基于电阻率法的水泥水化与收缩特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻率法通过监测水泥基材料在水化过程中的电阻率变化情况,可以用于水泥基材料的水化特性研究。因水泥水化而产生的化学收缩和自收缩是影响水泥基材料体积稳定性的重要因素。矿物掺合料和混凝土外加剂对混凝土的水化过程和体积稳定性也有重要影响。本文以电阻率法为基本研究方法,以水泥浆体为主要研究对象,主要研究内容和结论如下:
     (1)采用美国标准ASTM C1608-07规定的体积法测试了硅酸盐水泥浆体的化学收缩。研究表明,水泥浆体的化学收缩与水泥的水化度之间具有较好的线性关系;当龄期在12h以上时,水泥浆体的化学收缩与电阻率之间存在较好的线性关系,可以根据水泥浆体的电阻率预测水泥的水化度。
     (2)研究了粉煤灰对硅酸盐水泥浆体的电阻率和硬化水泥浆体自收缩的影响。结果表明,在水化早期阶段(约12h以前),随着粉煤灰掺量的增大,水泥浆体的电阻率也逐渐增大;在水化后期阶段(约12h以后),随着粉煤灰掺量的增大,水泥浆体的电阻率逐渐减小,硬化水泥浆体的自收缩也逐渐减小。
     (3)研究了萘系高效减水剂对固定水灰比的硅酸盐水泥浆体的凝结过程和电阻率的影响。结果表明,水泥浆体的剪切强度变化曲线与电阻率变化速率曲线的走势基本一致;电阻率变化速率曲线峰值的出现时间与终凝时间存在较好的关系;随着减水剂掺量的增大,硬化水泥浆体的抗压强度逐渐减小,电阻率极大值也逐渐减小。
     (4)研究了硫铝酸盐水泥水化过程中的电阻率变化规律。结果表明,硫铝酸盐水泥水化时的电阻率变化曲线在1440min (24h)内出现两个峰,峰值的出现时间基本不受水灰比的影响。出现峰值的原因是钙矾石(AFt)与单硫型水化硫铝酸钙(AFm)发生相互转变。对于不同水灰比的水泥浆体而言,在凝结硬化前,水灰比越大时,水泥浆体的电阻率越小;在凝结硬化后,水灰比越大时,水泥浆体的电阻率也越大。在24h龄期时,随着水灰比的增大,硬化水泥浆体的抗压强度逐渐降低,电阻率逐渐增大。
The electrical resistivity measurement can be employed to monitor the change ofelectrical resistivity during the hydration of cement and thus can be used to study thehydration characterization of cement-based materials. Chemical shrinkage and autogenousshrinkage caused by cement hydration are the important factors that can affect the volumestability of cement-based materials. In addition, mineral admixtures and chemicaladmixtures can also play an important role in the volume stability of concrete. Theelectrical resistivity measurement was employed as a basic testing method. The maincontent and conclusions can be summarized as follows.
     (1) Chemical shrinkage of Portland cement pastes was measured by volumetricmethod according to ASTM Standard C1608-07. The results obtained show that therelationship between chemical shrinkage and degree of hydration is linear. Therelationship between chemical shrinkage and electrical resistivity appears to be roughlylinear after12h. It is noticed that the electrical resistivity after12h can be used todetermine the degree of hydration.
     (2) The evolution of electrical resistivity and autogenous shrinkage of Portlandcement pastes with different dosages of fly ash was investigated. The results show that theelectrical resistivity of the cement paste increased before setting and decreased afterhardening with the increase of dosage of fly ash. The autogenous shrinkage of thehardened cement paste decreased with the increase of dosage of fly ash.
     (3) The setting process and evolution of electrical resistivity of Portland cementpastes with different dosages of naphthalene superplasticizer was investigated. The resultsshow that the addition of superplasticizer to the pastes with a fixed water to cement ratio(W/C) can cause longer setting time and delay the evolution of electrical resistivity. Thefinal setting time and the occurring time of maximum rate of electrical resistivity were both delayed when the dosage of superplasticizer was increased. The compressive strengthat28days and the ultimate electrical resistivity show a same tendency for the cementpastes with different dosages of superplasticizer.
