云南几种特殊生境中深色有隔内生真菌(DSE)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深色有隔真菌(Dark septate endophytes, DSE)是一类在分类学上多样的、广泛存在于在植物根内并形成深色有隔菌丝的的子囊真菌。DSE极为广泛的生态分布和类似菌根的潜在生态学功能,特别是在不利于菌根发育的胁迫环境中的积极作用,使其在生态修复和保护、植被恢复和重建以及生物防治等多个领域具有潜在的应用价值。本研究以云南西双版纳热带雨林、金沙江干热河谷中河谷型萨瓦纳植被区(元谋、东川普渡河-小江河谷)和重金属污染的铅锌矿区(兰坪-会泽矿区)三类特殊生境中植物根内的DSE为研究对象,对DSE在植物根内的定殖状况进行了调查。在此基础上,进一步从西双版纳热带雨林和重金属污染的铅锌矿区植物根内分离和培养DSE菌株;采用分子生物学方法结合传统形态学分类方法,对分离菌株ITS1-5.8S-ITS2区DNA序列进行扩增测序,通过诱导产孢观察其产孢结构和孢子形态学特征,对分离菌株进行分类学鉴定;在纯培养条件下,以含有不同浓度重金属离子的固体培养基对重金属污染的铅锌矿区来源的菌株进行抗性筛选,初探其对重金属的抗性。研究得到以下结果:
     1.通过对云南西双版纳热带雨林,金沙江干热河谷中河谷型萨瓦纳植被区以及重金属污染的铅锌矿区不同生态环境中,DSE在80科256种植物,共575个植物根样的定殖情况的调查发现,DSE普遍存在于这几种生态系统的植物根内。三种类型样地内植物DSE感染率分别为98.8%、95.0%、89.2%。其中,菌丝平均感染程度分别为9.7±0.9%、14.4±1.4%、6.7±0.7%;微菌核感染程度分别为0.4±0.1%、1.4±0.3%、0.8±0.2%。三类样地植物物种总感染率为93.0%,样本总感染率为80.5%,菌丝平均感染程度为10.9±1.6%,微菌核平均感染程度为1.0±0.3%。DSE在植物根内所呈现的形态也呈现出典型性、多样性的特征。
     2.通过分子生物学结合形态学方法对分离培养自根内的DSE菌株进行的分类鉴定表明,所分离的菌株涵盖多个种属,包括已经被广泛公认为DSE类群的Exophila、Phialophora,以及尚未被列入DSE范畴的子囊菌。分子鉴定显示分离自西双版纳热带雨林植物根样中的菌株以Colletotrichum、Ochroconis、 Phoma为主,而分离自会泽矿区植物根样中的菌株以Exophila和Phialophora为主,兰坪矿区植物根样中的分离菌株则以Phialophora和Lophiostoma为主。形态学研究支持了Exophila和Phialophora的分类地位,其它菌株的分类地位有待确认。Exophila、Phialophora真菌成为重金属污染的铅锌矿区根内DSE的优势类群。
     3.通过对重金属污染的铅锌矿区来源的真菌菌株的抗性筛选,以半抑制浓度EC50值表征菌株的重金属抗性的强弱,得到对Pb、Zn、Cd三种重金属具有较强抗性的菌株。抗性筛选实验显示,除Cd敏感菌株外,矿区分离得到的菌株都对Pb、Zn、Cd三种重金属具有一定的抗性。分离自会泽矿区的Exophiala菌株对三种重金属具有普遍的抗性,以对Pb和Cd的抗性尤为突出,该属真菌菌株对Pb、Zn、Cd的EC5o的平均值分别为1037.7±177.1mg/L、914.1±165.8mg/L245.6+66.9mg/L;会泽来源的Phialophora真菌菌株也显示出较强的Pb抗性,该属真菌菌株对Pb的EC50的平均值为1043.9±60.7mg/L;分离自会泽矿区的一类产小孢子的,在分子鉴定中显示与Exophiala有密切关系的菌株(类型H5)则能够耐受高浓度的Pb、Zn、Cd,此类菌株对Zn的耐受力更是远远超出其它菌株。该类型真菌菌株对Pb、Zn、Cd的EC50的平均值分别为1068.5±344.1mg/L、2285.7±1262.4mg/L、138.6±95.9mg/L。而分离自兰坪矿区的菌株中,Phialophora真菌菌株对Pb、Zn、Cd三种重金属的抗性处于中间水平,菌株对Pb、Zn、Cd的EC50的平均值分别为773.9±37.8mg/L、248.8±23.6mg/L、24.1±1.7mg/L;兰坪的一类产小孢子(类型L2)真菌菌株显示出对三种重金属较强的抗性,尤其是对Pb的抗性,此类真菌菌株对Pb的EC50的平均值为1478.1±329.9mg/L;兰坪的另一类产棒状孢子的,在分子鉴定中显示与Ployscytalum有亲缘关系的(类型L3)真菌菌株显示出很强的Zn和Cd抗性,此类菌株对Zn和Cd的EC50的平均值分别为1138.7.1±91.6mg/L和256.4±90.4mg/L;而兰坪的非产孢(类型L4)真菌菌株则具有较强Cd抗性,对Cd的EC50的平均值为233.2±174.4mg/L。对Exophiala和Phialophora真菌代表菌株重金属胁迫下的形态变化的研究提示了两种真菌可能以不同的机制抵抗重金属的毒害。
     上述研究结果表明:DSE普遍定殖于西双版纳热带雨林,金沙江干热河谷河谷型萨瓦纳植被区以及重金属污染的铅锌矿区三种特殊生境中植物根内;对分离菌株的分子鉴定表明,热带雨林植物根上定殖的DSE以Colletotrichum、 Ochroconis和Phoma为主,而分离自会泽矿区植物根样中的菌株以Exophila和Phialophora为主,兰坪矿区植物根样中的分离菌株则以Phialophora和Lophiostoma为主:重金属矿区来源的DSE重金属抗性研究表明,大部分菌株对Pb、Zn、Cd都具有一定的抗性,其中不乏高抗菌株。论文对云南三种特殊环境中的DSE资源进行了普查和收集,分离保存了来自上述三种特殊生态环境中的DSE菌株,并对其分类学地位进行了初步的鉴定,为开展DSE在上述三类特殊生境中的生态学功能研究打下了基础;与此同时,本研究从重金属污染的铅锌矿区来源的DSE菌株中初步筛选得到了一批对Pb、Zn、Cd具有一定抗性的DSE菌株,为从重金属污染区的DSE中发掘抗性基因提供了菌种保障。
