直杆蓝桉营养特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树具有生长快,适应性强,用途广,经济价值高等特点。我国种植桉树的面积大,但桉树木材的生产量低。因此,通过合理施肥和接种有效的外生菌根真菌大有潜力提高桉树的木材产量。作者于2001.3至2002.2在西南农业大学校区实验农场以直杆蓝桉为材料,比较系统的研究了其营养特性,包括N、P、K、Ca、Mg、S的含量分布、季节变化以及土壤条件和外生菌根真菌感染对直杆蓝桉生长和养分吸收的影响。目的是为栽培种植直杆蓝桉和合理施肥提供理论依据。试验的供试土壤为紫色土和黄壤,分别设不接种和接种外生菌根真菌两个处理,四次重复,相间排列。结果表明:
     1直杆蓝桉不同方位叶片的N、K含量变化趋势较为一致:南>东>西>北,但差异不显著,其它四种营养元素含量在各方位之间的差异也不显著,且变化趋势不一致。
     2.直杆蓝桉叶片N、P、K这三种可移动元素的季节变动模式基本一致,都是生长季节初(3、4月)含量最高,随季节而下降,至季末又开始回升,呈现下降—上升的变化模式。叶片Ca含量在旺盛生长的夏季(4-7月)显著高于其它各月,与月均温呈显著正相关(r=0.599,p<0.05)。直杆蓝桉叶片Mg含量变化趋势则与K、Ca相反,3-8月份含量明显低于其它月份,变化幅度较小。直杆蓝桉叶片S含量变化与Mg相似,变化幅度稍大。对叶片各元素含量月变化的相关分析表明,NP、NK、PK都呈极显著性正相关,相关系数分别为0.886、0.922和0.809(p<0.01),这表明直杆蓝桉在吸收和积累N、P、K的方式是一致的。直杆蓝桉叶片K和Ca呈显著性正相关(r=0.603,p<0.05),而叶片K和Mg呈极显著性负相关(r=-0.768,p<0.01)。直杆蓝桉叶片Mg和S呈极显著性正相关(r=0.692,p<0.01),N和S呈一定负相关但相关关系不显著(r=-0.549,p>0.05)。
     3.各器官营养元素含量的季节动态:枝、干、干皮和根系中的营养元素含量有明显的季节动态。枝条中各营养元素含量的季节动态与叶的基本一致;干皮中的N、P、K的季节变化较为一致,3月份含量最高,9月份含量最低。Ca在生长季节(6月)有所上升。Mg、S的变化趋势较为一致,冬春季含量高于夏秋季;树干中N、P、Mg、S含量都比较低,且变化幅度不大,K、Ca相对而言在树干内是比较高的,6月份含量高于其它各月;侧根中各营养元素含量高于主根,二者变化趋势较为一致,在生长季节(6月)中N、P、K含量都高于其它月份,9月
    
     直杆蓝枝公养特性的U乃c
    根系中三种元素含量都有所下降,12月份有开始回升。Mg、S的变化趋势则呈另一种模式,
    夏季根中含量显著低于其它各季,9月含量最高。
    4.各器宜营养元素含量以平均值计的分布规律为:N:n!”(9.44mde单位下同)>枝条(2.74)
    >干皮(2.56p侧根(.12p主根(.59p树干(0.44);P:干皮(1.16)>叶(l.14p枝条(.09p恻根
    (0.85)>主根(0.45p树干(0.37);K:OD“(7.30p枝条O.68)>侧根O.04p干皮(.81)>主根(2.47p树
    干(1厂】);*a:干皮(21.30P叶(KJ4P侧根(】2.05)>树干(ic.85)>枝条(】o.43P主根(吕90);*g:
    为干皮(4二7P叶(3.78P侧根(3.59)>主根厂jSP枝剥0.7刀>树干(o.4叮;s:叶(2.31)>干皮
    (1刀lp侧根(9】)、枝条N.91)>主根(.引p树干N.22)。各营养元素在器官中含量的大小顺序
    为:叶:*t*>K>*g>》P,枝汇少*>*>卜8>呐,干皮:*矽*g>*>*>Ps,树干:
    C>卜*旷N>P>s,主根:C> K>NK>N>*旷s>P,侧根:C>*矿K> N>s>P。
    S.在不同立地条件下,除Ca外叶片元素含量规律均与土壤一致。可见直杆蓝枝吸收大部分元
    素数量的高低取决于生长的立地条件。较好的立地条件相对生长较好,养分吸收较多。
    6.接种菌根菌直杆蓝按各组分营养元素含量与对照处理(不接种)均有差异。按种菌根菌后
    各组分N含量均高于对照组高,叶、枝条、干皮、树干、主根和侧根分别高出对照组!0.0%、
    14.3%、19石%、6.7%、34.7%和40.4%。t检验表明,除树干外,菌根苗含N量与对照组差异
    均达显著水平(p<0.05),其中根含N量达极显著性水平(p<0.of);接种菌根真菌后,树叶、
    枝条、干皮、树干、主根、侧根中P含量分别高出对照组63.5%、50%、40.3%、34.2%、71.l%
    和 71.2%,差异达极显著水平(p<0.01);接种菌根苗木的叶、枝条、干皮、树干各组分K含
    量较对照组均有所降低,降低的百分数分别为:2二%、4.l%、1.3%和 1.9%,但差异不显著。
    主根、侧根中K的含量较对照组分别高出38.5%,14.4%,差异显著(V叱.05)。表现为促进K
    在地下部分(根系)中的积累却减少了在地上部分的积累;对Ca的影响,表现为抑制Ca素
    在植株中的积累,叶、枝条、干皮、树干、主根、侧根分别较对照组下降了36.8%、40.2%、
    1.0%、41.5%、12.2%和 30.0%,除干皮外,差异均达显著水平(p=(.05h对 gg的影响,地
    上部分差异不明显,主根和侧根中 Mg的含量分别高出 38.8%和 17.9%,差异显著;接种菌根
    菌对苗木各器官S含量的影响不大,且规律?
Eucalyptus with the abilities of fast growth and varied adaptation is widely and economically used for multi-purposes. There are large areas grown eucalyptus but with the low lumber production in our country. Therefore, it seems reasonable to promote the growth of eucalyptus trees by rational fertilization and ectomycorrhizal fungus inoculation. The present experiment was established in the experimental farm of Southwest Agricultural University and the nutrition of eucalyptus trees was studied systematically from 2001.3 to 2002.2 in order to supply the guidance in cultivation and fertilization practices. The growth and nutrient absorption of eucalyptus with and without ectomycorrhizal fungus inoculation were compared in yellow and purplish soils. The arrangement of inoculation - no inoculation was adopted with 4 replications in the experiment. At the same times!, the distribution and seasonal changes of macronutrients (N, P, K, Ca, Mg and S) were recorded in eucalyptus trees. Following are the results obtained:
    1. Similar changes and important differences of N and K in the leaves of eucalyptus in different directions were found in accordance with South, east, west, north, even though there were no significant variations in directions. For other four elements (Ca, Mg, S and P) in the leaves, however, rose and fell little in directions yet if any.
    2. Similar evolution of N, P and K, the movable elements in trees, were observed in the leaves of eucalyptus. The contents of the three elements had a pattern of decrease-increase which reached the peak in the early growing period (March or April) and decreased with seasons and then increase in the later period. The concentrations of Ca in the leaves were remarkably higher in summer (from April to July), the fast growing period, than those in any other months. Positive correlation (r=0.599,p<0.05) was detected between the contents of Ca and monthly average temperatures. The variations of Mg in the leaves of eucalyptus, however, tended to be opposite to those of K and Ca. Obviously low Mg concentration were observed from March to August and varied very little each month if any. S in the leaves fluctuated similarly but largely compared to Mg. Significant correlations were established between N and P (r=0.886,p<0.01), N and K (r=0.922,p<0.01), P and K (r=0.808,p<0.01), indicating similar absorption and accumulation of N, P and K by eucalyptus trees. Moreover, The contents
    
    
    
    between K and Ca(r=0.630,p<0.05), and between Mg and S (r=0.629,p<0.05) correlated positively in the leaves, while negatively between K and Mg (r= -0.678,p<0.01), and not significantly between N and S (r= -0.549,pX).05).
    3. There was a significant seasonal change in the contents of nutrient elements in branches, stems, barks and roots. The seasonal dynamic changes of all elements in branches were similar to those in leaves. The N, P, and K seasonal dynamic patterns showed similar in barks, i.e. highest in March and lowest
    in September. The Ca content in barks was highest in June while Mg and S concentrations in warmer seasons were lower than those in colder seasons. Very lower level of N, P, Mg, and S in the trunks were detected and changed very little among seasons while the relatively higher level of the K and Ca reached the peak in June. At the same time, the element concentrations in side roots were higher than that in main roots and the seasonal variations were similar, which were highest in June and fell in September and rose in December. However, the seasonal changes of Mg and S in the roots tended to another pattern of which were lowest in June and highest in September.
