内蒙古花敖包特铅锌银多金属矿床原生晕特征及深部预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古花敖包特铅锌银多金属矿床构造上位于滨西太平洋成矿域,内蒙古大兴安岭成矿带中南段,是一个近年来发现的与白垩纪早期构造岩浆活动有关的隐伏热液脉状矿床。原生晕异常分析得出:成晕组分可以分为:前缘元素(Sb、Cd、Ag、Pb)、近矿元素(Zn、Hg、Cu、In)、尾晕元素(As、Sn、Bi、Mo、W),自矿体头部至尾部,前缘晕元素异常呈逐渐减小,尾晕元素异常呈逐渐增大,原生晕轴向分带和横向分带都较为明显。基于Grigorian分带序列定量计算公式获取的矿床原生晕轴向分带序列(从浅部至深部)为:Sb→Pb→Cd→Ag→Zn→Hg→Cu→In→As→Bi→Sn→Mo→W;分析横向分带得出:其分带序列与轴向分带序列基本一致,Cd、Pb、Zn、Sb、Ag均排在分带序列的前端,表明该五种元素成矿作用强,为矿体的重要指示元素;As、Bi、Mo、W排在了序列的后面,表明该四种元素可能是深部矿化的主要成分。通过聚类分析得出:Zn、Cd、Hg、In、Sn、Cu元素归为一类的相关性水平为0.73,反映出了近矿元素组合特征;Pb、Ag、Sb元素归为一类的相关性水平为0.62,反映出了矿体前缘元素组合特征;Bi、As、Mo、W四个元素分别与其它元素聚为一类的相关性水平均小于0.4,且Mo、W与其它元素聚类时呈现出负相关水平,反映出成矿过程具有多期、多阶段性。基于13种成矿成晕元素的因子分析获取了三个具有成矿意义的元素组合:F1为Pb-Zn-Ag-Hg-Cd-Cu-Sb-Sn-In组合,以Pb-Zn-Ag成矿元素组合为特征的铅锌银矿化阶段;F2为Bi-Sn-In组合,代表了另一次矿化阶段,主要形成Bi、Sn和In硫化物。F3为W-Mo-As组合,推测为W、Mo、As富集为主的热液矿化阶段,这表明该矿床成矿过程至少经历三个不同的矿化阶段。最后构建深部矿体评价指标为(Sb×Pb×Cd×Ag)D /(As×Sn×Mo×W)D,该指标自矿脉的头部至尾部(从浅部至深部)急剧降低,矿体头部(850m标高):1.30→矿体中上部(775m标高):0.35→矿体中下部(645m标高):0.056→矿体尾部(550m标高):0.005,这表明该指标随深度的增加急剧降低,因此能够用于有效地预测深部Pb、Zn和Ag的资源潜力。
The Huaaobaote Pb-Zn-Ag Deposit, tectonically located in the mid-southern segment of Da Hinggan Mountains’Ore-forming Belt of Innermongolia, belonging to the circum-Pacific metallogenetic domain, is a discovered recently buried hydrothermal vein deposit and may be associated with early Cretaceous technomagma activities. Depending on the analysis of anomalies of primary halo, elements of primary halo can be divided into three categories: front elements (Sb, Cd, Ag, Pb), nearby elements of ore body (Zn, Hg, Cu, In), trailing elements (As, Sn, Bi, Mo, W). From head to foot of ore body, the anomalies of front elements of primary halo are becoming smaller while the anomalies of tail elements are becoming bigger, meanwhile, both of axial zoning and transversal zoning are obvious. A detailed zonation sequence of indicator elements is obtained using the Grigorian’s method as follows (from up to down): Sb→Pb→Cd→Ag→Zn→Hg→Cu→In→As→Bi→Sn→Mo→W; Based on the analysis of transversal zoning, we can get that the axial zonal sequence is consistent with the transversal zonal sequence. These elements that are at front of the transversal zonal sequence, such as Cd, Pb, Zn and Sb, Ag, are important indicator elements of ore body. Based on cluster analysis, Zn, Cd, Hg, In, Sn and Cu can be put into one group when the level of its correlation coefficient is below 0.73, which represents the combined characteristic of nearby elements of ore body; Pb, Ag and Sb can be put into one group when the level of its correlation coefficient is below 