     (4) The evolution of electrical resistivity of calcium sulfoaluminate cement (CSA)paste within1440minutes was investigated. The results show that the electrical resistivityversus time curve occurs two peaks up to1440min. The occurring time of the two peaksseems to have no relationship with W/C. The reason for the occurring of the two peaks canbe due to the process of ettringite formation and ettringite transformation to monosulfatein the CSA hydration system. The relationship between W/C and electrical resistivity at1hour follows a negative linear trend but a positive linear trend observed at24hours. Therelationship between the compressive strength and the electrical resistivity at24hours forthe hardened cement paste with different W/C ratios follows a negative linear equation.
引文
[1] Taylor H F W. Cement chemistry [M].2nd edition. London: Thomas TelfordPublishing,1997.
    [2] Hewlett P C. Lea’s Chemistry of Cement and Concrete [M].4th edition. Oxford:Butterworth-Heinemann,1998.
    [3]陈益民,许仲梓.高性能水泥制备和应用的科学基础[M].北京:化学工业出版社,2008.
    [4] Petin N, Gajsinovitch E. A study of the setting process of cement paste by electricalconductivity methods [J]. Journal of General Chemistry of the USSR.1932(2):614-629.
    [5] Abo El-enein S A, Kotkata M F, Hanna G B, et al. Electrical conductivity ofconcrete containing silica fume [J]. Cement and Concrete Research.1995,25(8):1615-1620.
    [6] Hansson I L H, Hansson C M. Electrical resistivity measurements of Portlandcement based materials [J]. Cement and Concrete Research.1983,13(5):675-683.
    [7] Li Zongjin, Wei Xiaosheng, Li Wenlai. Preliminary interpretation of Portlandcement hydration process using resistivity measurements [J]. ACI Materials Journal.2003,100(3):253-257.
    [8] McCarter W J, Brousseau R. The A.C. response of hardened cement paste [J].Cement and Concrete Research.1990,20(6):891-900.
    [9]韩宝国,关新春,欧进萍.碳纤维水泥石电阻测试方法研究[J].玻璃钢/复合材料.2003(6):6-8.
    [10]金贤玉,李宗津.早龄期混凝土的电特性研究[J].硅酸盐学报.2000,28(S):28-32.
    [11]毛起炤,孙明清,陈品华. CFRC试块体积电阻和表面电阻的研究[J].武汉工业大学学报.1997,19(2):65-67.
    [12]丁华涛,胡曙光,丁庆军,等.无机矿物掺合料对水泥石电阻率影响规律的研究[J].国外建材科技.2008,29(2):4-7.
    [13]魏小胜,肖莲珍,李宗津,等.钢纤维水泥基材料的导电机理和水化特性[J].混凝土.2006(4):11-13.
    [14]李宗津,李文莱.测量样品电阻率的装置和方法:中国,02126224.1[P].2003-02-26.
    [15] Li Zongjin, Li Wenlai. Contactless, transformer-based measurement of theresistivity of materials: United States,6639401B2[P].2003-10-28.
    [16] Wei Xiaosheng. Interpretation of hydration process of cement-based materials usingresistivity measurement [D]. Hong Kong: The Hong Kong University of Scienceand Technology,2004.
    [17] Xiao Lianzhen. Interpretation of hydration process of concrete based on electricalresistivity measurement [D]. Hong Kong: The Hong Kong University of Scienceand Technology,2007.
    [18] Xiao Lianzhen, Li Zongjin. Early-age hydration of fresh concrete monitored bynon-contact electrical resistivity measurement [J]. Cement and Concrete Research.2008,38(3):312-319.
    [19]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2007
    [20] Jensen O M, Hansen P F. Water-entrained cement-based materials I. Principles andtheoretical background [J]. Cement and Concrete Research.2001,31(4):647-654.
    [21]中华人民共和国国家统计局.中华人民共和国2012年国民经济和社会发展统计公报[N].人民日报.2013-02-23(5).