    4. Generally speaking, the average nutrient contents (mg/g) in various organs in .the Eucalyptus Maideni F.Muell were in the following orders. N: leaves(9.44)> branches(2.74)> barks(2.56)> side roots(2.12)> main roots(1.59)> trunks(0.44), P: barks(1.16)> leaves(1.14)> branches(1.09)> side roots(0.85)> main roots(0.45)> trunks(0.37), K: leaves(7.30)> branches(4.68)> side roots(3.04)> barks(2.81)> main roots(2.47)> tru
引文
[1]Sune.Linder,瑞典针叶林中营养和生物量产生之间的关系.国际林联山地森林保护与管理学术论文集,1990,152-159
    [2]Whittaker, The hubbard brook ecosystem study: Forest nutrient cycling and element behavior ecology,, 1979,60(1):203-220
    [3]Carl F Jordan, The nutrient balance of an amazonian rain forest ecology. 1982,63(3):647-654
    [4]栗德永,王开曦.太白山植物元素背景值的研究[J].植物生态与地植物学丛刊,1983 7(3):230-239
    [5]焦树仁,辽宁章古台樟子松人工林的生物量与营养元素分布的初步研究[J].植物生态与低植物学丛刊 1985,9(4):257-265
    [6]李俊清,宫伟光.东北主要造林树种的营养元素含量特征分析[J].植物生态与地植物学报,1991,15(4):380-385
    [7]陈灵芝等,北京人工刺槐林化学元素含量特征.植物生态学报,1988,12(4):245-255
    [8]张旭东等,安徽马尾松人工林营养元素分配格局的研究.应用生态学报,1993,4(1):8-11
    [9]邹春静等,长白松人工林生态系统营养元素的分配格局和积累规律.应用生态学报,1996,7(1):6-10
    [10]刘广全等,秦岭松栎林带生物量及其营养元素分布特征.林业科学,2001,37(1):29-36
    [11]刘广全等,锐齿栎林非同化器官营养元素含量的分布.2001,21(3):423-429
    [12]潘开文等,连香树人工幼林群落营养元素含量、积累分配和循环.林业科学,2001,37(2):2-12
    [13]李志安等,我国热带亚热带几种人工林体内营养结构特征.生态学报,2001,20(4):1-4
    [14]冯宗炜等,亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究.1985,(4):245-246
    [15]黄建辉等,北京百花山附近杂灌丛的化学元素含量特征.1991,15(3):224-233
    [16]周佑勋,湿地松和火炬松苗期矿质元素含量的研究.中南林学院学报 1986,6(1)
    [17]朱建林等,油松人工林营养元素含量时间变异的研究.北京林业大学学报,1989,11(3):101-102
    [18]费世民,火炬松人工林林木营养特性的研究.林业科学, 1995,31(4):300-309
    [19]王安友等,银杏叶营养元素季节性变化的研究.林业科学研究,1996,9(2):133-137
    [20]林睦就等,引种针叶树种矿质元素浓度及季节变化的比较研究.林业科学,1998,34(5):22-28
    [21]李培芝等,北方阔叶树木固氮与非固氮树种间营养元素含量的差异及数量划分类.应用生态学报,1998 9(3):242-246
    [22]王建等,银杏种子矿质元素含量的季节变化及其与落种的关系 林业科学研究 1988,11(5):469-473
    [23]Miller. H.G.Dynamics of mctrient cycling in plantation escosystens. Nutrition of plantation Forests. Academic Press. London, 1984,53-78
    [24]费世民,火炬松人工林养分体内转移和内循环研究.林业科学,2001,37(3):15-19
    [25]董世仁等,油松人工林养分循环的研究.北京林业大学学报,1986,1:11-20
    [26] Ingestad, T., et al. Nutrition and growth of coniferous seedlings at varied relative nitrogen addition rate.-Physiol. Plant, 1985 65:109-116.
