牛组织器官矿物元素指纹溯源信息特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障牛肉消费安全和肉牛产业发展安全,肉牛质量安全的追溯技术体系的研究和建立日益受到重视。牛肉中矿物元素指纹特征与肉牛生长的地域密切相关,矿物元素指纹分析技术是用于牛肉及其它食品产地溯源的有效技术之一。前人对这一技术的可行性已经进行了相关探讨。肉牛组织器官中矿物元素指纹特征不仅与生长地域有关,还受饲料种类的影响。在生产实际中,肉牛经常在不同地域转移喂养,而且同一地域不同饲养期的饲料也有变化,不同组织器官对矿物元素的富集作用也不同,这些问题对牛肉矿物元素指纹溯源技术在实际中的应用带来了一定困难。
     本研究通过在内蒙古太仆寺旗、陕西杨凌和河南南阳三个地域实施肉牛迁徙-饲养模型试验,采集了肌肉、心脏、肝脏和肺脏组织器官样品以及土壤样品,利用高分辨率等离子体质谱仪(HR-ICP-MS)和等离子体原子放射光谱仪(ICP-OES)检测了57种矿物元素的含量。比较分析了不同地域和不同饲养期各组织器官矿物元素的组成特征,不同组织器官之间矿物元素组成特征以及各组织器官与土壤中矿物元素组成特征;在此基础上,筛选出了用于牛肉产地溯源的有效溯源指标,为牛肉产地矿物元素指纹溯源技术的研究和应用提供了理论和方法参考。本研究的主要结论如下:
     (1)内蒙古太仆寺旗、陕西杨凌和河南南阳三个地域喂养的肉牛组织器官中矿物元素指纹信息特征不同。各组织器官在不同地域具有显著差异的矿物元素种类不同,肌肉为元素Y、Lu、Th、Ge、Cs、W、Rb、Fe、K和Al,心脏为元素In、Pr、Nd、Ni、Cs、W、Rb和Na,肝脏为元素Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Sb、Th、U、Zr、Ga、Cs、W、Bi、Rb、As和Al,肺脏为元素Be、Nb、Eu、Gd、Tm、Ta、Th、Hf、Ga、Mo、Sn、W、Rb、Zn和K。内蒙古太仆寺旗样品中矿物元素含量的变异系数相对较大,而陕西杨凌和河南南阳样品中矿物元素含量的变异系数相对较小。
     (2)内蒙古太仆寺旗三个饲养期之间、杨凌两个饲养期之间存在无显著差异的矿物元素。在内蒙古太仆寺旗,肌肉中为元素Be、Cd、In、Tl、U、Ge、Li、Sc、Cr、Ga、Mo、Cs、W、Se、Sn、Cu、As、Zn、Ti、K、Ca、Na、Mg,心脏中为元素In、Ta、Zr、Ni、Ga、Cs、Pb、Bi、Se、Sn、Cu、Zn、Ti、Fe、K、Mg,肝脏中为元素Y、Cd、In、Sb、Eu、Ho、Er、Tl、Th、U、Zr、Hf、Ge、Te、Li、V、Cr、Ga、Mo、Cs、W、Pb、Sn、As、Zn、Ti、Mn、Fe、K、Ca、Na、Mg,肺脏中为元素Be、Cd、In、Ge、Ba、Pb、Bi、Se、Sn、Cu、As、Zn、K、Ca、Na、Mg;在陕西杨凌,肌肉中为元素Be、Y、Nb、Cd、In、Sb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Ta、Tl、Th、U、Zr、Hf、Li、Sc、V、Cr、Co、Ni、Ga、W、Se、Sn、Cu、Sr、As、Zn、Ti、Mn、Fe、K、Ca、Na、Mg、Al,心脏中为元素Y、Nb、Cd、In、Sb、La、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Er、Yb、Lu、Ta、Tl、Th、U、Zr、Li、Sc、V、Cr、Co、Ni、Ga、Mo、Pb、Bi、Se、Sn、Cu、As、Zn、Mn、Fe、K、Ca、Na、Mg、Al,肝脏中为元素Y、Nb、Cd、In、Sb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Tl、Th、U、Zr、Hf、Ge、Te、Sc、V、Co、Ni、Ga、Mo、Cs、Ba、W、Pb、Bi、Se、Sn、Cu、Sr、As、Zn、Ti、Mn、Fe、K、Ca、Na、Mg、Al,肺脏中为元素Be、Y、Nb、Cd、In、Sb、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu、Ta、Tl、Th、U、Zr、Hf、Ge、Te、Li、Sc、V、Cr、Co、Ni、Ga、Mo、Cs、W、Pb、Bi、Sn、Cu、Sr、As、Zn、Ti、Mn、Fe、K、Na、Mg、Al。
