合纳米TiO_2光催化新材料。在pH=3.0±0.1时,对四种羟肟酸类捕收剂的降解率依次为:N-羟基邻苯二甲酰亚胺(97.06%)>水杨羟肟酸(86.32%)>苯甲羟肟酸(84.06%)>2-羟基-3萘甲羟肟酸(73.58%)。连续使用10次后,基体表面TiO_2负载量只有少量损失、降解率略有下降,与使用一次时进行比较,降解率下降了两个百分点,质量损失了10~(-4)g。应用研究表明,该材料是一种可高效循环利用的新型光催化材料。
     3.研究探讨了N-羟基邻苯二甲酰亚胺光催化降解动力学及机理,结果表明该反应符合Langmuir-Hinshelwood动力学方程。降解反应速率常数与N-羟基邻苯二甲酰亚胺废水溶液初始浓度成正比;当初始浓度为为20 mg·L~(-1)时,反应速率常数k最大,为0.0097 min~(-1)。
     研究结果表明:相同降解条件下,降解率高低一方面取决于光催化材料吸附氧化性能,另一方面取决于待降解有机物的分子结构,分子量大小。分子结构越复杂,分子量越大的有机物越难降解。复杂分子结构或大分子量有机物的降解是一个逐步光催化氧化分解,使分子链断开的过程,中间产物的氧化需要更大的能量和更长的氧化时间才能彻底实现矿化。
With the development of science and industrial technology, polluted water is much more threatting to human health and quality of life. Any single wastewater treatment technology can not satisfied with the increasing requirement of emissions. More comprehensive treatment technology of domestic wastewater and industrial waste water becomes the mainstream of today's water treatment technology. The aid of photocatalytic reaction technology becomes one of the major areas of study. There are many disadvantages by use of aqueous suspensions of TiO_2 in practical applications, such as easily deactivated, agglomerated, difficultly separated, and will produce secondary pollution. The main purpose of the paper was to develop a kind of photocatalyst carrier, which density is less than 1, chemical properties are stable and can float in aquatic phase with no dissipate, can compound TiO_2 on the substract and develop a novel photocatalytic materials, and can be used to the degradation of beneficiation wastewater as well. The research contents are as follows:
     1. A multi-porous lightweight materials of Si-Al-Ca-C structure prepared by chosing representative mass: ingredient A、B、C and D. The influence factors of phychemical properties. of multi-porous lightweight materials has been researched in detail. On the basis of exploratory study of the preparation of the prescription, These condition experiments of single factor and orthogonal were respectively investigated for multi-porous lightweight materials. The results shown that the best formula for making multi-porous lightweight materials are ingredient A 10 percent, B 40 percent, C 10 percent, D 40 percent and adhesives 15 percent calcined in 800℃for 2 hours. This light multi-porous material can floatable in aquatic phase for 42 hours,dissipation rate 0.65 percent and bulk density 0.98kg/m~3. the specific surface area of the material 2.5039m~2/g, the hole rate 0.0032mL/g and compressive strength 2.64Mpa. The uniformly and extensively distribution rate of pore pathway and regular shape, the minimum aperture for 5um and the maximum for 100um, and range from 20 to 60 um 90 percent for most them .
     2. Many factors that effecting the photocatalysis activity have been researched in detail with hydroxamic acid which be used as a floatation collector. composited nano-crystal film of titanium onto surface of the substrate and coated for 5 times calcined temperature 700°C and then will become a novel photocatalytic materials which have Si-Al-Ca-C structure. When pH 3.0±0.1, the degradation rates to four kinds of hydroxamic acid are as follows: N-Hydroxyphthalimide (97.06 percent) > Salicylhydroxamic acid (86.32 percent) > Benzohydroxamic acid (84.06 percent) > 2-hydroxy-3-naphthyl hydroximic acid (73.58 percent). The loading of TiO_2 of matrix substrate had a small loss and degradation rate declined slightly for recycled 10 times, compared with used once, degradation rate dropped two percentage points and quality loss for 10~(-4) g. Research shown that this material is a novel photocatalytic material which can be efficiently recyled.
