基于银川平原地下水质的叶菜水培营养液配方研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
营养液的配制和管理是无土栽培的关键技术。配制营养液的水质影响营养液的组成和某些元素的有效性,有时甚至严重影响作物生长,决定无土栽培的成败。在各地无土栽培中,由于水源水质对营养液配方的影响,而造成无土栽培作物生长不良或减产的现象时有发生。我国广大北方地区属硬水地区,地下水水质较差。本研究在分析银川平原地下水质的基础上,筛选基于区域地下水水质特点的蔬菜营养液配方,为该地区蔬菜无土栽培提供技术支撑。试验取得以下主要结果:
     1.对宁夏境内沿黄河的中卫市、吴忠市、青铜峡市、永宁县、银川市、贺兰县、平罗县不同深度的温棚井水取样分析表明:银川平原多数井水水质的pH、全盐、HCO_3~-、Ca~(2+)、Mg~(2+)、Na~+、Cl~-、SO_4~(2-)离子均偏高,对蔬菜无土栽培不利,要发展无土栽培需针对水质特点筛选营养液配方。
     2.植物吸收Na~+与Cl~-较少,原水中Na~+与Cl~-Cl高会造成营养液或基质中盐分积累。银川平原地下水中Na~+、Cl~-含量高是水质差的主要因素之一。以雨水配制的营养液中添加500 mg/L的NaCl(Na~+约为200 mg/L)对小白菜生长虽有抑制作用,但影响不大,可以水培生产小白菜。表明银川平原大多数水质可以水培叶菜。
     3.在适宜的酸性条件下,营养液不加钙和镁,银川平原地下水中原有的钙和镁可以满足小白菜植株生长的需要,未见明显的缺素症状。说明在调酸条件下银川地区地下水中的Ca~(2+)、Mg~(2+)可充分利用,配制营养液时应根据地下水中Ca~(2+)、Mg~(2+)浓度决定是否需要补充Ca~(2+)、Mg~(2+)。
     4.不同pH下水培小白菜试验,营养液在pH 6.5~5.5下小白菜形态指标、吸水速度、pH、EC值、地上部和地下部的营养元素、无机养分的吸收速度均优于营养液在pH 7.5~8.5下的指标,即pH 7.5~8.5营养液不适宜于小白菜水培生长,而6.5与5.5的pH环境下营养液适合。考虑到成本因素,使用银川地区地下水配制营养液时,将pH调整到6.5即可。由于银川平原地下水中SO_4~(2-)较高,调酸以硝酸和磷酸配合使用为宜。
     5.应用四元二次通用旋转组合设计,对小白菜、空心菜营养液配方中的NO_3~-N、P、K、Ca四种元素的摩尔浓度进行综合研究。
     (1)分别获得小白菜、空心菜产量(Y)与营养液中四种元素的摩尔浓度(X_1,X_2,X_3,X_4)回归模型: Y_(小白菜)=141.42857 +10.55542X_1 +6.40792X_2 +8.05042X_3-7.95996X_1~2-9.66621X_2~2-4.55246X_3~2-4.69121X_4~2+5.91688X_1X_4Y空心菜= 89.86543+9.23667X_1+3.08000X_2 + 5.55083X_3-5.44907X_1~2-8.84032X_2~2-4.03407X_3~2+2.46218X_4~2+3.79500X_1X_3
     (2)四种营养元素对供试蔬菜产量的影响各不相同,线性项是:X_1>X_3>X_2>X_4,即各个元素对小白菜、空心菜的影响大小顺序是:氮>钾>磷>钙。
     (3)通过对模型的解析,分别得到小白菜氮与钙、空心菜氮与钾的交互效应,且它们的交互效应在较低水平时有一定的正相关关系,在较高水平时存在着一定的负相关关系。
     (4)通过计算机模拟寻优,小白菜要达到单株最高产量148.75 g,营养液最优配方中NO_3~-N,P,K,Ca浓度分别是9.0、0.5、4.5、3.0 mmol/L;空心菜要达到单株最高产量108.81 g,NO_3~--N,P,K,Ca浓度分别是9.0、0.5、4.5、0 mmol/L。由于银川平原地下水中已有2 mmol/L的Ca,因此配制营养液时最佳配方中NO_3~--N,P,K,Ca添加量应分别调整为小白菜9.0、0.5、4.5、5.0 mmol/L;空心菜9.0、0.5、4.5、2.0 mmol/L。
     (5)模型验证试验中,通过测定各处理生长势、根系活力、产量、品质以及全氮磷钾含量表明,由模型推出的最佳配方栽培的小白菜、空心菜的以上指标含量均显着高于对照,而由模型推出的较差配方栽培的小白菜、空心菜的以上指标含量均显着低于对照,从而证明了模型的准确、可靠。
     6.高NaCl(Na 21.7mol/l)条件下,水培小白菜时营养液中NO_3~-ーN:NH_4~-N=8:0、7:1、6:2、4:4的四个处理中,以6:2最好,显著促进生长发育,产量高,叶色加深,可食部分硝酸盐含量降低。
The nutrient solution and management is the key technology in the soilless culture. The quality of the water, which is used in these preparations, may affect the composition of solution and the effectiveness of some elements more or less, sometimes it can influence the crop growth severely, and in other words the water quality can determine the success of the soilless culture. The different water quality can sometime make the soilless crop to be performed mal-growth or reduce yields. The most of northern parts of China belong to the hard water areas, where the underground water quality is poor. Based on the analyzing the water quality, this study is to screen the solution formula which is based on the regional underground water, and is to provide the technical support for the soilless vegetable culture. The following are the main results:
     1. After analyzing the water samples, which were taken from the well with different depth in the greenhouse fields from Zhongwei City, Wuzhong City, Qingtongxia City, Yongning Couty, Yinchuan City, Helan Couty, and Pingluo Couty, which are along the Yellow River in Ningxia, the results showed that the quality of the most water taken from well in Yinchuan Plain is not suitable for the soilless culture, because the pH, total salt, HCO_3~-,Ca~(2+),Mg~(2+),Na~+,Cl~-,SO_4~(2-) are too high to be suitable for the soilless culture. In order to develop the industry of soilless culture, the formula of the solution should be studied and screened.
     2. The plants absorb element of Na~+ and Cl~- in a very fewer level, but the high concentration of Na~+ and Cl~- in the original water can make the salt accumulation in the solution or media. The high content of Na~+ and Cl~- in the underground water in Yinchuan Plain is regarded as an indicator of poor water quality. Though there is little inhibition to Brassica rapa L. Chinensis Group in nutrient solution by rainwater which is added NaCl by 500 mg/L (the concentration of Na~+ is about 200 mg/L), the inhibition is minor, and B. rapa can be cultured by Hydroponics. It indicates that leaf vegetables can be planted by Hydroponics in Yinchuan Plain.
     3. Under the suitable acid condition, no Ca~(2+) and Mg~(2+) added nutrient solution can fulfill the needs of plants, and no significant shortage symptoms is performed. All this indicated that Ca~(2+) and Mg~(2+) in the original water can be utilized adequately under regulating acid condition, so when the nutrient solution is prepared, Ca~(2+) and Mg~(2+) may not need to be added in according to the their content in the original water.
     4. In the experiments of Hydroponics at different pH, the result showed that, B. rapa grows better at pH 6.5 ~ 5.5 than at pH 7.5 ~ 8.5 in the following indexes: the morphological index, water absorption rate, pH, EC, the values of nutrients in shoot and root, inorganic nutrient uptake rate. In other words, the solution pH at 7.5~8.5 is not suitable for the growth of Chinese cabbage, and the pH 6.5~5.5 is suitable. Considering the cost, the pH in the solution in Yinchuan area can be adjusted to 6.5, and Nitrate acid or phosphate acid should be used to adjust pH, because the content of SO_4~(2-) is high enough in the original water.
     5. By means of quadratic general rotational design under the conditions of Deep Follow Technique, the concentrations of NO_3~-N, P, K and Ca in the formula of solution for B. rapa L. Chinensis, Ipomoea aquatica Forskwas studied comprehensively.
     (1) The regression model demonstrated the relationships between yield factor (Y) and four element factors the concentrations of N, P, K, Ca(X_1, X_2, X_3, X_4)were established. The each crop model is as following: YBrassica rapa=141.42857 + 10.55542X_1 + 6.40792X_2 + 8.05042X_3 - 7.95996X_1~2 - 9.66621X_2~2 -4.55246X_3~2 -4.69121X_4~2+5.91688X_1X_4 YIpomoea aquatica= 89.86543 + 9.23667X_1 + 3.08000X_2 + 5.55083X_3 -5.44907X_1~2- 8.84032X_2~2 -4.03407X_3~2+2.46218X_4~2+3.79500X_1X_3
     (2) Analysis result showed that: the effects of four factors on the yield of B. rapa, I. aquatica. increased by degrees in series of nitric-nitrogen(NO_3~-N)>potassium (K) > phosphorus (P) > calcium (Ca).