     (3)肉牛各组织器官中矿物元素含量特征不同。元素Cd、Pb、Bi、Cu、Rb、Zn在肝脏中含量显著高于肌肉、心脏和肺脏,而元素Y、Nb、In、Sm、Eu、Gd、Tb、Dy、Er、Yb、Lu、Th、U、Zr、Hf、Ge、Li、Sc、V、Ba、Al在肺脏中含量显著高于肌肉、心脏和肝脏。元素Sb、La、Ce、Ga、Ti、Cr、Co、Ni、Se、Mo、Mn、Pr、Nd、Fe在肝脏和肺脏中含量相对较高,常量元素K、Mg和元素W在肌肉和心脏中含量相对较高,元素Be、Ta、Tl和常量元素Ca、Na在肺脏和心脏中含量相对较高。
     (4)内蒙古太仆寺旗、陕西杨凌和河南南阳土壤中矿物元素指纹具有不同特征。元素Hf、K、Sr含量在太仆寺旗最高,元素La、Ce、Nd、Eu、Ta、Cu、Al、Ba、Se、Na含量在南阳最高,元素Be、Tl、Zr、Li、Mo、Cs、Rb、Ca、Y、Nb、Cd、In、Sb、Pr、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ta、Th、U、Hf、Ge、Te、Sc、V、Cr、Ni、Ga、W、Pb、Bi、Sn、As、Zn、Ti、Mn、Fe、Mg含量在杨凌最高。不同饲养期内蒙古太仆寺旗土壤矿物元素波动较大,而陕西杨凌较小。土壤与组织器官之间矿物元素含量特征存在较大差异。
     (5)依据不同地域之间有显著差异、同一地域不同饲养期之间无显著差异的原则筛选出了用于区分内蒙古太仆寺旗、陕西杨凌和河南南阳三个地域肉牛产地溯源的矿物元素指标体系,肌肉为元素Ge、Bi,心脏为元素In、Ta、Na和Cs,肝脏为元素Eu、Ga、Cr和Cs,肺脏为元素W。
To ensure the safety of beef consumption and development of cattle industry, there are increasing concerns about the establishment of a traceability technological system and relevant researches. As the characteristics of multi-element in beef are closely related to cattle growing environment, multi-element analysis is one of the promising and effective tracing technologies in the food industry. Many researches focusing on the feasibility study of multi-element analysis in food traceability have been done. It is reported that the characteristics of multi-element in beef are also affected by animal feeds. In practice, there may be situations that cattle are transferred between and fed at different places, and the feeds will also be changed with the seasons. These problems together with the discrepant enrichment of multi-element in different tissues and organs to some extent will challenge the application of this technology.