     3. The photodegradation reaction kinetics of N-hydroxyphthalimide has been studied. The experiment shown that the reaction accords with the kinetics equation of Langmuir-Hinshelwood. The reaction rate constant is proportional to initial concentration of N-hydroxyphthalimide. when the initial concentration 20 mg·L~(-1), the rate constant k for the most 0.0097 min~(-1).
     The investigation result shown: rate of degradation depends on two facts that one is absorbition oxidation capability of photocatalytic material,and another is the structure of molecule and molecular weight of organic matter that will be degraded on the same degradation condition. The more complex structure and heavy weight of organic matter ,the more difficult to be degraded. It is a gradually oxidized process that molecular chain of complex molecular structure or heavy molecular weight's degradation, as well as much more energy needs and oxidized time to degradated the secondary products of the organics.
引文
[1]宋庆福,阳光.改善矿山环境加强环保型选矿药剂研究[J].国外金属选矿,2000(2):39-40
    [2]胡熙庚,黄和慰,毛矩凡,等.浮选理论与工艺[J].长沙:中南工业大学出版社,1991,105-106
    [3]郑水林,袁继祖等.非金属矿加工技术与应用手册[M].冶金工业出版社,北京,2005.
    [4]杨运琼.硫化矿捕收剂的降解性能与机理研究[D].2002
    [5]胡为柏.浮选[M].北京:冶金工业出版社,1982,201-216
    [6]V.Kirjavainen,N.SchreithoferandK.Heiskanen.Effect of calcium and thisulfate irons on Flotation selectivity of nickel-copper ores[J].Minerals Engineering,2002,15(1-2):1-8
    [7]刘述忠,杨新华.730系列起泡剂浮选应用研究[J].有色金属(选矿部分),2001,(4):26-28
    [8]云锡黄茅山选厂:“重浮选一重流程处理锡矿泥生产实践”[J].云锡科技,1975,14-16
    [9]李勇,左继成,刘艳辉.羟肟酸类捕收剂在稀土选矿中的应用与研究进展[J].有色矿冶,2007.6,23(3):30-33
    [10]李俊.矿山修复与环境防治[J].新中国有色金属(环境保护与安全卫生),1987,46-56
    [11]艾光华,魏宗武.矿山选矿药剂对生态环境的污染与防治探讨[J],矿业快报,2008.10(10):72-74
    [12]翁建浩.选矿废水中残余黄药降解规律的试验研究[J].化工矿物与加工,2001(5):18-21
    [13]赵玉娥.黄药、黑药、二号油在水体中的降解试验研究[J].黄金,1995,16(7):1-5
    [14]见百熙.浮选药剂.北京:冶金工业出版社,1981,425-426
    [15]周歧发,危韧勇,张进修等.纳米TiO_2薄膜的制备及其光学特性研究[J].中山大学学报(自然科学版),2000,39(4):52-53
    [16]Akihiko Hattori,Hiroaki Tada.High photocatalytic activity of F-Doped TiO_2 film on glass[J].Journal of Sol-Gel Science and Technology,2001(22):47-52
    [17]张玉红,吴鸣,熊国兴等.溶胶-凝胶法制备TiO_2复合光催化膜-制备前驱物对膜性能的影响[J].功能材料,2000,31(5):536-538
    [18]朱永法,张利,王莉.不锈钢基底上TiO_2薄膜型光催化剂的制备和化学结构[J].化学学报,2000,58(4):467-472
    [19]陈建华,赵翠华,龚竹青.Cr3+离子掺杂对负载TiO_2薄膜光催化活性的影响[J].环境 技术,2004,(4):9-13
    [20]郭玉,张溪文,韩高荣.掺氮二氧化钛薄膜的常压化学气相沉积及其结构性能研究[J].真空科学与技术学报,2006,26(3):190-194
    [21]Takeda S,Suzuki S,Odaka H,et al.Photocatalytic TiO_2 thin film deposited onto glass by DC magnetron sputtering[J].Thin Solid Films,2001,392:338-344
    [22]李海玲,王文静,亢国虎.磁控溅射法制备TiO_2薄膜的光催化特性[J].太阳能学报,2006,27(11):1103-1107
    [23]Byrne J.A.,Eggins B.R.,Brown N.M.D.,McKinney B.,et al,Immobilisation of TiO_2 powder for the treatment of polluted water[J].Appl Catal B:Environ,1998,17:25-36.