    [27]谭云峰等,油茶林生态系统中营养元素循环的研究.生态学报,1989,9(3):213-219
    [28]徐跃,哀牢山木果石栎林中氮元素的生物循环.国际林联山地森林保护与管理学术会议论文集,1990:160-164
    [29]沈善敏等,杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化.应用生态学报,1992,3(4):296-301
    [30]宇万太等,不同施肥杨树主要营养元素内外循环比较研究.应用生态学报,1995,6(4):341-345
    [31]D.L.(田大伦).1989.Studies on nutrient element cycling and dcnsity effect of pole stage of Pinus massoniana stand. Seientia Silvae Sinicae(林业科学)25:106-112(in Chinese)
    
    
    [32]Wen,Z,M(温肇穆).H.W.Liang(粱宏温)Y. Li.(黎跃).1991a.Studies on the biocycling of nutrient elements of tree layer of Cunninghamia lanceolata mature plantations.Acta Phytoecoiogica et Geobotanica Sinica(植物生态学与地植物学学报).15:36-45(in Chinese)
    [33]莫江明等,鼎湖山马尾松林营养元素的分布和生物循环特征.生态学报,1999,19(5):636-640
    [34]项文化等,不同年龄阶段马尾松人工林养分循环的研究.植物生态学报,2002,26(1):89-95
    [35]刘世荣,兴安落叶松人工林生态系统营养元素生物地球化学循环特征.生态学杂志,1992,11(5):1-6
    [36]阮宏华等,空青山次生栎林营养元素的生物循环.下蜀森林生态系统定位研究论文集,北京:中国林业出版社,1992,73-77
    [37]俞元春等,苏南丘陵杉木人工林养分循环的研究.下蜀森林生态系统定位研究论文集,北京:中国林业出版社,1992,78-89
    [38]JAMES.M.TRAPPE和CHRIS MASER,外生菌根真菌(蘑菇、块菌)和动物、树木之间的相互关系.王云译[Mushrooms and Man,an interd isciplinary approach to Mycology].1977:35-41
    [39]李飞等,人工湿地松林矿质营养循环的研究.林业科学,1996,32(4):299-304
    [40]李跃林等,巨尾桉人工林养分循环研究.生态学报,2001,21(10):1735-1740
    [41]周崇莲等,外生菌根与植物营养.生态学报,1993,12(1):37-44
    [42]Lundebery G.Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi.Stud. For. Suec. 1970, 70:1-95
    [43]周崇莲等,几种松树外生菌根的研究.生态学报,1983,2(2):103-109
    [44]李晓林等,VA菌根与矿质营养.土壤学报,1994,31(增刊):38-44
    [45]陈应龙等,混合接种Glomus与Pisolithus菌株对尾叶桉矿质营养吸收的影响.林业科学研究,1999,12(3):262-267
    [46]冯宗炜等,一种高生产力和生态协调的亚热带针阔叶混交林—杉木火力楠混交林研究.植物生态学与地植物学丛刊,1988,12(3),165-179
    [47]Ballard, R. 1980.Phosphorus Nutrition and fertilization of forest trees. In: The Role of Phosphorus in Agriculture (ed. by F.E.Khasawach et al.), Madison, Wisconsin.
    [48]Attiwill,P.M.and Leeper, G.W.(陈洪等译),1987.森林土壤养分循环.辽宁大学出版社,沈阳
    [49]邹春静等,长白松人工林生态系统营养元素的分配格局的积累规律.应用生态学报,1996,7(1):6-10
    [50]李贻铨,林木施肥是短轮伐期工业用材林的基础技术措施.林业科学研究,1992,5(2):215-217
    [51]何方等,油桐林生物量和养分循环的研究.经济林研究,1990,8(2):6-10
    [52]White, D.P. 1954. Variation in the nitrogen, phosphorus, and potassium contents of pine needle with season, crown position, and sample treatment. Soil Sci. Soc. Am. Proc, 18:326-330
    [53]ME AD. D. J. et al. 1976 Seasonal and between-variation in the nutrient levels in Pinus radiation foliage. N.Z.J.For. Sci, 6:3-13
    [54]Joseph N. Hockman, et al. 1989 spatial and temporal variability of foliar nutrient levels in Fraser fir Christmas trees. For. Sci, 35(2): 632-639.