     Cattle transfer-feeding model experiments were conducted in this study in study fields including Taipusi Banner in Inner Mongolia Autonomous Region (TP), Yangling Zone in Shaanxi Province (YL) and Nanyang City in Henan Province (NY). Cattle muscles, hearts, livers, lungs and earth from the field feeds growing were sampled. Up to 57 kinds of elements were measured using HR-ICP-MS and ICP-OES. Differences in multi-element contents in cattle tissues and organs between samples from different regions and feeding periods were analyzed. Relationships on multi-element characteristics between animal organs and earth were also discussed. In addition, Tracing indexes which were suitable elements for geographical origin assignment in these study fields were selected. The objective of this study was to provide theoretical and methodological references to the research and application of multi-element analysis. The main conclusions were:
     (1) There were differences in multi-element fingerprint characteristics of cattle tissues and organs from TP, YL and NY. Elements with significant differences in the three regions were different in cattle tissues and organs. They were Y, Lu, Th, Ge, Cs, W, Rb, Fe, K, Al in muscle samples, In, Pr, Nd, Ni, Cs, W, Rb, Na in heart samples, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Sb, Th, U, Zr, Ga, Cs, W, Bi, Rb, As, Al in liver samples and Be, Nb, Eu, Gd, Tm, Ta, Th, Hf, Ga, Mo, Sn, W, Rb, Zn, K in lung samples. In addition, coefficients of variance of multi-element contents in samples from TP were relatively larger than those in samples from YL and NY.
     (2) There were elements with no significant differences in contents for samples from different feeding periods in TP and YL. In TP, they were Be, Cd, In, Tl, U, Ge, Li, Sc, Cr, Ga, Mo, Cs, W, Se, Sn, Cu, As, Zn, Ti, K, Ca, Na, Mg in muscle, In, Ta, Zr, Ni, Ga, Cs, Pb, Bi, Se, Sn, Cu, Zn, Ti, Fe, K, Mg in heart, Y, Cd, In, Sb, Eu, Ho, Er, Tl, Th, U, Zr, Hf, Ge, Te, Li, V, Cr, Ga, Mo, Cs, W, Pb, Sn, As, Zn, Ti, Mn, Fe, K, Ca, Na, Mg in liver and Be, Cd, In, Ge, Ba, Pb, Bi, Se, Sn, Cu, As, Zn, K, Ca, Na, Mg in lung. In YL, they were Be, Y, Nb, Cd, In, Sb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Ta, Tl, Th, U, Zr, Hf, Li, Sc, V, Cr, Co, Ni, Ga, W, Se, Sn, Cu, Sr, As, Zn, Ti, Mn, Fe, K, Ca, Na, Mg, Al in muscle, Y, Nb, Cd, In, Sb, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Er, Yb, Lu, Ta, Tl, Th, U, Zr, Li, Sc, V, Cr, Co, Ni, Ga, Mo, Pb, Bi, Se, Sn, Cu, As, Zn, Mn, Fe, K, Ca, Na, Mg, Al in heart, Y, Nb, Cd, In, Sb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Tl, Th, U, Zr, Hf, Ge, Te, Sc, V, Co, Ni, Ga, Mo, Cs, Ba, W, Pb, Bi, Se, Sn, Cu, Sr, As, Zn, Ti, Mn, Fe, K, Ca, Na, Mg, Al in liver and Be, Y, Nb, Cd, In, Sb, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Ta, Tl, Th, U, Zr, Hf, Ge, Te, Li, Sc, V, Cr, Co, Ni, Ga, Mo, Cs, W, Pb, Bi, Sn, Cu, Sr, As, Zn, Ti, Mn, Fe, K, Na, Mg, Al in lung.
     (3) Characteristics of multi-element contents were different in cattle tissues and organs. Contents of Cd, Pb, Bi, Cu, Rb and Zn in liver samples were higher than those in other organs, the same for Y, Nb, In, Sm, Eu, Gd, Tb, Dy, Er, Yb, Lu, Th, U, Zr, Hf, Ge, Li, Sc, V, Ba and Al in lung samples. Contents of Sb, La, Ce, Ga, Ti, Cr, Co, Ni, Se, Mo, Mn, Pr, Nd and Fe were relatively higher in liver and lung samples, the same for K, Mg and W in muscle and heart samples and Ta, Tl, Ca and Na in lung and heart samples.