Dark septate endophytes (DSE) are a miscellaneous group of root-associated ascomycetes with dark septate hyphae which widely exsit in the plant roots. Their omnipresent distribution and potential ecological functions similar as mycorrhizae, especially their positive roles in stressful environment unfravorable for mycorrhizae, make them to be valuable for the ecological remediation and conservation, the vegetational recovery and reconstruction as well as the biological control etc. In order to study the resources of DSE in the tropical rainforest of Xishaungbanna, the dry-hot valley-type savanna of Jinsha River (Yuanmou, valleys of Pudu River-Xiao River in Dongchuan) and the metal-polluted areas (mining areas of Huize and Lanping) inYunnan, southwest China, we investigated the colonization status of DSE in plant roots in these areas. DSE isoaltes were obtained from the plant roots in the tropical rainforest and the metal-polluted areas. According to the molecular and the traditional morphological classification and identification, the sequences of ITS1-5.8S-ITS2rDNA of fungal isolates were analyzed and the morphologic characters of fungal isolates were observed. Their taxonomic affinity was affirmed. The resistance to heavy metals of some fungal isolates was determined by the resistance screening which was carried out on solid medium with metals of different concentrations. The main results were as follows:
     1. Totally575plant root samples, representing256plant species and80plant families were investigated in the tropical rainforest of Xishuangbanna, the dry-hot valley-type savanna of Jinsha River and the metal-polluted area in Yunnan. It was found that DSE were ubiquitous in the root samples. The colonization frequency of plant species in the three ecosystems were98.8%,95.0%,89.2%respectively, and the colonization frequency of plant samples were87.9%,70.5%,83.4%respectively. The colonization extent of DSE hyphae in plant roots of each ecosystem were9.7±0.9%,14.4±1.4%.6.7±0.7%respectively, while the colonization extent of DSE microsclerotia in plant roots of each ecosystem were0.4±0.1%,1.4±0.3%,0.8±0.2%respectively. The total colonization frequency in all the sampling sites was80.5%, and the average colonization extent of hyphae was10.9±1.6%, the average colonization extent of microsclerotia was1.0±0.3%. The morphology of DSE presented in the plant roots was typical and diverse.