     (3) By doing analysis for the model, we get the interaction between B. rapa’s N and Ca, I. aquatica’s N and K were significant; There is significant positive interaction between them in lower level and significant negative interaction between them in higher level.
     (4) By simulation with computer, the following fact are achieved: when the single plant yield of B. chinensis is 148.75 g, the optimal combination of these factors was that the concentrations of N, P, K and Ca should be 9.0 mmol/L, 0.5 mmol/L, 4.5 mmol/L, 3.0 mmol/L; when the single plant yield of I. aquatica is 108.81g, the optimal combination of these factors was that the concentrations of N, P, K and Ca should be 9.0 mmol/L, 0.5 mmol/L, 4.5 mmol/L, 0 mmol/L, For the content of Ca in the original water has been already 2 mmol/L, the optimum solution formula should be adjusted to be following when they are prepared: B. rapa, 9.0, 0.5, 4.5, 5.0 mmol/L;I. aquatica, 9.0, 0.5, 4.5, 2.0 mmol/L.
     (5) In the verification experiment of the model with B. rapa, I. aquatica, the optimum formula recommended from the model is all higher than the control in the following indexes: the growth vigor, root vigor, yield, quality and the content of total N, P, K, and the worst formula recommended from the model is all lower than the control. All these prove the model is accuracy and reliability.
     6. At the high content of NaCl (Na 21.7 mol/l ) the ratio of 6:2 for the NO_3~ー-N : NH_4~-N is the best in the 4 treatments (8:0, 7:1, 6:2 and 4:4) in the formula for hydroponics of B. rapa, it can significantly increase the growth and yield, dark the leaf color, and decrease the content of NO3– in the edible parts.
引文
别之龙,伊东正. 2002. Na2SO4和NaHCO3对生菜生长和无机成分的影响.农业工程学报(,8):265~268
    别之龙,徐加林,杨小峰. 2005.营养液浓度对水培生菜生长和硝酸盐积累的影响[J].农业工程学报,(12):109~112
    陈春宏,张耀栋. 1992.不同蔬菜铁营养差异性的研究[J].土壤通报,23(6):266~268
    陈贵林,高秀瑞. 2002.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响.中国农业科学,35(2):187~191
    陈艳丽. 2004.水培生菜有机态氮的营养效应及营养液管理技术研究[D] [博士学位论文].河南:河南农业大学:3~10
    常丽新.2000.不同浓度钾对金盏菊生长发育的影响.河北林果研究,Vol115No11:3~5
    柴晓芹. 1999.无土栽培及其发展趋势[J ].甘肃农业科技,(1) :4~5
    董晓英,李式军. 2003.采前营养液处理对水培小白菜硝酸盐积累的影响.植物营养与肥料学报,9(4):447~451
    杜永臣. 1991.无土栽培营养液中的N素及其调控.中国蔬菜,(2):52~55
    付连刚. 2005.叶菜类蔬菜的富铁机理及其影响因素的研究[J].山东农业大学学报,11(2):9~14
    范双喜. 2002.蔬菜无土栽培的主要生理障碍及对策[J].北方园艺,(3):20~22
    范双喜. 2003.不同营养液浓度对莴苣生长特性的影响.园艺学报,30(2):152~156
    范双喜,伊东正. 2002.钙素对叶用莴苣营养吸收和生长发育的影响.园艺学报,29(2):149~152
    范双喜,尹东正. 2002.营养液浓度对NFT栽培生菜生长发育的影响.华北农学报,17(2):92~96
    冯两蕊,杜慧玲,王日鑫. 2007.叶面喷施硒对生菜富硒量及产量与品质的影响.山西农业大学学报,27(3):291~294
    高俊凤. 2000.植物生理学实验技术.西安:世界图书出版公司:125~128
    郭世荣.2003.无土栽培学[M].北京:中国农业出版社:1~4
    郭世荣. 2000.营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响.园艺学报,27(2):141~142
    贺文爱. 2004.菜心低富集硝酸盐营养液配方的研究[D] [博士学位论文].广西:广西大学
    蒋卫杰. 2007.有机生态型无土栽培番茄营养生物与优化施肥研究[D] [博士学位论文].北京:中国农业科学院
    蒋卫杰,郑光华. 1995.无钙镁营养液配方在NFT栽培中的应用效果[J].中国蔬菜,(6):28
    林春华,黄亮华,张磷等.1998.缺氮,磷钾钙镁对芥蓝硝酸盐积累、硝酸还原酶和过氧化物酶活性的影响[J].华南农业大学学报,19(4):55~58.