     (4) Characteristics of multi-element contents in earth samples from TP, YL and NY were different. Contents of Hf、K and Sr were the highest in samples from TP, the same for La, Ce, Nd, Eu, Ta, Cu, Al, Ba, Se and Na in samples from NY, for Be, Tl, Zr, Li, Mo, Cs, Rb, Ca, Y, Nb, Cd, In, Sb, Pr, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, Th, U, Hf, Ge, Te, Sc, V, Cr, Ni, Ga, W, Pb, Bi, Sn, As, Zn, Ti, Mn, Fe and Mg in samples from YL. The fluctuation of multi-element contents in TP was much bigger than that in YL. There were differences in multi-element contents between earth samples and cattle tissue and organ samples.
     (5) According to the principal that there were significant differences for multi-element contents of samples from different regions but no significant differences for multi-element contents of samples from different feeding periods, the referencing tracing indices for samples from TP, YL, NY were: Ge, Bi for muscle; In, Ta, Na and Cs for heart; Eu, Ga, Cr and Cs for liver; W for lung.
引文
1.蔡卫俊,叶元土,邱晓寒等.野生翘嘴红鲌各器官、组织中4种微量元素分析.水产养殖, 2007, 28(12): 19~21.
    2.陈翠玲,蒋爱凤,胡喜巧等.河南省主要土类耕层中几种微量元素全量分析.河南农业科学, 2009, 7: 63~46.
    3.陈翠玲,卫秀英,李海燕等.河南省主要土类土壤耕层镍(Ni)含量调查.贵州农业科学, 2009, 37(1): 101~102.
    4.邓卫东,席冬梅,高宏光等.云南省反刍家畜矿物质营养地质背景研究.昆明:云南科技出版社, 2006.
    5.丁维新.中国土壤中稀土元素的概况.稀土, 1994, 15(6): 44~48.
    6.方炎,高观,范新鲁等.我国食品安全追溯制度研究.农业质量标准, 2005, 2: 37~39.
    7.郭波莉,魏益民,潘家荣等.多元素分析判别牛肉产地来源研究.中国农业科学, 2007, 40(12): 2842~2847.
    8.郭春华,张均,王康宁等.西藏那曲地区高寒草地牧草矿物元素动态变化及盈缺分析.中国草食动物, 2007, 27(2): 13~98.
    9.胡树林,黄启为,徐庆国.不同产地香米微量元素含量差异及吸收富集特征研究.作物研究, 2002, 16(1): 14~16.
    10.霍灵光,田露,张越杰.中国牛肉需求量中长期预测分析.中国畜牧杂志, 2010, 46(2): 43~47.
    11.江锦花.重金属在黑鲷5种组织器官中的积累、分布及环境效应.中国水产, 2005, 7: 69~71.
    12.康海宁,杨妙峰,陈波等.利用矿质元素的测定数据判别茶叶的产地和品种.岩矿测试, 2006, 25(1): 22~25.
    13.科林·G·布朗,约翰·W·朗沃斯,斯高特·瓦尔德龙.食品质量安全与中国肉牛业的发展.中国农村经济, 2002, 5: 33~40.
    14.邝炎华.农作物对稀土元素的吸收、运转及残留规律.广东农业科学, 1989, 4: 32~35.
    15.李挥,范斌,赵树凯.铜染毒白兔血液及组织器官微量元素分布情况的研究.微量元素与健康研究, 2006, 23(5): 6~8.
    16.梁鸿雁,陈华,高宏伟等.日粮不同锌水平对獭兔组织器官锌浓度的影响.黑龙江八一农垦大学学报, 2003, 15(2): 65~67.
    17.刘彩琴.高寒草甸土、草、绵阳生态系统中常量矿物元素的季节变化.甘肃农业大学硕士学位论文, 2003.
    18.刘汉卿,郭飞,熊海涛等.火焰原子吸收光谱法测定三种产地黑米中微量元素含量.广东微量元素科学, 2009, 16(10): 60~63.
    19.陆东林,张丹凤,荆文清等.奶牛初乳中常量成分和矿物元素的测定.新疆农业科学, 2001, 38(6): 299~301.