     2. According to molecular and morphological evidence, DSE strains isolated from plant roots were composed of a variety of genus, including the well-known DSE groups, such as Exophiala and Phialophora, as well as ascomycetes which were not included in the range of DSE yet. It was shown by the molecular identification that fungal stains isoalted from plant roots in the tropical rainforest of Xishuangbanna mainly belonged to Colletotrichum, Ochroconis and Phoma, while the majority of fungal stains isolated from plant roots in the mining areas of Huize were falled in the genera of Exophaila and Phialophora, and fungal strains closely related with Phialophora and Lophiostoma were dominant in the mining areas of Lanping. The taxonomic affinity to Exophiala and Phialophora of fungal strains was supported by morphologic identification, but taxonomic affinity of other fungal strains was still to be determined. Fungal strains of Exophiala and Phialophora were dominant in the metal-polluted area.
     3. Fungal isolates with better resistance to heavy metals Pb, Zn and Cd were obtained according to the resistance screening and the value of the half maximal effective concentration (EC50) was calculated to show their metal resistance. It was indicated that, except for the isolates susceptible for Cd, all the experimental isolates were resistant to Pb, Zn and Cd. Exophiala isolates from Huize were generally resistant to the metals and were specially resistant to Pb and Cd. The average EC50value of Exophiala isolates for Pb, Zn and Cd was1037.7±177.1mg/L,914.1±165.8mg/L and245.6±66.9mg/L respectively. Phialophora isolates were noticed for their intensive resistance to Pb. The average EC50value for Pb of Phialophora isolates from Huize was1043.9±60.7mg/L. A group of isolates with microspores and phylogenetically related with Exophiala (H5) from Huize were resistant to excessive Pb, Zn and Cd and their resistant ability to Zn was far more notable than other isolates. Their average EC50value for Pb. Zn and Cd were1068.5±344.1mg/L,2285.7±1262.4mg/L and138.6±95.9mg/L respectively. Among the fungal strains isolated from root samples in mining areas of Lanping, resistant ability to Pb, Zn and Cd of Phialophora isolates was medius, their average EC50value for Pb, Zn and Cd were773.9±37.8mg/L,248.8±23.6mg/L and24.1±1.7mg/L respectively. Fugal group L2with microspores from Lanping showed strong resistance to metals Pb, Zn and Cd, especially to Pb, their average EC50value for Pb was1478.1±329.9mg/L. And fugal group L3with claviform spores and phylogenetically related with Ployscytalum from Lanping were noticeable for their resistance to Zn and Cd, the average EC50value for Zn and Cd was1138.7.1±91.6mg/L and256.4±90.4mg/L. Meanwhile the non-sporulating fungal isolates of group L4from Lanping showed apparent resistance to Cd, their average EC50value for Cd was233.2±174.4mg/L. Morphological variation of representative isolates of Exophiala and Phialophora in metalliferous medium implied their different mechanism of metal resistance.
     The results of the thesis indicated that:DSE were ubiquitous in the plant roots in the tropical rainforest of Xishuangbanna, the dry-hot valley-type savanna of Jinsha River and the metal-polluted area in Yunnan province; The molecular identification indicated that fungal stains isoalted from plant roots in the tropical rainforest of Xishuangbanna mainly belonged to Colletotrichum, Ochroconis and Phoma, while fungal stains isoalted from plant roots in the mining areas of Huize were consider to be mainly Exophaila and Phialophora, and fungal stains isoalted from plant roots in the mining areas of Lanping were mainly Lophiostoma and Phialophora; Metal resistance research of fungal isolates from metal-polluted area showed that most of the fungal isolates were resistant to Pb, Zn and Cd, some of which were highly resistant. Our research carried out the resource investigation of DSE and collection of DSE strains in the special ecosystems, which provided a foundation for the research of ecological functions of DSE in these ecosystems. Moreover, a group of metal resistant strains were selected from fungal isolates from metal-polluted areas, which supplied fungal strains for the seek of resistant genes.
引文
Addy HD, Hambleton S and Currah RS.2000. Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol Res 104:1213-1221.
    Addy HD, Pieredy MM and Currah RS.2005. Microfungal endophytes in roots. Can J Bot 83: 1-13.
