高性能混凝土的体积稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对高性能混凝土体积稳定性的特点及其补偿措施进行了系统的研究,主要包括:指出了水胶比对高性能混凝土体积稳定性的影响;分析了掺矿物外加剂高性能混凝土体积稳定性的特点;研究了联合掺加矿物外加剂和膨胀剂对高性能混凝土收缩的补偿效果;探索了用膨胀型中热水泥来配制高性能混凝土对收缩的改善。
     研究结果表明:低水胶比的高强混凝土有着较高的收缩,尤其是早期收缩增幅较大;掺加矿物外加剂对后期的收缩有所控制,但效果不是十分明显,但是发现同时掺加两种矿物掺合料的高性能混凝土比只掺加一种掺合料的收缩要小;研究了硫铝酸钙型膨胀剂(UEA)对高性能混凝土补偿收缩性能,重点提出来养护条件对掺加膨胀剂高性能混凝土体积稳定性的影响,强调了加强早期湿养护的重要性;用中热水泥配制的混凝土自收缩明显低于用普通硅酸盐水泥配制的混凝土;膨胀型中热水泥混凝土的自生体积变形表现为膨胀,具有较快的形成钙矾石产生的膨胀和缓慢的方镁石水化产生的膨胀,具有良好的补偿收缩效果。
The paper presents a systematic study on characteristics and compensation measure of high performance concrete(HPC). Effects of water binder ratio and mineral admixtures on the volume stabilization of HPC were studied. And HPC made from moderate heat Portland cement with expansion has been researched.
    The result shows that HPC is more sensitive to shrinkage cracking than normal concrete. The smaller the water binder ratio, the more serious the shrinkage. Incorporating with mineral admixtures could control the tendency of evening shrinkage of HPC, but the effect is not much remarkable. And the expansive agent UEA could compensate shrinkage, but different curing conditions have significant effects on the volume stabilization of HPC. It is necessary to enhance the water curing at the young age and try the best to prolong the curing time. And the results suggest that using moderate heat Portland cement and expansive admixture in HPC may compensate its autogenous and dry shrinkage.
引文
[1] 吴中伟.高性能混凝土(HPC)的发展趋势与问题[J].建筑技术,1998,29(1):8~13.
    [2] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [3] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998,1(1):1~7.
    [4] 黄大能.高性能混凝土与超高标号水泥[J].混凝土与水泥制品,1996,(4):8~10.
    [5] 张新华.高性能混凝土的结构与强度[J].青岛建筑工程学院学报,1996,14(4):87~92.
    [6] 赵成铭,赵铁军.高性能混凝土的现状与特点[J].青岛建筑工程学院学报,1995,16(2):77~82.
    [7] 陈奎元.高强混凝土与高性能混凝土.建筑技术,1997,(9):641~643;(10):723~725.
    [8] A. M. Neville. Properties of concrete[M].李国泮,马真勇译.中国建筑工业出版社,1983.
    [9] P.C.Aitcin.Cements of yesterday and today Concrete of tomrrow[J].Cem.Concr.Res.2000,30(9): 1349~1359.
    [10] P.C.Aitcin.The durability characteristics of high performance concrete:a review[J]. Cem.Concr.Res.2003,30(9): 1349~1359.?
    [11] 李继中,刘明均,路来军,等.矿渣高性能混凝土(SHPC)在首都国际机场停车楼的应用[J].混凝土与水泥制品.1998,(4):14-16.
    [12] 吴中伟.绿色高性能混凝土的发展方向.混凝土与水泥制品.1998,(1):3-6.
    [13] P.K.Mehta, J.M.Monteiro. Concrete: structure, properties and materials. 2nd Edition,Prentice Hall,Inc., 1993.
    [14] S.Mindess, J. F. Young. Concrete[M].方秋清等译.北京:中国建筑工业出版社.1989.