    20.罗梅,刘国杰,李德美等.葡萄洒中微量元素与产地的相关性.酿酒科技, 2009, 11: 117~119.
    21.罗婷,赵镭,胡小松等.绿茶矿质元素特征分析及产地判别研究.食品科学, 2008, 29(11): 494~497.
    22.孟庆翔,张义,赵金石等.借鉴法国经验开展我国牛肉质量安全可追溯系统建设.中国牛业科学, 2006, 32(增刊): 219~225.
    23.孟晓红,贾瑛,付超然.重金属稀土元素污染在水生物体内的生物富集.农业环境保护, 2000, 19(1): 50~52.
    24.潘耀国.中国肉类消费四大趋势.中国牧业通讯, 2004, 18: 50~53.
    25.乔娟,韩杨.中国实施食品安全追溯制度的重要性与限制因素分析.中国禽业导刊, 2007, 4(24): 8~9.
    26.全国肉牛优势区域布局规划(2008~2015年).
    27.石磊,杨红兵.不同产地麦冬微量元素分析比较.实用中医药杂志, 2004, 20(4): 217.
    28.孙建民,刘博静,孙汉文等.不同产地蜂蜜中若干金属元素含量的分布比较.河北大学学报(自然科学版), 2010, 30(3): 271~274.
    29.唐建阳,陈菁瑛,苏海兰等.不同基源和产地麦冬无机元素比较研究.福建农业学报, 2009, 24(6): 513~516.
    30.唐精,叶元土,萧培珍等.胡子鲶组织器官中4种微量元素的测定分析.水产养殖, 2008, 18: 36~38.
    31.万婕,刘成梅,刘伟等.电感耦合等离子体原子发射光谱法分析不同产地大豆中的矿物元素含量.光谱学与光谱分析, 2010, 30(2): 543~545.
    32.王宝森,郭俊明,张虹等.不同品种茶叶中矿物元素含量分析.安徽农业科学, 2007, 35(14): 4222~4223.
    33.王小平,李柏. ICP-OES和ICP-MS测定中日两国大米中27种矿质元素含量.光谱学与光谱分析, 2010, 30(8): 2260~2264.
    34.王笑笑,高腾云.影响牛肉质量安全的主要食源性致病菌危害性分析.中国农学通报, 2010, 26(17): 5~8.
    35.王笑笑,高腾云.影响牛肉质量安全的主要危害性因素研究现状.家畜生态学报, 2010, 4(31): 1~5, 20.
    36.卫秀英,陈翠玲,孙秀娟等.河南省主要土类土壤耕层砷(As)含量的调查.贵州农业科学, 2009, 37(2): 43~126.
    37.魏复盛,陈静生,吴燕玉等.中国土壤环境背景值研究.环境科学, 1991, 12(4): 12~20.
    38.魏帅,郭波莉,魏益民等.铅在猪不同组织和器官中的富集状态.中国兽医学报, 2009a, 29(11): 1459~1462.
    39.魏帅,马静,魏益民等.铅在五指山猪组织器官中的分布与积累研究.环境科学学报, 2009b, 29(10): 2157~2162.
    40.吴彩霞,傅华,裴世芳等.不同草地类型土壤有效态微量元素含量特征.干旱区研究, 2008, 25(1): 137~144.
    41.辛国省.青藏高原东北缘土草畜系统矿物元素动态研究.苏州大学博士研究生学位论文, 2010.
    42.修文彦,任爱胜.国外农产品质量安全追溯制度的发展与启示.农业经济问题增刊, 2008: 206~210.
    43.袁慧,王兵团,易厚生等.鸡体内10种组织器官中7种微量元素含量.中国兽医杂志, 1995, 21(3): 10~11.
    44.袁慧,易厚生,王兵团.水牛体内10种器官组织中7种微量元素的含量.中国兽医杂志, 1993, 19(8): 12~13.
    45.袁林峰,卢普滨,罗林广.我国肉牛产业中的质量安全问题及其对策.农业质量标准, 2004, 4: 38~39.