0.62, which represents the combined characteristic of front elements of ore body; Bi, As, Mo and W may be put into one group when the level of correlation coefficient is below 0.4. Furthermore, Mo and W have a little negative correlation with other elements, which reflects that the ore-forming process is a multi-stage process. Three significant ore-forming element associations have been identified from factor analysis basing on 13 kinds of halo-forming elements are as follows. F1[Pb-Zn-Ag-Hg–Cd-Cu -Sb-Sn–In]:association reflects that Pb-Zn-Ag mineralization stage is a main stage. F2 [Bi-Sn-In] association represents sulfides of Bi, In and Sn, which reflects the other hydrothermal mineralization stage; F3 [W-Mo-As] association may reflects another hydrothermal mineralization stage in which the elements of As ,W and Mo are anomalously enriched. These element associations may reflect three different mineralization stages. At the last, a criterion such as (Sb×Pb×Cd×Ag)D /(As×Sn×Mo×W)D can be constructed for evaluating the ore potential in depth. The criterion values are greater than 1.3 on the top portion of the ore deposit, 0.35 in the middle-upper portion, 0.056 in the middle–lower portion and 0.005 at the end portion, which illustrate that these criterion values decrease abruptly with depth and can be used for predicting the potentials of Pb, Zn, and Ag at a given depth.
引文
A.A.Beus,S.V.Grigorian. GeochemicalExploration Methods For Mineral Deposits. Wilmette, Illinois, USA : Applied Publishing Ltd, 1975:120-125.
    Chen Yongqing, Zhao Pengda.Zonation in primary halos and geochemical prospecting pattern for the Guilaizhuang Gold Deposit, Eastern China. Nonrenewable Resource, 1993,7 (1) :37-44.
    安国英.危机矿山找矿的地球化学方法技术研究: [博士学位论文].北京:中国地质大学(北京),2006.
    巴尔苏科夫, C.B.格里戈良,奥夫钦尼科夫著,吴传壁等译.金属矿床地球化学普查方法. 北京:冶金工业出版社,1988:150-169.
    晁会霞,杨兴科,王磊,等.新疆梧南金矿床原生晕特征与深部预测.地质与勘探, 2006,42 (1):72-76.
    晁会霞.新疆鄯善梧南金矿床地球化学特征及隐伏矿预测:[硕士学位论文].西安:长安大学,2005.
    陈伟,李应栩,王硕,等.花敖包特银多金属矿矿床地质及成矿流体特征.有色金属, 2008,60(5):32-36.
    陈永清,陈守余,程志中.内蒙西乌珠穆沁旗花敖包特银铅锌矿区地质、地球物理、地球化学综合找矿模型与成矿预测研究设计书.北京:中国地质大学(北京),2008.
    陈云华,易慧,张强禄.锡铁山铅锌矿床地球化学异常模式及找矿指标.矿产与地质,2005,19(6):710-714.
    程小昆.广西珊瑚钨锡矿床地球化学异常特征及找矿预测: [硕士学位论文].广西:桂林理工大学,2009:32-45.
    崔来运.河南赵岭构造蚀变岩型金矿床微量元素地球化学特征.地质与勘探,2005,1(2):30-34.
    代西武,杨建民,张成玉,等.利用矿床原生晕进行深部隐伏矿体预测——以山东阜上金矿为例.矿床地质,2000,19(3):245-254.
    杜家茂.地球化学找矿方法在豫西南地区隐伏矿预测中的应用: [硕士学位论文].北京:中国地质大学(北京),2009.
    黄薰德,吴郁彦,等.地球化学找矿.北京:地质出版社,1986:30-40.
    蒋顺德.个旧高松矿田芦塘坝矿段矿床地球化学及成矿预测:[硕士学位论文].云南:昆明理工大学,2007:51-55.
    解庆林.浓集指数法确定矿床原生晕元素轴向分带序列.地质与勘探,1992,(6):55- 57.