    刘高琼,李式军. 1993.酰胺态氮对水培白菜产量和硝酸盐积累影响的季节性差异[J].南京农业大学学报,16(2):111~113
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社:186~191
    李福恒. 1999.无土栽培技术研究的历史、现状与进展[J].农业系统科学与综合研究,15(4):313~314
    李式军,汪季军. 1995.水培生菜耐铁品种筛选及其生理特性研究[J].园艺学报,22(2):147~152
    李永孝.1989.农业应用生物统计.山东;山东科学出版社:377~408
    李冠军,黄莹,杨永青,杜立丰,张世敏. 2010.无土栽培网纹甜瓜营养液配方的筛选.河南农业科学,(2):76~78
    刘士哲,罗健,罗庆云,阿布.. 1995.铁营养对水培荠菜和生菜生长及根系一些酶类特性的影响[J].华南农业大学学报,16(2):19~24
    刘士哲. 2001.现代实用无土栽培技术[M].北京:中国农业出版社:12~46
    刘淑娴,刘才字.1989.正交试验法筛选番茄无土栽培营养液配方的初步研究.安徽农业科学,(3):11~13
    连兆煌. 1994.无土栽培原理与技术.北京:中国农业出版社:1~20
    刘伟,刘增鑫,陈殿奎. 2000.高效益立柱式无土栽培技术[J ] .沈阳农业大学学报,(1) :137~139
    刘卫星,张耀鸿等. 2003.不同铁源水培小白菜产量品质影响的研究[J].山东农业大学学报,12(2):24~26
    刘增鑫. 1999.特种蔬菜无土栽培[M].北京:中国农业出版社:1~17
    刘增鑫. 1999.叶菜类蔬菜水培技术系列讲座(一)[J ].蔬菜:36~38
    刘藏宇等. 1982.主要作物营养失调症状图谱[M].北京:农业出版社:47~48
    刘永军,王景安等. 2002.不同供铁水平对鲜食小白菜生长的影响[J].河北职业技术师范学院学报,16(4):37~39
    刘文科,杨其长. 2010.设施无土栽培蔬菜硝酸盐含量的控制方法.北方园艺,(20):79~83
    刘世亮,化党领,介晓磊,雷广海,张弘韬,刘芳,朱金峰. 2010.不同铵态氮/硝态氮配比营养液对烟草矿质营养吸收与积累的影响.土壤通报,(12):1423~1427
    毛达如. 1994.植物营养研究方法[M].北京:中国农业人学出版社:22~26
    孟会生. 2005.蔬菜液培营养液研制与应用的研究[D] [博士学位论文].山西:山西农业大学
    孟会生,洪坚平. 2005.蔬菜液培营养液研制与应用的研究[J].山东农业大学学报,10(2):14~16
    马太和.1987.无土栽培的研究进展与应用[J].农业科技通讯,第十期:12~15
    苗欣,崔绍荣,苗香雯. 2000.工厂化养鳖—水培蔬菜综合生产系统中营养物质循环与气体交换[J ] . 农业工程学报,(2):83~86
    牟咏花,张德威. 1995.利用地下水进行生菜无土栽培的营养液配方研究[D] [博士学位论文].浙江:浙江省农科院园艺研究所:132~135
    缪应东. 2003.营养液膜栽培技术[J].安徽农业科学,31(6):1097~1098
    潘杰. 2003.水培生菜技术研究[D] [博士学位论文] .河南:河南农业大学
    邱雪峰. 2000.设施栽培中营养液成分的在线检测[J ] .农业工程学报,(1) :83~86
    寿伟林,徐志豪,陈杰等. 2004. FCH中双层根际湿毡对樱桃番茄生长发育的影响[J].浙江农业科学,(1):4~5
    施卫明. 1998.缺铁胁迫下植物根外介质pH值的变化及其影响因素[J].植物生理学通讯,(6):28~31
    孙世海,彭立新,卢兴霞,李慧,吴琼,张园园. 2010.营养液铵硝比对砂培韭菜生长及硝酸盐含量的影响.安徽农业科学,38(14):7223~7226
    田吉林,汪寅虎.2000.设施无土栽培基质的研究现状、存在问题与展望[J ].上海农业学报,16 (4) :87~92.