    [22]袁兰.粉煤灰综合利用管理办法开始施行[N].中国建材报.2013-03-11(8).
    [23]王燕谋,苏慕珍,路永华,等.中国特种水泥[M].北京:中国建材工业出版社,2012.
    [24]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999.
    [25]刁江京,辛志军,张秋英.硫铝酸盐水泥的生产与应用[M].北京:中国建材工业出版社,2006.
    [26] Zhou Q, Glasser F P. Thermal stability and decomposition mechanisms of ettringiteat <120oC [J]. Cement and Concrete Research.2001,31(9):1333-1339.
    [27] Zhou Q, Lachowski E E, Glasser F P. Metaettringite, a decomposition product ofettringite [J]. Cement and Concrete Research.2004,34(4):703-710.
    [28]游宝坤,李光明,韩立林.大体积补偿收缩混凝土的结构稳定性问题[J].混凝土.2001(5):7-11.
    [29]阎培渝,彭江,陈广智.大体积补偿收缩混凝土中的延迟钙矾石生成现象答游宝坤同志的质疑[J].混凝土.2002(1):17-18.
    [30]袁润章.胶凝材料学[M].第2版.武汉:武汉理工大学出版社,1996
    [31]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [32] Mounanga P, Khelidj A, Loukili A, et al. Erratum to Predicting Ca(OH)2contentand chemical shrinkage of hydrating cement pastes using analytical approach [J].Cement and Concrete Research.2005,35(3):423-424.
    [33] Pang Xueyu, Meyer C. Cement chemical shrinkage as measure of hydration kineticsand its relationship with nonevaporable water [J]. ACI Materials Journal.2012,109(3):341-351.
    [34] Tazawa E, Miyazawa S. Influence of cement and admixture on autogenousshrinkage of cement paste [J]. Cement and Concrete Research.1995,25(2):281-287.
    [35] Jensen O M, Hansen P F. Autogenous deformation and RH-change in perspective[J]. Cement and Concrete Research.2001,31(12):1859-1865.
    [36] A tcin P C. The durability characteristics of high performance concrete: a review [J].Cement and Concrete Composites.2003,25(4-5):409-420.
    [37] ASTM C1698-09. Standard test method for autogenous strain of cement paste andmortar [S]. ASTM International, West Conshohocken, Pennsylvania,2009.
    [38]田倩,孙伟,缪昌文,等.高性能混凝土自收缩测试方法探讨[J].建筑材料学报.2005,8(1):82-89.
    [39] Neville A M.混凝土的性能[M].原著第4版.刘数华,冷发光,李新宇,等,译.北京:中国建筑工业出版社,2011.
    [40] Bentz D P, Garboczi E J, Quenard D A. Modelling drying shrinkage inreconstructed porous materials: application to porous Vycor glass [J]. Modellingand Simulation in Materials Science and Engineering.1998,6(3):211-236.
    [41] Lura P, Jensen O M, Van Breugel K. Autogenous shrinkage in high-performancecement paste: An evaluation of basic mechanisms [J]. Cement and ConcreteResearch.2003,33(2):223-232.
    [42] Hua C, Acker P, Ehrlacher A. Analyses and models of the autogenous shrinkage ofhardening cement paste I. Modelling at macroscopic scale [J]. Cement and ConcreteResearch.1995,25(7):1457-1468.
    [43]安明喆,朱金铨,覃维祖.高性能混凝土的自收缩问题[J].建筑材料学报.2001,4(2):159-166.
    [44] Koenders E A B, van Breugel K. Numerical modelling of autogenous shrinkage ofhardening cement paste [J]. Cement and Concrete Research.1997,27(10):1489-1499.
    [45] Zhang Jun, Hou Dongwei, Han Yudong. Micromechanical modeling on autogenousand drying shrinkages of concrete [J]. Construction and Building Materials.2012,29(3):230-240.
    [46] Hossain A B, Weiss J. Assessing residual stress development and stress relaxation inrestrained concrete ring specimens [J]. Cement and Concrete Composites.2004,26(5):531-540.