    [15] H.Swayse.The durability characteristics of high performance concrete[M].科学出版社.1998.
    
    
    [16] 徐荣华.大坝混凝土开裂能力的评价[M].人民长江.1982.
    [17] 杨康宁,方坤河.碾压混凝土坝施工[M].水利水电出版社,1997.
    [18] P.K.Mehta.Concrete structure,properties and materials. 祝永年,沈威,陈志源译.同济大学出版社.1991.
    [19] C.Hua, P. Acker, A.Ehrlacher. Analyses and models of the autogenous shrinkage of hardening cement paste Ⅰ .Modeling. at macroscopic scale[J]. Cem. Concr. Res,1995,25 (7) :1457-1468.
    [20] H.Le Chatelier. Sur les changements de volume qui accompagnent le durcissement des ciments. Bull.Soc.Encour.Ind.Natl.V(5th Series),1900.
    [21] O.M.Jensen, P.F.Hansen. Autogenous deformation and RH-chang in perspective[J]. Cem. Concr. Res,2001,31(3): 1859-1865.
    [22] S. Mindess, J. F. Young. Concrete[M].方秋清等译.北京:中国建筑工业出版社,1989.
    [23] 叶青.高强混凝土的收缩及其补偿机理[J].混凝土与水泥制品,1997,(1):20-23.
    [24] E.Tazawa, S.Miyazawa, T.Kasai. Chemical shrinkage and autogenous shrinkage of hydrating cement paste[J]. Cem. Concr. Res, 1995,25(2):288-292.
    [25] 孙道胜.高强混凝土早期收缩的机理与特点[J].安徽建筑工业学院学报,1998,6(1):25-28.
    [26] H.E.Davis. Autogenous volume chang of concrete[A]. Proceeding of the 43th Annual American Society for Testing Materials[C].Atlantic city: ASTM, 1940,1103-1113.
    [27] C.G.Lyman. Growth and movement in Portland cement concrete[M].London:Oxford University Press, 1934.
    [28] 安明喆,覃维祖,朱金栓.高强混凝土自收缩试验研究[J].山东建材学院学报,1998,12(6):139-144.
    [29] 黄国兴,惠荣炎.混凝土的收缩[M],北京:中国建筑工业出版社,1982.
    [30] 朱清江.高强高性能混凝土的研制与应用[M].北京:中国建筑工业出版社,1999.
    [31] 重庆建筑工程学院,南京工学院.混凝土学[M].中国建筑工业出版社,1981.
    [32] O.M.Jensen, P.F.Hansen.Influence of temperature on autogenous deformation and
    
    relative humidity change in hardening cement paste[J].Cem.Concr. Res,1999,29(1):567-575.
    [33] O.M.Jensen.Thermodynamic limitation of self-desiccation[J].Cem.Concr. Res,1995,25(1):324-331.
    [34] 叶青.高强混凝土的收缩及其补偿机理[J].混凝土与水泥制品,1997,(1):20-23.
    [35] [日]岩崎训明.混凝土的特性[M].尹家辛,李景星译.中国建筑工业出版社,1985.
    [36] L.Anmed,K.Abdelhafi,R.Pierre.Hydration kinetics,change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete [J].Cem.Concr. Res,1999,29(1):582-583.
    [37] S.Mindess, J.F.Young. Concrete[M]. 方秋清等译.北京:中国建筑工业出版社,1989.
    [38] 李悦,谈慕华,张雄,等.混凝土的自收缩及其研究进展[J].建筑材料学报,2000,(9):252-256.
    [39] 安明喆,朱金铨,覃维祖.高性能混凝土的自收缩问题[J].建筑材料学报,2001,(6):159-165.
    [40] 蒋正武,孙振平,王新友,等.国外混凝土自收缩研究进展评述[J].混凝土,2001,(4):30-33.
    [41] C.G.Lyman.Growth and movement in Portland cement concrete[M].London:Oxford University Press, 1934.