    [24]Shigehito D.,Yoshifumi A.,osmau H.et al.Titanium(Ⅳ) Oxide Thin Films Prepared from Aqueous Solution[J].Chemistry Letters,1996,6(5):433-434
    [25]张晟卯,高永建,张治军,等.仿贝壳自组装纳米复合薄膜的制备及结构表征[J].化学学报,2002,18(5):451-454
    [26]Matsumoto Y,Ishikawa Y,NishdaM,et al.Anewelectrochemical method to prepare mesoporous titanium(Ⅳ) oxide photocatalyst fixed on alumite substrate[J]:Phys.Chem.B 2000,10
    [27]朱永法,李巍,尚静等.不锈钢金属网上TiO_2纳米薄膜光催化剂的研究[J].高等学校化学学报,2003.3(3):465-468
    [28]何俣,朱永法,喻方.玻璃珠负载中孔TiO_2纳米薄膜光催化研究[J].无机材料学报,2004.3,19(2):385-390
    [29]Torimoto T,Ito S,Kuwabata S etal.Effects of Adsorbents Used as Supports for Titanium dioxide Loading on Photocatalytic Degradation of Propyzamide[J].Environ.Sci.Technol.,1996,30:1275-1281
    [30]占长林,纳米TiO_2网膜固定技术及光催化应用研究[D].硕士学位论文,武汉理工大学2008
    [31]刘守新.TiO_2/活性炭负载型光催化剂的溶胶-凝胶法合成及表征[J],催化学报,2008.1,29(1):19-23
    [32]黄艳娥,刘会媛.TiO_2光催化剂固定化载体及固化方法[J],唐山师范学院学报,2001.9,23(5):31-32
    [33]张音波,余煜棉,刘千钧.多相光催化降解染料废水得研究进展[J].工业水处理,2001,21(12):1-4
    [34]Nishio,Junpei,Tokumura,Masahiro,Znad,Hussein T,Kawase,Yoshinori.Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurryphotoreactor[J].J HazardMater,2006,138(1):106-110.
    [35]G.Sivalingam,K.Nagaveni,M.S.Hegde,et al.,Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO_2[J],Appl.Catal.B:Environmental,2003,45:23-38
    [36]李芳柏,古国榜.亚甲基蓝溶液的光催化脱色及降解[J],环境污染与防治,1999.12,21(6):1-4
    [37]邓南圣,刘筱红,吴峰等.酞菁类复合催化剂对染料橙黄Ⅱ水溶液的光催化脱色研究[J],环境科学学报,2001.6,21:115-118
    [38]Heller A,Abstracts of the First International Conference on TiO2 Photocatalytic Purification and Treatment of Water andAir[J].London,Ontario.Canada.1992,17
    [39]Chen Shifu,Cao Gengyu,Photocatalytic oxidation of nitrite by sunlight using TiO_2 supported on hollow glass icrobeads[J],Solar Energy,2002,73(1):15-21
    [40]方佑龄,赵文宽,赵国华.用浸涂法制备漂浮附载型TiO_2薄膜光催化降解辛烷[J].环境化学,1997.16(5):
    [41]胡四平,邓红霞.光催化氧化法处理含酚废水研究.浙江化工,2007,38(5):5-7
    [42]沈迅伟,张静,袁春伟.二氧化钛恳浆体系中过硫酸盐对苯酚光催化降解的影响[J].环境科学学报,2005.5,25(5):631-636
    [43]Mohamed K,Asma Z,Rachid B.Photocatalytic degradability of substituted phenols over UV irradiated TiO_2[J].Journal of Photochemistry and Photobiology A:Chemistry,2003,1(59):61-70.