    [47]苏安双.高性能混凝土早期收缩性能及开裂趋势研究[D].哈尔滨:哈尔滨工业大学,2008.
    [48] Krstulovi R, Dabi P. A conceptual model of the cement hydration process [J].Cement and Concrete Research.2000,30(5):693-698.
    [49]阎培渝,郑峰.水泥基材料的水化动力学模型[J].硅酸盐学报.2006,34(5):555-559.
    [50]阎培渝,郑峰.水泥水化反应与混凝土自收缩的动力学模型[J].铁道科学与工程学报.2006,3(1):56-59.
    [51] Lee K M, Lee H K, Lee S H, et al. Autogenous shrinkage of concrete containinggranulated blast-furnace slag [J]. Cement and Concrete Research.2006,36(7):1279-1285.
    [52]许华胜,蒋正武.高性能混凝土中自身相对湿度变化与自收缩的研究[J].重庆建筑大学学报.2004,26(2):121-125,136.
    [53]高小建,巴恒静.混凝土早期自收缩、强度与水泥水化率的关系[J].工业建筑.2006,36(2):64-67.
    [54]富文权,韩素芳.混凝土工程裂缝预防与控制[M].北京:中国铁道出版社,2007.
    [55] GB50496-2009大体积混凝土施工规范[S].北京:中国计划出版社,2009.
    [56]胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009.
    [57] Collepardi M.混凝土新技术[M].刘数华,冷发光,李丽华,译.北京:中国建材工业出版社,2008.
    [58] Mehta P K, Monteiro P J M.混凝土:微观结构、性能和材料[M].原著第3版.覃维祖,王栋民,丁建彤,译.北京:中国电力出版社,2008.
    [59]谢和平,谢凌志,王昱飞,等.全球二氧化碳减排不应是CCS,应是CCU [J].四川大学学报(工程科学版).2012,44(4):1-5.
    [60]袁群,何芳婵,李杉.混凝土碳化理论与研究[M].郑州:黄河水利出版社,2009.
    [61]陈贤拓,邹瑞珍,陈宵榕.钙矾石表面碳化反应机理研究[J].硅酸盐学报.1994,22(5):470-474.
    [62] Bouasker M, Mounanga P, Turcry P, et al. Chemical shrinkage of cement pastesand mortars at very early age: Effect of limestone filler and granular inclusions [J].Cement and Concrete Composites.2008,30(1):13-22.
    [63] Parrott L J, Geiker M, Gutteridge W A, et al. Monitoring Portland cement hydration:Comparison of methods [J]. Cement and Concrete Research.1990,20(6):919-926.
    [64] ASTM C1608-07. Standard test method for chemical shrinkage of hydraulic cementpaste [S]. ASTM International, West Conshohocken, Pennsylvania,2007.
    [65]严吴南,蒲心诚,王冲.超高强混凝土的化学收缩及干缩研究[J].施工技术.1999,28(5):17-18.
    [66] Bentz D, Sant G, Weiss J. Early-age properties of cement-based materials. I:Influence of cement fineness [J]. Journal of Materials in Civil Engineering.2008,20(7):502-508.
    [67] Lura P, Winnefeld F, Klemm S. Simultaneous measurements of heat of hydrationand chemical shrinkage on hardening cement pastes [J]. Journal of ThermalAnalysis and Calorimetry.2010,101(3):925-932.
    [68] Zhang J, Weissinger E A, Peethamparan S, et al. Early hydration and setting of oilwell cement [J]. Cement and Concrete Research.2010,40(7):1023-1033.
    [69] Kocaba V, Gallucci E, Scrivener K L. Methods for determination of degree ofreaction of slag in blended cement pastes [J]. Cement and Concrete Research.2012,42(3):511-525.
    [70] Geiker M, Knudsen T. Chemical shrinkage of Portland cement pastes [J]. Cementand Concrete Research.1982,12(5):603-610.