    [42] O.M.Jensen, P.F.Hansen. Autogenous deformation and RH-chang in perspective[J]. Cem. Concr. Res,2001,31(8): 1859-1865.
    [43] P.Lura, O.M.Jensen, K.Breugel. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms[J]. Cem. Concr. Res,2002,32(1): 1-10.
    [44] H.Justnes, A.V.Gemert, F.Verboven, et al. Totle and external chemical shrinkage of low W/C ratio cement paste [J]. Ads.Cem.Res,1996,31 (8): 121-126.
    [45] E.J.Sellevold, T.A.Hammer. Early volume change and reactions in paste-morter-concrete. Workshop NTNU/SINTEF Trondheim,Norway,1996(28-29 November).
    
    
    [46] E.Tazawa(Ed.). Autogenous shrinkage of concrete[M]. E & FN Spon,London,1999.
    [47] B.Persson. Self-desiccation and its importance in concrete technology[J]. Mater.Struct, 1997,30(6):293-305.
    [48] C.Hua, P.Acker, A.Ehrlacher. Analyses and models of the autogenous shrinkage of hardening cement paste Ⅰ.Modeling at macroscopic scale[J]. Cem. Concr. Res,1995,25 (7): 1457-1468.
    [49] C.Hua, A.Ehrlacher, P.Acker. Analyses and models of the autogenous shrinkage of hardening cement paste Ⅱ .Modeling at scale of hydrating grains[J]. Cem. Concr. Res, 1997,27(2):245-258.
    [50] A.Loukili, A.Khelidj, P.Richard. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete[J]. Cem. Concr. Res, 1999,29(4):577-584.
    [51] L.R.Fisher. Forces due to capillary-condensed liquids: limits of calculation from thermodynamics. Advances in colloid-and interface science, 1982,16:117-125.
    [52] J.Crassous, E.Charlaix, H.Gayvallet,et al. Experimental study of nanometric liquid bridge with a surface force apparatus[J]. Lang muir, 1993,19(81):995-1998.
    [53] 袁润章主编.胶凝材料学[M].武汉:武汉工业大学出版社,1996.
    [54] 安明喆,朱金栓,覃维祖.高性能混凝土的自收缩问题[J].建筑材料学报,2001,4(2):159-165.
    [55] H.F.W.Taylor.Cement Chemistry[M],Academic Press, 1995.
    [56] ASTMC 1202, Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, Annual Book of ASTM standards,V01.04.02, 1995.
    [57] 冯乃谦,邢锋.高性能混凝土技术[M].原子能出版社,2000.
    [58] 熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002.
    [59] 游宝坤,韩立林,李光明,等.如何正确使用膨胀剂[J].施工技术,31(4):41-49.
    [60] 游宝坤,席耀忠.钙矾石的物理化学性能与混凝土的耐久性[J].中国建材科技,2002,(3):13-18.
    [61] 叶青.含钙矾石和水镁石双膨胀源水泥硬化浆体及其混凝土的体积稳定性分
    
    析[J].混凝土与水泥制品,2001,(1):12-15.
    [62] C.D.Lawrence.Mortar expansions due to delayed ettringite formation, effects of curing period and temperature[J]. Cem.Concr. Res, 1995,25(4):903-914.
    [63] 彭家惠,楼宗汉.钙矾石的形成机理[J].硅酸盐学报,2000,28(6):511-515.
    [64] 王述银,董维佳,王迎春,等.中低热微膨胀水泥混凝土性能试验研究[J].水利学报,2000,(4):24-28.
    [65] 叶青.用双膨胀中热水泥配制的高强混凝土的体积稳定性研究[J].混凝土,2000,134(9):30-35.
    [66] 阎培渝,廉慧珍,覃肖.使用膨胀剂配制补偿收缩混凝土时需要注意的几个问题[J].硅酸盐学报,2000,28(增刊):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700