    46.张朝海,华村章,邓汉龙等.水稻对污染土壤中镉、铅、铜、锌的富集规律的探讨.福建农业学报, 2003, 18(3): 147~150.
    47.张志诚,刘拥军,黄保续等.基于Bernoulli分布的全球疯牛病发生风险研究.畜牧兽医学报,2010, 41(7): 866~872.
    48.赵海燕,郭波莉,张波等.小麦产地矿物元素指纹溯源技术研究.中国农业科学, 2010, 43(18): 3817~3823.
    49.赵新亮,陈翠玲,祝会霞等.河南主要土类土壤耕层铬(Cr)含量抽样调查.山西农业科学, 2009, 37(2): 40~43.
    50.周立业.青海湖东普氏原羚及生境地微量元素季节变化研究.甘肃农业大学博士研究生学位论文, 2009.
    51.周学辉,张力,苗小林等.青藏高原高寒草甸草场土——草——畜生态系统中钠、钾的季节变化研究.中国畜牧杂志, 2006, 9(42): 46~48.
    52.周学辉,张力,郑中朝等.青藏高原高寒草甸草场土——草——畜生态系统中钙、磷、镁的季节变化研究.试验研究, 2005, 25(2): 17~20.
    53.周振明,郭望山,王雅春等.借鉴澳大利亚牛肉追溯建设经验推动我国牛肉追溯系统建设.中国畜牧杂志, 2007, 43(21): 62~65.
    54.朱芳坤,汤长青,曲黎.不同产地芡实中8种无机元素含量比较研究.光谱实验室, 2010, 27(4): 1432~1435.
    55. Anderson K A, Magnuson B A, Tschirgi M L, et al. Determining the Geographic Origin of Potatoes with Trace Metal Analysis Using Statistical and Neural Network Classifiers. Journal of Agricultural Food Chemistry, 1999, 47: 1568~1575.
    56. Badertscher P R, Froidevaux P, Haberhauer G, et al. Stable isotope ratios, major, trace and radioactive elements in emmental cheeses of different origins. Lebensm.-Wiss. u.-Technol., 2003, 36: 615~623.
    57. Baxter M J, Crews H M, Dennis M J, et al. The determination of the authenticity of wine from its trace element composition. Food Chemistry, 3(60): 443~450.
    58. Benincasa C, Lewis J, Perri E, et al. Determination of trace element in Italian virgin olive oils and their characterization according to geographical origin by statistical analysis. Analytica Chimica Acta, 2007, 585: 366~370.
    59. Benincasa C, Lewis J, Sindona G, et al. The use of multi element profiling to di?erentiate between cow and bu?alo milk. Food Chemistry, 2008, 110: 257~262.
    60. Camargo A B, Resnizky S, Marchevsky E J, et al. Use of the Argentinean garlic (Allium sativum L.) germplasm mineral profile for determining geographic origin. Journal of Food Composition and Analysis, 2010, 23: 586~591.
    61. Chope G A, Terry L A. Use of canonical variate analysis to differentiate onion cultivars by mineral content as measured by ICP-AES. Food Chemistry, 2009, 115: 1108~1113.
    62. Chudzinska M, Baralkiewicz D. Estimation of honey authenticity by multielements characteristics using inductively coupled plasma~mass spectrometry (ICP-MS) combined with chemometrics. Food and Chemical Toxicology, 2010, 48: 284~290.
    63. Conti M E. Lazio region (central Italy) honeys: a survey of mineral content and typical quality parameters. Food Control, 2000, 11: 459~463.
    64. Fabani M P, Arrúa R C, Vázquez F, et al. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chemistry, 2010, 119: 372~379.
    65. Fernández-Cáceres P L, Martín M J, Pablos F, et al. Differentiation of Tea (Camellia sinensis) Varieties and Their Geographical Origin According to their Metal Content. J. Agric. Food Chem. 2001, 49: 4775~4779.