    [71] Mounanga P, Khelidj A, Loukili A, et al. Predicting Ca(OH)2content and chemicalshrinkage of hydrating cement pastes using analytical approach [J]. Cement andConcrete Research.2004,34(2):255-265.
    [72] Sant G, Ferraris C F, Weiss J. Rheological properties of cement pastes: A discussionof structure formation and mechanical property development [J]. Cement andConcrete Research.2008,38(11):1286-1296.
    [73] Maia L, Azenha M, Geiker M, et al. E-modulus evolution and its relation to solidsformation of pastes from commercial cements [J]. Cement and Concrete Research.2012,42(7):928-936.
    [74] Beltzung F, Wittmann F H. Early chemical shrinkage due to dissolution andhydration of cement [J]. Materials and Structures.2001,34(5):279-283.
    [75] ASTM C1608-12Standard test method for chemical shrinkage of hydraulic cementpaste [S]. ASTM International, West Conshohocken, Pennsylvania,2012.
    [76] Sant G, Lura P, Weiss J. Measurement of volume change in cementitious materialsat early ages: Review of testing protocols and interpretation of results [J]. Journal ofthe Transportation Research Board.2006(1979):21-29.
    [77] Sant G, Bentz D, Weiss J. Capillary porosity depercolation in cement-basedmaterials: Measurement techniques and factors which influence their interpretation[J]. Cement and Concrete Research.2011,41(8):854-864.
    [78] Chen Hui, Wyrzykowski M, Scrivener K, et al. Prediction of self-desiccation in lowwater-to-cement ratio pastes based on pore structure evolution [J]. Cement andConcrete Research.2013,49:38-47.
    [79] Tazawa E, Miyazawa S, Kasai T. Chemical shrinkage and autogenous shrinkage ofhydrating cement paste [J]. Cement and Concrete Research.1995,25(2):288-292.
    [80] Lura P, Couch J, Jensen O M, et al. Early-age acoustic emission measurements inhydrating cement paste: Evidence for cavitation during solidification due toself-desiccation [J]. Cement and Concrete Research.2009,39(10):861-867.
    [81] Pang Xueyu, Bentz D P, Meyer C, et al. A comparison study of Portland cementhydration kinetics as measured by chemical shrinkage and isothermal calorimetry[J]. Cement and Concrete Composites.2013,39:23-32.
    [82] Pang Xueyu. Effects of curing temperature and pressure on the chemical, physical,and mechanical properties of Portland cement [D]. New York: Columbia University,2011.
    [83]天津大学物理化学教研室.物理化学(下册)[M].第5版.北京:高等教育出版社,2009.
    [84]巴恒静,高小建,杨英姿.高性能混凝土早期自收缩测试方法研究[J].工业建筑.2003,33(8):1-4.
    [85]王培铭,刘岩,郭延辉,等.混凝土早龄期收缩测试电涡流法的研究[J].建筑材料学报.2006,9(6):711-715.
    [86]郑峰.水泥基材料自收缩动力学研究[D].北京:清华大学,2006.
    [87]诸华丰,冷发光,田冠飞,等.早龄期混凝土收缩变形测量系统的研制[J].商品混凝土.2010(3):42-47.
    [88] GB/T50082-2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2010.
    [89] SL352-2006水工混凝土试验规程[S].北京:中国水利水电出版社,2006.
    [90]黄国兴,惠荣炎,王秀军.混凝土徐变与收缩[M].北京:中国电力出版社,2012.
    [91] Gleize P J P, Cyr M, Escadeillas G. Effects of metakaolin on autogenous shrinkageof cement pastes [J]. Cement and Concrete Composites.2007,29(2):80-87.
    [92] Li Yue, Bao Junling, Guo Yilin. The relationship between autogenous shrinkage andpore structure of cement paste with mineral admixtures [J]. Construction andBuilding Materials.2010,24(10):1855-1860.
    [93] Bentur A, Igarashi S, Kovler K. Prevention of autogenous shrinkage inhigh-strength concrete by internal curing using wet lightweight aggregates [J].Cement and Concrete Research.2001,31(11):1587-1591.