    [44]Kirk-Othmer.Encyclopedia of Chemical Technology4thed.[M].New York:John Wiley&Son Inc,1997,(2).474;(3).443;(4).49
    [45]袁胜利,张宗权.负载型TiO_2光催化剂对有机磷农药废水降解的研究[J].西北农林科技大学学报,2005.8,33(8):122-125
    [46]王铎,陈建秋,苏燕.纳米二氧化钛光催化降解有机磷杀虫剂毒性的研究[J].佛山陶瓷,2006(6):1-3
    [47]于新意,张高科,周文君.光催化技术在废水处理的应用[J].辽宁化工,2007(2),36(2):103-106。
    [48]王君,郭东宝,张朝红.纳米锐钛型TiO_2催化超声降解SDBS溶液[J].水处理技术,2005,31(9):21-24.
    [49]Arana J.,Melian JAH.TiO_2-photocatalysis as a Lertiary Treatment of Naturally Treated Wastewater[J].Catalysis Today,2002,76(2):279-289
    [50]郑水林,王利剑,舒锋,等.酸浸和焙烧对硅藻土性能的影响[J].硅酸盐学报,2006,34(11):1382-1386.
    [51]丁士文,张兴威,王利勇.纳米TiO_2-硅藻土复合材料的制备、表征与吸附性能[J].纳米科技,2007.
    [52]罗智文,陈琳,莫小平.硅藻土的吸附机理和研究现状[J].内江科技,2008,9.
    [53]郑淑彬.膨胀石墨的的制备及其吸附性能研究fD].硕士学位论文.福建师范大学,1995
    [54]杨淑珍,周和平.无机非金属材料测试试验[M].武汉:武汉工业大学出版社,1991
    [55]伍洪标.无机非金属材料试验[M].北京:化学工业出版社,2002
    [56]水和废水监测分析方法.国家环保局,第三版.中国环境科学出版社,1989.
    [57]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性[J].江苏环境科技,2003,16(2):1-3
    [58]雷绍民,黄橙,许天翼,占长林.活性钙质吸附材料制备及应用研究[J].武汉理工大学学报,2008,11,30(11):33-36
    [59]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-46.
    [60]雷绍民.高岭石基纳米TiO_2复合光催化材料研究[D].博士学位论文.武汉理工大学,2006
    [61]石中亮,姚淑华,华丽.沸石负载TiO_2光催化降解造纸废水研究[J].非金属矿,2007,30(4):46-49
    [62]雷绍民,占长林,Bo Jin等.网固定TiO_2薄膜的制备及光催化性能研究[J].金属矿山,2008(10):126-130
    [63]Ollis D F,Hsiao C Y,Budiman L,et al.Heterogeneous photoassisted catalysis:conversions of perchloroethylene,dichloroethane,chloroacetic acids,and chlorobenzenes[J].J Catal,1984,88:89-96
    [64]Ollis D F.Contaminant degradation in water,Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants[J].Environ Sci Technol,1985,19:480-484
    [65]雷乐成.水处理高级氧化技术[M].化学工业出版社,2001.8
    [66]邓南圣,吴峰.环境光化学.化学工业出版社[M],2003
    [67]李天成,王军民,朱慎林.环境工程中的化学反应技术及应用[M].化学工业出版社,2005.3
    [68]于向阳,梁文,杜永娟,程继健.二氧化钛光催化材料的应用[J].材料导报,2000,14(2):38-40
    [69]豆俊峰,邹振扬,郑泽根.纳米TiO_2的光化学特性及其住环境科学中的应用[J].材料导报,2000,14(6):35-37
    [70]Schwitzgebel J.,Ekerdt J.G.,Gerischer H.,Heller A.,Role of the oxygen molecule and of photogenerated electron in TiO_2 photocatalyzed air oxidation reactions,J.Phys.Chem.,1995,99(15):5633-5638
    [71]黄量,于德泉.紫外光谱在有机化学中的应用(下册)[M].科学出版社,2000.7
    [72]唐恢同.有机化合物的光谱鉴定[M].北京大学出版社,1994.7
    [73]宁永成.有机化合物鉴定与有机波谱学(第二版)[M].科学出版社,2003.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700