    金鑫.乌珠穆沁旗地区重磁场特征及利用.与资源,2006,15(2):142-146.
    李厚民,孙继东,沈远超,等.东昆仑五龙沟金矿床Ⅲ矿段原生晕特征及模式.地质地球化学,2001,29(3):109-115.
    李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿成果.北京:地质出版社. 2006:1-48.
    李强.东天山西段隐伏金矿体定位预测的构造及地球化学方法研究:[硕士学位论文].西安:长安大学,2005:1-64.
    李善芳.地球化学勘查工作进展.物探与化探,1989,13(5):333-343.
    李扬,邱德同,李峻峰.确定金矿床元素分带序列的新方法.地质与勘探,1993, (12):47-48.
    李振祥,谢振玉,刘召等.内蒙古西乌珠穆沁旗花敖包特银铅锌矿矿床地质特征及成因初探.地质与资源.2008,17(4):278-281.
    刘崇民,马生明.我国原生晕研究50年的主要成果.物探化探计算技术,2007,29:812.
    刘崇民.金属矿床原生晕研究进展.地质学报,2006,80(10):1528-1537.
    刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特征.地学前缘,2004,11(1):269- 277.
    聂兰仕,程志中,王学求等.深穿透地球化学方法对比研究——以内蒙古花敖包特铅锌矿为例.地质通报,2007,26(12):1574-1578.
    朴寿成,连长云.一种确定原生晕分带序列的新方法—重心法.地质与勘探,1994,(1):63-65.
    朴寿成,杨永强,连长云.原生晕分带序列研究方法综述.世界地质,199 6,15(1):44-48.
    普传杰,刘春学,薛传东,等.个旧锡矿高松矿田原生晕研究.矿物学报, 2004 ,24(2): 176-180.
    戚长谋.元素地球化学分类探讨.长春科技大学学报,1997,21(4):361- 365.
    邱德同.确定矿床原生晕指示元素分带序列的新方法.地质与勘探,1989,(8):51-53.
    邵跃.热液矿床岩石测量(原生晕法)找矿.北京:地质出版社. 1997:1-142.
    孙华山,孙林,曹新志.胶西北上庄金矿床原生晕轴(垂)向分带特征及深部矿体预测的勘查地球化学标志.矿床地质, 2008,27(1):65-70.
    陶正章.高等学校试用教材地球化学找矿.北京:地质出版社,1981:1-10.
    田锋.谢家沟金矿元素地球化学特征及原生叠加晕模型: [硕士学位论文].北京:中国地质大学(北京),2005:60-63.
    王崇云.地球化学找矿基础.北京:地质出版社,1987:35-40.
    吴锡生.化探数据处理方法.北京:地质出版社,1993:38-39.
    伍宗华,古平,等.隐伏矿床的地球化学勘查.北京:地质出版社,2000:1-20.
    谢学锦,陈洪才.原生晕方法在普查勘查中的应用.地质学报,1961,(4):261-272.
    谢学锦,邵跃,王学求,等.走向21世纪矿产勘查地球化学.北京:地质出版社,1999:49-60.
    谢学锦,邵跃.地球化学岩石测量方法与推断解释方法.物化探研究报导,1965,5.
    杨小峰,刘长垠,张泰然,等.地球化学找矿方法.北京:地质出版社,2007:30-35.
    姚玉增,巩恩普,梁俊红,等.河北丰宁牛圈银矿床原生晕特征及深部预测.地质找矿论丛,2005,20(2):142-150.
    叶天竺,薛建玲.金属矿床深部找矿中的地质研究.中国地质,2007,34(5):855-869.
    张定源.银岩锡矿原生晕元素分带序列计算方法研究.地质与勘探,1989,(5):45-49.
    张华良,刘振义,刘朝杰.数学地质.北京:冶金工业出版社,1994:114-141.
    赵鹏大.定量地质学理论与方法.北京:地质出版社,2004:178-180.
    赵琦.原生晕垂直分带的元素比重指数计算法.物探与化探,1989,(2):157-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700