    [94] Wang Fazhou, Zhou Yufei, Peng Bo, et al. Autogenous shrinkage of concrete withsuper-absorbent polymer [J]. ACI Materials Journal.2009,106(2):123-127.
    [95] Meddah M S, Sato R. Effect of curing methods on autogenous shrinkage andself-induced stress of high-performance concrete [J]. ACI Materials Journal.2010,107(1):65-74.
    [96] Jensen O M, Hansen P F. A dilatometer for measuring autogenous deformation inhardening Portland cement paste [J]. Materials and Structures.1995,28(7):406-409.
    [97] Sensale G R D, Ribeiro A B, Gon lves A. Effects of RHA on autogenous shrinkageof Portland cement pastes [J]. Cement and Concrete Composites.2008,30(10):892-897.
    [98]田倩, Jensen O M.采用波纹管测试水泥基材料早期自收缩方法[J].硅酸盐学报.2009,37(1):39-45.
    [99]马先伟,王培铭,蔡锐锋.一种测试硬化水泥浆体自应力的新方法波形管法[J].混凝土.2009(3):9-12.
    [100]郝成伟,邓敏,莫立武,等.粉煤灰表面改性及其对水泥浆体强度和自收缩的影响[J].硅酸盐学报.2011,39(4):697-702.
    [101]邓义群,王培铭.减水剂对水泥净浆早期自收缩性能的影响[J].武汉理工大学学报.2008,30(12):23-26.
    [102]周公度.结构和物性[M].第3版.北京:高等教育出版社,2009.
    [103]全国科学技术名词审定委员会.材料科学技术名词[M].北京:科学出版社,2011.
    [104] Khalaf F M, Wilson J G. Electrical properties of freshly mixed concrete [J]. Journalof Materials in Civil Engineering.1999,11(3):242-248.
    [105]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报.2004,32(1):34-38.
    [106]周明凯,周丽娜,魏小胜.电阻率法研究磷及石灰对水泥凝结硬化的影响[J].武汉理工大学学报.2007,29(8):37-40.
    [107] Archie G E. The electrical resistivity log as an aid in determining some reservoircharacteristics [J]. Transactions of the American Institute of Mining, Metallurgicaland Petroleum Engineers.1942(146):54-61.
    [108] GB/T27502-2011电导率测量用校准溶液制备方法[S].北京:中国标准出版社,2012.
    [109]曾晓辉.无电极电阻率仪在早龄期水泥水化行为的应用研究[D].北京:中国建筑材料科学研究总院,2007.
    [110]隋同波,曾晓辉,谢友均,等.电阻率法研究水泥早期行为[J].硅酸盐学报.2008,36(4):431-435.
    [111]肖莲珍,李宗津,魏小胜.用电阻率法研究新拌混凝土的早期凝结和硬化[J].硅酸盐学报.2005,33(10):1271-1275.
    [112]曾晓辉,隋同波,宓振军,等.电阻率法测定水泥的凝结时间[J].水泥.2009(1):43-45.
    [113]田凯,魏小胜.水泥净浆电性能及其与抗压强度的关系[J].建筑材料学报.2007,10(6):682-686.
    [114]曾晓辉,隋同波,范磊,等.采用电阻率法快速推测水泥28d抗压强度[J].水泥.2009(3):44-45.
    [115]刘志勇,张云升,孙国文,等.电阻率法研究早期水泥净浆孔结构的演变过程[J].土木建筑与环境工程.2012,34(5):148-153.
    [116] Xiao Lianzhen, Li Zongjin, Wei Xiaosheng. Selection of superplasticizer inconcrete mix design by measuring the early electrical resistivities of pastes[J].Cement and Concrete Composites.2007,29(5):350-356.
    [117]曾晓辉,隋同波,谢友均,等.电阻率法研究减水剂与水泥的作用[J].硅酸盐学报.2008,36(10):1390-1395.
    [118]张畅,魏小胜,田凯.电阻率法研究聚羧酸减水剂对水泥水化的影响[J].长江科学院院报.2009,26(6):44-47.