    陶正平,李梦玲.2001.提高氮素水平对水培小白菜生长及硝酸盐含量的影响.吉林农业大学学报,23(2):46~49
    王久兴,王子华. 2005.现代蔬菜无土栽培[M].北京:科学技术文献出版社
    王军芳. 2004.无土栽培营养液的配制与调节.中国农村小康科技,(10):9
    汪李平,李式军. 1995.不同氮素形态及配比对水培生菜铁营养的影响.安徽农业大学学报,22(3):266~271
    汪李平,刘淑娴. 1994.水培生菜铁素营养诊断的方法的研究.安徽农业科学,22(4):359~360
    王忠全.2002.运用回归最优设计确定夏白菜营养液配方.江西农业大学学报(自然科学版), 24(6):12~16
    王志伟,郭晓东,王平.2004.蔬菜无机质喷雾立体栽培技术[J].甘肃农业科技,(40):33~34
    魏晓明,张晓军. 1996.无土栽培营养液的配制及调控[J ],农业与技术:43~46
    徐坚,刘辉,陆宗杉,朱康.. 2001.番茄珍珠岩基质栽培营养液配方的筛选.浙江农业学报,13(4) :227~230,
    徐中儒. 1998.回归分析与实验设计[M].北京:中国农业出版社:146~150
    徐志豪,张德威.1994.改善水培作物根际氧气供给的原理和实践.浙江农业学报,6(1):44~48
    徐强,闫晓煜. 2009.生菜的无土栽培技术与管理.现代农业科学,(2):51~52
    肖小玲. 1999.生菜对无机养分吸收特性的研究[J].湖南农业大学学报,25(2):103~107
    邢禹贤.2002.新编无土栽培原理与技术[M].北京:中国农业出版社:1~11
    邢禹贤. 1997.世界无土栽培及发展趋势[J ].农业新技术新方法,(3) :2~17
    姚建武,艾绍英,柯玉诗,黄小红,凌德全.. 2001.叶菜不同氮源形态的水培研究[J].广州农业科学,(6):26~28
    杨世民、朱国利,刘熔山. 1996.生菜无土栽培营养液配方的优选.四川农业大学学报, 14(4):501~504, 540
    杨世民,朱果利,刘熔山. 1996.生菜无土栽培营养液配方的筛选.四川农业大学学报,14(4):501~504,540
    杨旭,邹志荣. 2003.蔬菜无土栽培营养液中的氮素及其调控.西北植物学报,23(9):1644~164
    张德威,钮根花,牟咏花,王汝祥. 1993.营养液膜栽培设施的研究.浙江农业大学学报,19(4):445~449
    张福墁. 2000.设施园艺学[M].北京:中国农业大学出版社:298~301
    张广楠. 2004.无土栽培技术研究的现状与发展前景[J].甘肃农业科技,(2):6~8
    张建新.2005.不同浓度园试营养液配方对生菜生长的影响.安徽农业科学,33(12):2302-2303,2317
    张树阁.2002.番茄营养液深液流无限生长型栽培管理模式与环境调控试验研究[D] [博士学位论文].北京:中国农业大学
    张志良. 2002.植物生理生化实验指导.北京:高等教育出版社:50~52
    张西露. 2006.我国无土栽培的现状与展望[J],蔬菜,(10):40~41
    郑光华. 1988.无土栽培的生产成本与发展前景[J].农业工程学报,(1):65~70
    郑光华、蒋卫杰、刘伟. 1996.我国北方地区水质与无土栽培系统的选择.中国蔬菜,(3):31~34
    北条雅章,伊東正. 1990. NFTイチゴ栽培における養水分吸収と生育,収量.千葉大園学報, 43:129~134
    北条雅章,滝沢紀美子,伊東正.1992.光の強さと窒素形態がNFTトマトの生育,収量,光合成産物の分配に及ぼす影響,千葉大園学報,45:45~50
    間藤徹. 1998.高等植物のナトリウム栄養.日本土壌料学雑誌,第60巻第3号:55~67
    日本施設園芸協会編. 2002.養液栽培の新マニュアル.東京:誠文堂新光社:148~182
    山崎肯哉. 1982.营养液栽培全编,博有社:1~20