    [55]Pritchett W Lsmith W H. Forest fertilization in the U.S.Southeast. Forest Soils and Forest Land Management. Edited by Bernier, B.and C.H.Winget quebec:les presses de Luniversite laval, 1975,467-476
    [56]Fisher R F, Garbett W S. Response of semi-mature slash and iobloily pine plantations to fertilization with nitrogen and phosphrous. Soil Soc. Amer. Jour. 1980,44:850-854
    [57]Pritchett W L. Properties and management of forest soils, New York: John Wiley and Sons, 1979,347-348
    [58]Jokela R B, Harding Nowak C A. Long-term effects of fertilization on stem form, growth relations, and yield estimates of slash pine. Forest Sci. 1989,35(3):832-842
    [59]叶仲节,浅论杉木育苗造林中的施肥问题 浙江林学院学报 1985 2(1):13-19
    [60]周天相,杉木林施肥试验效果分析.亚林科技,1987,15(2):130-135
    
    
    [61]李贻铨等,杉木幼林前五年施肥效应研究.土壤通报,1991,22(1):28-31
    [62]杉木施肥试验课题协作组,杉木幼林施肥效应研究.见:盛炜彤主编,人工林地力衰退研究;北京:中国科学技术出版社,1992,198-211
    [63]陈金林等,杉木幼林施肥肥效分析.林业科学研究,1996,9(4):426-430
    [64]陈道东等,花岗岩立地上杉木幼林施肥生长效益研究[J].林业科学研究,1996,9:34-
    [65]贺建栋等,头耕土杉木幼林施肥效应的研究[J].林业科学研究,1996,9:88-92
    [66]肖祥希等,磷对杉木不同家系苗木生长影响试验研究[J].福建林业科技,1995,22:49-53
    [67]何贵平等,施肥对杉木无性系幼林生长的影响.林业科学研究,2000,13(5):535-538
    [68]Durigneaud,P.And S.Denaeyer-Deasmet,(彭克明译),温带落叶林矿质元素的生物循环,植物生态学译丛,第1集,科学出版社,1974,72-99.
    [69]张建国等,杉木幼林施肥的时效性研究[J].林业科学研究,1996,9:27-33
    [70]胡灿堂等,马尾松造林施肥两年生长反应[J].林业科学研究,1996,9(2):215-220
    [71]蔡宏明等,马尾松幼林施肥的综合效应[J].林业科技通讯,1997,(9):15-17
    [72]洪顺山等,湿地松幼林施肥五年生长反应.林业科学研究 1997,10(6):624-628
    [73]胡炳堂等,马尾松幼林施肥持续8年的生长效应.林业科学研究,2000,13(3):286-289
    [74]周文龙等,赤桉、刚果12号桉施肥效应的研究.热带林业科技,1987,(4):13-25
    [75]周文龙等,桉树施肥效应的初步分析.澳大利亚树种在中国的栽培和利用国际研讨会论文集,1988:25-31
    [76]莫启平,桉树树种(种源)与施肥试验 澳大利亚树种在中国的栽培和利用国际研讨会论文集,1988:96-105
    [77]周文龙,尾叶桉幼林施肥效应的研究.林业科学研究,1995,8(2):159-163
    [78]仲崇禄,巨桉苗期矿质营养试验.林业科学研究,1996,9(5):538-543
    [79]梁坤南等,尾叶桉无性系幼林施肥效应的研究.林业科学研究,1999,12(2):127-131
    [80]仲崇禄等,赤桉,细叶桉和巨桉幼林施磷量的确定.林业科学研究,2000,13(4):377-384
    [81] Gray R L. Effects of potassium fertilizer on wood density and related anatomicai characteristics of red pine. M. S. thesis, SUNY College of Forestry, N.Y. 1970
    [82] Gray R L, Kyanka G H. Potassium fertilization effects on the static bending properties of red pine wood. For. Prod. J, 1974, 24(9):92-96
    [83]欧阳权等,桉树种源与施肥试验.桉树科技,1988,(1):10-14
    [84]罗建举等,施肥处理对尾叶桉材性影响规律的研究.世界林业研究,1995,8(专集):336-343
    [85]罗建举等,施肥处理对尾叶桉化学成分含量的影响.林业科学,1998,34(5)
    [86]罗真付等,施肥处理对尾叶桉生长量和木材密度的影响.南京林业大学学报,1999,23(5)
    [87] Linder, S., et al. Effects of mineral nutrition on carbon dioxide exchange and partitioning of carbon in trees. In: Bowen, et al.(eds.)Nutrition of Plantation Forest, Academic Press, London, 1984,211-236.
    [88] Lamb D, Relationships between growth and foliar nutrient concentrations in Eucalyptus deglupta. Plant and Soil,1977,47:495-508
    [89] Schonu APG, The effects of fertilizing on the foliar nutrient concentrations in E.grandis. Fertilizer Research, 1981,2:73-87
    [91]陈道东等,林木叶片最适养分状态的模拟诊断.林业科学,1991,27(1):2-7
    [92]赵明范,核桃叶片N、P、K元素营养诊断指标的研究.林业科学,1991,27(6):653-657
    [93]李淑仪等,桉树营养状况与叶片营养诊断研究.林业科学 1996,32(6):482-489
    [94]王文卿等,红树植物秋茄和红海榄叶片营养元素含量及季节动态的比较研究.生态学报, 2001,21(8):1233-1238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700