    [119]刘志勇,张云升,姜骞,等.原位监测水泥基材料早期电阻率的变化过程[J].东南大学学报(自然科学版).2012,42(2):378-382.
    [120]李东旭,朱建平,李宗津.应用电阻率法研究粉煤灰持碱效应[J].材料科学与工程学报.2007,25(3):353-357.
    [121] Justnes H, Sellevold E J, Reyniers B, et al. Chemical shrinkage of cement pasteswith plasticizing admixtures [J]. Nordic Concrete Research.2000(24):39-54.
    [122]曾晓辉,隋同波,李宗津.水泥水化放热与电阻率变化[J].硅酸盐学报.2009,37(4):601-604.
    [123] ASTM C618-08a Standard specification for coal fly ash and raw or calcined naturalpozzolan for use in concrete [S]. ASTM International, West Conshohocken,Pennsylvania,2008.
    [124] Wei X, Li Z. Study on hydration of Portland cement with fly ash using electricalmeasurement [J]. Materials and Structures.2005,38(3):411-417.
    [125] Lee H K, Lee K M, Kim B G. Autogenous shrinkage of high-performance concretecontaining fly ash [J]. Magazine of Concrete Research.2003,55(6):507-515.
    [126] De la Varga I, Castro J, Bentz D, et al. Application of internal curing for mixturescontaining high volumes of fly ash [J]. Cement and Concrete Composites.2012,34(9):1001-1008.
    [127]施惠生,郭晓潞,黄小亚.矿物外加剂及测试方法对硬化水泥浆体自收缩值的影响[J].水泥.2010(6):1-4.
    [128]郝成伟,邓敏,莫立武,等.粉煤灰对水泥浆体自收缩和抗压强度的影响[J].建筑材料学报.2011,14(6):746-751.
    [129]张福恒,邓敏,莫立武.表面改性粉煤灰对水泥浆体强度和自收缩的影响[J].混凝土与水泥制品.2012(7):11-16.
    [130]苗苗,阎培渝.水胶比和粉煤灰掺量对补偿收缩混凝土自收缩特性的影响[J].硅酸盐学报.2012,40(11):1607-1612.
    [131] ISO9597:2008Cements Test methods Determination of setting time andsoundness [S]. International Organization for Standardization, Switzerland,2008.
    [132] GB/T1346-2011水泥标准稠度用水量、凝结时间、安定性检验方法[S].北京:中国标准出版社,2011.
    [133] ASTM C191-08Standard test methods for setting time of hydraulic cement byVicat needle [S]. ASTM International, West Conshohocken, Pennsylvania,2008.
    [134] Nachbaur L, Mutin J C, Nonat A, et al. Dynamic mode rheology of cement andtricalcium silicate pastes from mixing to setting [J]. Cement and Concrete Research.2001,31(2):183-192.
    [135] Sleiman H, Perrot A, Amziane S. A new look at the measurement of cementitiouspaste setting by Vicat test [J]. Cement and Concrete Research.2010,40(5):681-686.
    [136] Sant G, Dehadrai M, Bentz D, et al. Detecting the fluid-to-solid transition in cementpastes: Comparing experimental and numerical techniques [J]. ConcreteInternational.2009,31(6):53-58.
    [137] Trtnik G, Gams M. The use of frequency spectrum of ultrasonic P-waves to monitorthe setting process of cement pastes [J]. Cement and Concrete Research.2013,43:1-11.
    [138] Amziane S. Setting time determination of cementitious materials based onmeasurements of the hydraulic pressure variations [J]. Cement and ConcreteResearch.2006,36(2):295-304.
    [139] Amziane S, Ferraris C. Cementitious paste setting using rheological and pressuremeasurements [J]. ACI Materials Journal.2007,104(2):137-145.
    [140] ASTM C266-08e1Standard test method for time of setting of hydraulic-cementpaste by Gillmore needles [S]. ASTM International, West Conshohocken,Pennsylvania,2008.