    Ahlich K, Rigling D, Holdenrieder O and Sieber TN.1998. Dark septate hyphomycetes in Swiss conifer forest soils surveyed using Norway-spruce seedlings as bait. Soil Biol Biochem 30: 1069-1075.
    Ahlich K and Sieber TN.1996. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259-270.
    Alberton O, Kuyper TW and Summerbell RC.2010. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328:459-470.
    Arenz BE, Held BW, Jurgens JA, Farrell RL and Blanchette RA.2006. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057-3064.
    Arnold AE, Maynard Z and Gilbert GS.2001. Fungal endophytes in dicotyledonous neotropical trees:patterns of abundance and diversity. Mycol Res 105:1502-1507.
    Arnold AE.2007. Understanding the diversity of foliar endophytic fungi:progress, challenges, and frontiers. Fungal Biology Reviews 21:51-66.
    Bagyalakshmi G, Muthukumar T, Sathiyadash K and Muniappan V.2010. Mycorrhizal and dark septate fungal associations in shola speciesof Western Ghats, southern India. Mycoscience 51:44-52.
    Barnet HL and Hunter BB.1972. Illustrated genera of imperfect fungi (3rd edition). Minnesota, USA:Burgess Publishing Company.
    Barrow JR.2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239-247.
    Barrow JR and Osuna P.2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449-459.
    Barrow JR and Aaltonen RE.2001. Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199-205.
    Barrow JR., Osuna-Avila P and Reyes-Vera I.2004. Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda torr. and Atriplex canescens (Pursh) Nutt. In Vitro Cell Dev-Pl40:608-612.
    Bashan Y and de-Bashan LE.2010. Microbial populations of arid lands and their potential for restoration of deserts. In:Dion P (ed). Soil Biology and Agriculture in the Tropics, Soil Biol 21:109-137. Berlin Heidelberg:Springer-Verlag.
    Beauchamp VB, Stromberg JC and Stutz JC.2005. Interactions between Tamarix ramosissima (saltcedar). Populus fremontil (cottonwood), and mycorrhizal fungi:Effects on seedling growth and plant species coexistence. Plant Soil 275:221-231.
    Berch SM and Kendrick B.1982. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 14:169-716.
    Blaszak M and Plewako M.2008. Resistance of soil fungi to copper contamination. Pol J Natur Sci 23:635-644.
    Bois G, Piche Y, Fung MYP and Khasa DP.2005. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149-158.
    Bougoure DS and Cairney JWG.2005. Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest evealed by culturing and culture-independent molecular methods. Environ Microbiol 1:1743-1754.
    Brenn N, Menkis A, Griinig CR, Sieber TN and Holdenrieder O.2008. Community structure of Phialocephala fortinii s. lat. in European tree nurseries, and assessment of the potential of the seedlings as dissemination vehicles. Mycol Res 112:650-662.
    Brunner K, Zeilinger S and Mach RL.2007. Molecular approaches for studying fungi in the environment. In:Kubicek CP and Druzhinina IS (eds). Environmental and Microbial Relationships (2nd edition), The Mycota IV:17-28. Berlin Heidelberg:Springer-Verlag.
    Butler MJ and Day AW.1998. Fungal melanins:a review. Can J Microbiol 44:1115-1136.
    Cazares Efren, Trappe JM and Jumpponen A.2005. Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405-416.
    Chambers SM, Curlevski NJA and Cairney JWG.2008. Ericoidmycorrhizal fungi are common root inhabitants of non-Ericaceae plants ina south-easternAustralian sclerophyll forest. FEMS Microbiol Ecol:1-8.
    Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova Martina and Zeglin Lydia H.2008. Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96: 413-420.
    Colpaert JV, Wevers JH.L, Krznaric E and Adriaensen K.2011. How metal-tolerant ecorypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann Forest Sci 68:17-24.
    Currah RS and Van Dyk M.1986. A survey of some perennial vascular plant species native to Alberta for occurrence of mycorrhizal fungi. Can Field Nat 100:330-342.
    D'Amico M, Frisullo S and Cirulli M.2008. Endophytic fungi occurring in fennel, lettuce, chicory and celery d commercial crops in southern Italy. Mycol Res 112:100-107.
    Doty SL.2008. Enhancing phytoremedeiation through the use of transgenics and endophytes. New Phytol 179:318-333.
    Ezzouhri L, Castro E, Moya M, Espinola F and Lairini K.2009. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 2: 35-48.