    石田明,増井正夫,糠井谷明,小倉孝保.1978.キクの耐塩性.園学雑,47〔3〕:421-424
    石田明,増井正夫,糠井谷明,小倉孝保.1979.砂耕及び土耕におけるバラの耐塩性.園学雑,47(4):517-523
    松丸恒夫.1990.土壌集積 NaClがキュウリの生育および体内無機成分に及ぼす影響.施設栽培における作物の塩類障害に関する研究.第1報.千葉農試研報,31:19~26
    田附明夫.2001.水耕培養液へのNaCl添加がキュウリ果実の糖濃度に及ぼす影響.生物環境調節,39(4):281-288
    武川满夫. 1993.水耕栽培百科.富民协会:1~11
    下瀬昇.1964.トマトタバコの耐塩性について.作物の塩害生理に関する研究(第4報)日本土壌料学雑誌,3(3):143~147
    池田英男?大沢孝也.1983.水耕培養液中のNO3:NH4の濃度並びに比率がそ菜の生育,葉中N成分及び培養液のpHに及ぼす影響.園学雑, 52:159~166
    板東―宏?町田治幸.1992.トマトのロックウール栽培実用化技術の確立(第4報)循環方式における培養液組成が品質,収量に及ぼす影響,徳島農試研報,28,35~42
    但野利秋?田中明.1976.アンモニア態および硝酸態窒素適応性の作物種間差〔第1報〕日本土壌料学雑誌, 47(7):321~328
    池田英男?吉田好範?大沢孝也.1985.培養液中のNO3とNH4の比率および夜温がミツバ,シュンギク並びにネギの生育に及ぼす影響.園学雑, 54:58~65
    山崎肯哉?鈴木芳夫?篠原温.1976.そ菜の養液栽培(水耕)に関する研究,特に培養液管理とみかけの吸収濃度(n/w)に就いて.東教大農紀要,22:53~100
    塚越覚?伊東正?篠原温.1994.培養液濃度と培養液中NH4の比がイチゴの生育,収量および生理的特性の生育に及ぼす影響.生物環境調節, 32(1):61~66
    鄭顕福?伊東正.1994.昼間と培養液へのアンモニア態窒素添加が水耕栽培トウガラシの生育,収量に及ぼす影響.生物環境調節, 32(1):41~4
    岩崎泰永?三枝正彦.2001.培養液中のNO3-N /NH4―N比がやし?嵕Sを培地とする循環型養液栽培における培養液組成とトマトの成育?収量,に及ぼす影響.日本土壌料学雑誌, 7(2):214~222
    Adaim P.1991. Effect of inceaseaing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield、quality and composition of tomato growth in rockwool. [J].Hort Sci, 66(2):201~207
    Allen S. Raven J A.1987. Intracelluar pH regulation in Recinus Communis growth with ammonium of nitrate as N source.The role of long distance transport [J]. Exp. Bot, 38: 580~596
    Alloush G A, Le Bot J,Sander F E,Kirkby E A . 1990. Mineral nutrion of chickpea plants supplied with N03--N or NH4+-N. Ionic balance in relation to iron stress [J]. Plant Nutri.13 (12): 1575~1590.
    Argo W. R. and J. A Biernbaum. 1997. Lime, water, sources and fertilizer nitrogen form affect medium pH and nitriogen accumulation and uptake. Hortscience,32(1):71~74.