    [141] Hofmann M P, Nazhat S N, Gbureck U, et al. Real-time monitoring of the settingreaction of brushite-forming cement using isothermal differential scanningcalorimetry [J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials.2005,79B(2):360-364.
    [142] Torrents J M, Roncero J, Gettu R. Utilization of impedance spectroscopy forstudying the retarding effect of a superplasticizer on the setting of cement [J].Cement and Concrete Research.1998,28(9):1325-1333
    [143] Brameshuber W, Brockmann T. Electrical conductivity measurements tocharacterize the setting and hardening of mortars [A]//Proceeding of InternationalSymposium on Non-destructive Testing in Civil Engineering [C]. Berlin,2003.
    [144]乔龄山.水泥凝结时间的新检测方法电导率测定[J].水泥.2005(1):65.
    [145] Khatib J M, Mangat P S. Influence of superplasticizer and curing on porosity andpore structure of cement paste [J]. Cement and Concrete Composites.1999,21(5-6):431-437.
    [146] Singh N B, Sarvahi R, Singh N P. Effect of superplasticizers on the hydration ofcement [J]. Cement and Concrete Research.1992,22(5):725-735.
    [147] Durekovic A. Cement pastes of low water to solid ratio: an investigation of theporosity characteristics under the influence of a superplasticizer and silica fume [J].Cement and Concrete Research.1995,25(2):365-375.
    [148] Zhang M, Sisomphon K, Ng T S. Effect of superplasticizers on workabilityretention and initial setting time of cement pastes [J]. Construction and BuildingMaterials.2010,24(9):1700-1707.
    [149] GB/T1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法[S].北京:中国标准出版社,2001.
    [150] JC/T1083-2008水泥与减水剂相容性试验方法[S].北京:中国建材工业出版社,2008.
    [151]蒋亚清.混凝土外加剂应用基础[M].第2版.北京:化学工业出版社,2011.
    [152] Wei Xiaosheng, Xiao Lianzhen, Li Zongjin. Hyperbolic method to analyze theelectrical resistivity curve of Portland cements with superplasticizer [J]. Journal ofWuhan University of Technology (Materials Science Edition).2008,23(2):245-248.
    [153] Zhang L, Glasser F P. Hydration of calcium sulfoaluminate cement at less than24h[J]. Advances in Cement Research.2002,14(4):141-55.
    [154] Glasser F P, Zhang L. High-performance cement matrices based on calciumsulfoaluminate-belite compositions [J]. Cement and Concrete Research.2001,31(12):1881-1886.
    [155] Glasser F P. Advances in sulfoaluminate cements [A]//Proceedings of the5thInternational Symposium on Cement and Concrete [C]. Shanghai,2002.14-24.
    [156] Champenois J-B, Cau Dit Coumes C, Poulesquen A, et al. Beneficial use of a cellcoupling rheometry, conductimetry, and calorimetry to investigate the early agehydration of calcium sulfoaluminate cement [J]. Rehologica Acta.2013,52(2):177-187.
    [157] Gastaldi D, Canonico F, Boccaleri E. Ettringite and calcium sulfoaluminate cement:Investigation of water content by near-infrared spectroscopy [J]. Journal ofMaterials Science.2009,44(21):5788-5794.
    [158] Alesiani M, Pirazzoli I, Maraviglia B, et al. NMR and XRD study on calciumsulfoaluminate cement [J]. Applied Magnetic Resonance.2008,35(1):33-41.
    [159] Winnefeld F, Lothenbach B. Hydration of calcium sulfoaluminate cementsExperimental findings and thermodynamic modelling [J]. Cement and ConcreteResearch.2010,40(8):1239-1247.
    [160] Ye Z M, Chang J, Huang S F, et al. Study on early hydration of sulfoaluminatecement using an electrical resistivity method [J]. Advances in Cement Research.2008,20(4):161-165.
    [161] Peysson S, Péra J, Chabannet M. Immobilization of heavy metals by calciumsulfoaluminate cement [J]. Cement and Concrete Research.2005,35(12):2261-2270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700