    Fisher PJ, Sutton BC, Pctrini LE and Pctrini O.1994. Fungal endophytes from Opuntia stricta:a first report. Nova Hedwigia 59:195-200.
    Fracchia S, Aranda A. Gopar A, Silvani V, Fernandez L and Godeas A.2009. Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina. Mycorrhiza 19:205-214.
    Fracchia S, Krapovickas L. Aranda-Rickert A, Valentinuzzi VS.2011. Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75:1016-1023.
    Frenot Y. Bergstrom DM, Gloaguen JC, Tavenard R and Strullu DG.2005. The first record of mycorrhizae on sub-Antarctic Heard Island:a preliminary examination. Antarctic Sci 17:205-210.
    Fuchs B and Haselwandter K.2004. Red list plants:colonization by arbuscular mycorrhizal fungiand dark septate endophytes. Mycorrhiza 14:277-281.
    Gadd GM.2007. Fungi and Industrial Pollutants. In:Kubicek CP and Druzhinina IS (eds). Environmental and Microbial Relationships (2nd edition), The Mycota IV:61-84. Berlin Heidelberg:Springer-Verlag.
    Girlanda M, Ghignone S and Luppi AM.2002. Diversity of sterile root-associated fungi of two Mediterranean plants. New Phytol 155:481-498.
    Girlanda M and Perotto S.2005. A century of rhizosphere research:fungal interactions with plant's hidden half. Mycol Res:1058-1061.
    Girlanda M, Perotto S and Luppi AM.2006. Molecular diversity and ecological roles of mycorrhiza-associated sterile fungal endophytes in mediterranean ecosystems. Soil Biol 9: 207-226.
    Gonzaez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C and Peterson RL.2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can JMicobiol 54:103-110.
    Grippa CR, Hoeltgebaum MP and Sturmer SL.2007. Occurrence of arbuscular mycorrhizal fungi in bromeliad species from the tropical Atlantic forest biome in Brazil. Mycorrhiza 17:235-240.
    Griinig CR.2003. Population biology of the tree-root endophyte Phialocephala fortinii,.2003. PhD desertation. Switzerland:Swiss Federal Istitute of Technology Zurich.
    Grunig CR, Brunner PC, Duo A and Sieber TN.2007. Suitability of methods for species recognition in the Phialocephala fortinii-Acephala applanata species complex using DNA analysis. Fungal Genet Biol 44:773-788.
    Grunig CR, McDonald BA, Sieber TN, Rogers SO and Holdenriedera O.2004. Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41:676-687.
    Grunig CR, Queloz V, Duo A and Sieber TN.2009. Phylogeny of Phaeomollisia piceae gen. sp. nov.:a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res 113:207-221.
    Grunig CR., Sieber TN and Holdenrieder O.2001. Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) ampliation. Mycol Res 105:24-32.
    Grunig CR, Sieber TN, Rogers SO and Holdenrieder O.2002a. Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Can JBot 80:1239-1249.
    Grunig CR, Sieber TN, Rogers SO and Holdenrieder O.2002b Menkis.Spatial distribution of dark septate endophytes in a confined forest plot. Mycol Res 106:832-840.
    Hambleton S and Currah RS.1997. Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570-1581.
    Harney SK, Rogers SO and Wang CJK.1997. Molecular characterization of dematiaceous root endophytes. Mycol Res 101:1397-1404.
    Haselwandter K and Read DJ.1982. The Significance of a root-fungus association in two Carex Species of High-Alpine Plant Communities. Oecologia (Berl) 53:352-354.
    Hashiba T and Narisawa K.2005. The development and endophytic nature of the fungus Heteroconium chaetospira. FEMS Microbiol Lett 252:191-196.
    Hashimoto Y and Hyakumachi M.2001. Effects of isolates of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens that were dominant in soil from disturbed sites on growth of Brtula platyphylla var. japonica seedlings. Ecol Res 16:117-125.
    Horton TR, Cazares Efren and Bruns TD.1998. Ectomycorrhizal vesicular-arbuscular and dark septate fungal colonization of bishop pine (Finns muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11-18.
    Iqbal M, Jabeen R and Ahmad A.2009. Phytoremediation of Heavy Metals:Physiological and Molecular Mechanisms. Bot Rev 75:339-364.
    Iram Shazia, Ahmad Iftikhar and Stuben Doris.2009. Analysis of mines and contaminated agricultural soil samples for fungal diversity and tolerance to heavy metals. Pak J Bot 41: 885-895.