    Argo, W. R. and Biernbaum, J. 1997. A, The effect of root media on root-zone pH, calcium, and magnesium management in containers with impatiens. J. Amer. Soc.Hort.Sci., 122,275~284
    Bangerth F. 1979. Calcium-related physiological disorders of plants. Annu.Rev.Phyto-Path, 17: 97~122
    Bradfiend EG. Guttridge G.1984. Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Scientia Hortic,22:207~217
    Bruia H. 1991. Growth, photosynthesis and protein content in cucumber plants as affected by supplied nitrogen form. Journal of Plant Nutrition,14(4):363~373
    Celiae, Deane-Drummond & N, Chaffey.1985.Characteristics of nitrate uptake into seedlings of pea(Pisum sativum L. cv. Feltham First) Changes in net NO- uptake following inoculation with Rhizobium and growth in low nitrate concentrations. Plant, Cell and Environment 8:517~523
    Charaf,AR, Hobson GE.1986. Effect of salinity on the yield and quality of normal and non-ripening mutant tomatoes. Acta.Hort, 190:175~181
    C. Thys, P. Vanthomme, E. Schrevens & M. De Proft. 1997. Interactions of Cd with Zn, Cu, Mn and Fe for lettuce {Lactuca sativa L.) in hydroponic culture. Plant, Cett and Environmetit, 14: 713~717
    C. Tang, J.J. Drevon, B. Jaillard, G. Souche1 & P. Hinsinger.2004.Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutritin and P deficiency. Plant and Soil, 260: 59~68, 59
    D. Savvas, V. Karagianni1, A. Kotsiras, V. Demopoulos, I. Karkamisi1 & P. Pakou1. 2003. Interactions between ammonium and pH of the nutrient solution supplied to gerbera (Gerbera jamesonii) grown in pumice. Plant and Soil, 254: 393~402
    Ehret, DL. Hol C. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grow in nutrient film culture. [J].HortScience,61:361~366
    Ehret, DL, Hol C.1986. Translocation of calcium in relation to tomato fruit growth. Ann.Bot ,58:679~688
    Gunes A,et al. 1996. Reducing nitrate of NFT grown winter onion plant by partial replacement of NO3- with amino acid in nutrient solution. Scientia Horticulturae,(65):203~208.
    H, Pump. 2005. Effect on the sensitivity to pH and cos of iron reduction by Brasscia napus L. [J]. Plant,186:212~218
    J. Buysse & R. Merckx.1995. Diurnal variations in growth rate and growth substrate levels of spinach {Spinacia oleracea L.) under nitrogen-limiting conditions. Ptant, Cell and Environment, 18:1419~1425
    Jian Wu, Henk Schat, Rifei Sun, Maarten Koornneef, Xiaowu Wang, Mark G. M. Aarts. 2007.
    Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil, 291:167~180 DOI 10.1007/s11104-006-9184-2
    Korcak R. F. 1988. Iron deficiency chlorosis [J]. Horn. Rev,9:133~184.
    Kio Tazuke.1997. Growth of cucumber fruit as affected by the addition of NaCl to nutrient solution. J. Japan. Soc. Hort.sci., 66(3?4) :519~526
    Lsrael D W,Isckson W A . 1978. The influence of nitrogen on ion uptake and translocation in leguminous plants. In: Mineral Nutrition,Eds. C. S. and rew and E. J. Kam prath,C.S.I·R [M]. Melburne, Australia:113~129
    Marschner H, Kalisch A, Romheld V,Kissel M. 1986. Different strategies in higher plants mobilization and uptake of iron[J] Plant Nutri,9:695~713
    R. Huang and J. C. Tu. 2001. Effects of nutrient solution pH on the survival andtransmission of Clavibacter michiganensis ssp. michiganensis in hydroponically grown tomatoes. Plant Pathology,50: 503~508
    Shear.CB. 1975. Calcium-related disorder of fruits and vegetables. Hortscience, 10:361~365
    Sigifredo Castro, Lawrence C Davis, Larry E Erickson. 2004. Temperature and pH Effects on Plant Uptake of Benzotriazoles by Sunflowers in Hydroponic Culture. International Journal of Phytoremediation, 6, 3, Academic Research Librar:209
    Tanimu, B. J. Y. Yayock and C. M. Ado.1991. Effect of nitrogen, phosphorus and potassium on the performance of sunflower (Helianthus annuuls L.) [J].Crop Res. 4:1~10
    Von den Driessehe R. 1978. Response of Douglas firseedlings to nitrate and ammonium nitrogen sources atdifferent levels of pH and iron supply[J].Plant Soi1, 49: 607~623
    Van J, et al. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration of NH4/ NO3 ratio. Horticultural Science, 65 (3):309~321
    Zhang F, Liu B. 1991. Effect of nitrogen forms on growth and development of cucumber. Sweet pepper and tomato in soilless culture. In proceeding of international symposium on applied technology of greenhouse Beijing,China 7~10
    Imsande,J. 1986. Nitrate-ammonium ratio required for pH homeostasis in hydroponically grown soybean. J. Exp. Bot. 37:341~347
    Pill, W. G. and V. N. Lambetii. 1977. Effects of NH4 and NO3 nutrition with and without pH adjustment on tomato growth,ion composition, and water relation. J. Am. Soc. Hortic. Sci. 100:78~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700