    66. Franke B M, Hadorn R, Bosset J O, et al. Is authentication of the geographic origin of poultry meat and dried beef improved by combining multiple trace element and oxygen isotope analysis? Meat Science, 2008, 80: 944~947.
    67. Franke B M, Haldimann M, Reimann J, et al. Indications for the applicability of element signature analysis for the determination of the geographic origin of dried beef and poultry meat. Eur Food Res Technol, 2007, 225: 501~509.
    68. Galgano F, Favati F, Caruso M, et al. Analysis of trace elements in southern Italian wines and their classification according to provenance. Food Science and Technology, 2008, 41: 1808~1815.
    69. Golob T, Dobersek U, Kump P, et al. Determination of trace and minor elements in Slovenian honey by total re?ection X-ray ?uorescence spectroscopy. Food Chemistry, 2005, 91:593~600.
    70. Haswell S J, Walmsley A D. Multivariate data visualisation methods based on multi-elemental analysis of wines and coffees using total reflection X-ray fluorescence analysis. Journal of Analytical Atomic Spectrometry, 1998, 13: 131~134.
    71. Heaton K, Kelly S D, Hoogewer? J, et al. Verifying the geographical origin of beef: The application of multi-element isotope and trace element analysis. Food Chemistry, 2008, 107: 506~515.
    72. http://www.foodqs.cn/news/gjspzs01/201134165532525.html.
    73. http://www.greenlivingtips.com/articles/321/1/Meat-consumption-statistics.html.
    74. http://www.lameibiz.com/investment/1315.html.
    75. Husted S, Mikkelsen B F, Jensen J, et al. Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Anal Bioanal Chem, 2004, 378: 171~182.
    76. Latorre M J, Pena R, Pita C, et al. Chemometric classification of honeys according to their type. II. Metal content data. Food Chemistry, 1999, 66: 263~268.
    77. Marcos A, Fisher A, Rea G, et al. Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. Journal of Analytical Atomic Spectrometry, 1998, 13: 521~525.
    78. McKenzie J S, Jurado J M, Pablos F. Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks. Food Chemistry 2010, 123: 859~864.
    79. Mendil D. Mineral and trace metal levels in some cheese collected from Turkey. Food Chemistry, 2006, 96: 532~537.
    80. Nikkarinen M, Mertanen E. Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 2004, 17: 301~310.
    81. Pilgrima T S, Watling R J, Grice K. Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples. Food Chemistry, 2010, 118: 921~926.
    82. Pisani A, Protano G, Riccobono F. Minor and trace elements in different honey types produced in Siena County (Italy). Food Chemistry, 2008, 107: 1553~1560.
    83. Przybylowski P, Wilczynska A. Honey as an environmental marker. Food Chemistry, 2001, 74: 289~291.
    84. Rashed M N, Soltan M E. Major and trace elements in different types of Egyptian mono-?oral and non-?oral bee honeys. Journal of Food Composition and Analysis, 2004, 17: 725~735.
    85. Sahan Y, Basoglu F, Gucer S. ICP-MS analysis of a series of metals (Namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chemistry, 2007, 105: 395~399.
    86. Smith R G. Determination of the Country of Origin of Garlic (Allium sativum) Using Trace Metal Profiling. Journal of Agricultural Food Chemistry, 2005, 53: 4041?4045.
    87. Sun S M, Guo B L, Wei Y M, et al. Multi-element analysis for determining the geographical origin of mutton from different regions of China. Food Chemistry, 2011, 124: 1151~1156.
    88. Tuzen M, Silici S, Mendil D, et al. Trace element levels in honeys from different regions of Turkey. Food Chemistry, 2007, 103: 325~330.
    89. Vanhanen L P, Emmertz A, Savage G P. Mineral analysis of mono-?oral New Zealand honey. Food Chemistry (2011), doi: 10.1016/ j.foodchem.2011.02.064.
    90. Yasui A, Shindoh K. Determination of the geographic origin of brown-rice with trace-element composition. Bunseki Kagaku, 2000, 49: 405~410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700