    Jin ZZ and Ou XK.1997. The diversity feature of the floristic elements in the tropical rain forest of Xishuangbanna, Yunnan. Acta Botanica Yunnnanica (Suppl.IX):1-30.
    Jin ZZ and Ou XK.2000. Yuanjiang. Nujiang, Jinshajiang, Langcangjiang vegetation of dry-hot valley. China:Yunnan University Press, Yunnan Science and Technology Press.
    de Marins JF, Carrenho R and Thomaz SM.2009. Occurrence and coexistence of arbuscular mycorrhizal fungi and dark septate fungi in aquatic macrophytes in a tropical river-floodplain system. Aquat Bot 91:13-19.
    Jumpponen A.2001. Dark septate endophytes-are they mycorrhizal.Mycorrhiza 11:207-211.
    Jumpponen A, Mattson KG and Trappe JM.1998. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil:interactions with soil nitrogen and organic matter. Mycorrhiza 7:261-265.
    Jumpponen A and Trapper JM.1998a. Performance of Pinus contorta inoculated eith two strains of root endophytic fungus, Phialocephala fortinii:effects pf synthesis system and glucose concentration. Can J Bot 76:1205-1213.
    Jumpponen A and Trappe JM.1998b. Dark septate endophytes:a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295-310.
    Kageyama SA, Mandyam KG, and Jumpponen A.2008. Diversity, function and potential applications of the root-associated endophytes. In:Varma A (ed). Mycorrhiza:29-57. Berlin Heidelberg:Springer-Verlag.
    Kamal S, Prasad R and Varma A.2010. Soil microbial diversity in relation to heavy metals. In: Sherameti I and Varma A (eds). Soil Heavy Metals, Soil Biol 19:31-63. Berlin Heidelberg: Springer-Verlag.
    Kandalepas D, Stevens KJ, Shaffer GP and Platt WJ.2010. How Abundant are Root-Colonizing Fungi in Southeastern Louisiana's Degraded Marshes? Wetlands 30:189-199.
    Kapoor R, Sharma D and Bhatnagar AK.2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic-Amsterdam 116:227-239.
    Korhonen J, Kytoviita MM and Siikamaki P.2004. Are resources allocated different to symbiosis and reproduction in Geranium sylvaticum under different light conditions. Can J Bot.82:89-95.
    Kumar S, Nei M Dudley J and Tamura K.2008. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299-306.
    Kwasna H, Bateman GL and Ward E.2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Appl Soil Ecol 40:44-56.
    Likar M. Dark septate endophytes and mycorrhizal fungi of trees affected by pollution.2011. In: Pirttiland AM and Frank AC (eds). Endophytes of Forest Trees:Biologyand Applications, Forestry Sci 80:189-201.
    Lodge DJ.1997. Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv 6:681-688.
    Lucero ME, Barrow JR, Osuna P and Reyes 1.2006. Plant-fungal interactions in arid and semi-arid ecosystems:Large-scale impacts from microscale processes. J Arid Environ 65:276-284.
    Lucero M, Barrow JR, Osuna P and Reyes I.2008. A cryptic microbial community persists within micropropagated Bouteloua eriopoda (Torr.) Torr. cultures. Plant Sci 174:570-575.
    Lugo MA, Molina MG, and Crespo EM.2009. Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment. Symbiosis 47:17-21.
    Mack K.ML and Rudgers JA.2008. Balancing multiple mutualists:asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310-320.
    Malosso E, Waite IS, English L, Hopkins DW and O'Donnellnthony G.2006. Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552-561.
    Mandyam K and Jumpponen A.2005a. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173-189.
    Mandyam K and Jumpponen A.2005b. Diversity and function of fungal endophytes of a tallgrass prairie. Proceedings of the Annual Meeting of the Mycological Society of Japan 49:156.
    Mandyam K.2008. Dark septate fungal endophytes from a tallgrass prairie and their continuum of interactions with host plants. PhD Dissertation. USA:Kansas State University.
    Mandyam K and Jumpponen A.2008. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145-155.
    Martino E, Coisson JD, Lacourt I, Favaron F, Bonfante P and Perotto S.2000. Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi. Mycol Res 104:825-833.
    McGonigle TP, Miller MH, Evans DG, Fairchild GL and Swan JA.1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. NewPhytol 115:495-501.
    Medina-Roldan E, Arredondo JT, Huber-Sannwald E, Chapa-Vargas L and Olalde-Portuga V. 2008. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. J Arid Environ 72:546-556.
    Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J and Finlay R.2004. Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965-973.
    Menoyo E. Becerra AG and Renison D.2007. Mycorrhizal associations in Polylepis woodlands of Central Argentina. Can J Bot 85:526-531.
    Miller RM, Smith CI, Jastrow JD and Bever JD.1999. Mycorrhizal status of the genus Cares (Cyperacese). Am J Bot 86:547-553.
    Mishra A, Pradhan N, Kar RN, Sukla LB and Mishra BK.2009. Microbial recovery of uranium using native fungal strains. Hydrometallurgy 95:175-177.
    Muthukumar T, Senthilkumar M, Rajangam M and Udaiyan K.2006. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11-24.
    Muthukumar T and Vediyappan S.2010. Comparison of arbuscular mycorrhizal and dark septate endophyte fungal associations in soils irrigated with pulp and paper mill effluent and well-water. Eur J Soil Biol 46:157-167.
    Narisawa K, Hambleton S and Currah RS.2007. Heleroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience 48:274-281.
    Newsham KK.1999. Phialophora graminicola, a dark septate fungus is a beneficial associate of the grass Vulpia ciliata spp. ambigua. New Phytol 144:517-524.
    Newsham KK.2011. A meta-analysis of plant responses to dark septate root endophytes. New Phyto 190:783-793.
    Newsham KK, Upson R and Read DJ.2009. Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10-20.
    Oberkofler I and Peintner U.2008. Detection of soil fungal communities in an alpine primary successional habitat:Does pooling of DNA extracts affect investigations? Ann Microbiol 58:585-595.
    Olsson PA, Eriksen B and Dahlberg A.2004. Colonization by arbuscular mycorrhizal and fine endophytic fungi in herbaceous vegetation in the Canadian High Arvtic. Can J Bot 82: 1547-1556.
    Page RDM,1996. Treeview:an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358.
    Paraszkiewicz K, Frycie A, Slaba M and Dlugonski J.2007. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals 20:797-805.
    Peterson RL, Wagg C and Pautler M.2008. Association between microfungal endophytes and roots:do structure features indicate functions? Botany 86:445-456.
    Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T and Natvig Donald O.2008. Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microb 74:2805-2813.
    Postma JWM, Olsson PA and Falkengren-Grerup U.2007. Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol Biochem 39:400-408.
    Rains KC, Nadkarni NM and Bledsoe CS.2003. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257-264.
    Raspanti E, Cacciola SO, Gotor C, Romero LC and Garcia I.2009. Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere 76:48-54.
    Read DJ and Haselwandter K.1981. Observations on the mycorrhizal status of some Alpine plant communities. New Phytol 88:341-352.
    Reblova M, Gams W and Stepanek V.2011.The new hyphomycete genera Brachyalara and Infundichalara, the similar Exochalara and species of'Phialophora seel. Catemulatae' (Leotiomycetes). Fungal Divers 46:67-86.
    Regvar M, Likar M, Piltaver A, Kugonic N and Smith JE.2010. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site:the potential of screening in a model phytostabilisation study. Plant Soil 330:345-356.
    Robinson CH.2001. Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341-353.
    Rudawska M, Leski T, Trocha LK and Gornowicz R.2006. Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurserie. Forest Ecol Manag 236:375-384.
    Ruotsalainen AL.2003. Mycorrhizal colonization and plant performance in arcto-alpine conditions. Ph.D dissertation. Finland:Department of Biology, University of Oulu.
    Ruotsalainen AL, Markkola A and Kozlov MV.2007. Root fungal colonisation in Deschampsia flexuosa:Effects of pollution and neighbouring trees. Environ Pollut 147:723-728.
    Ruotsalainen AL, Vare H, Oksanen J and Tuomi J.2004. Root Fungus colonization along an altitudinal gradient in north Norway. Arct Antarct Alp Res 36:239-243.
    Saito K, Kuga-Uetake Y, Salto M and Peterson R.L.2006. Vacuolar localization of phosphorous in hyphae of Phialocephala fortinii, a dark septate root endophyte. Can J Microbiol 52:643-650.
    Sanchez MS, Bills GF and Zabalgogeazcoa 1.2008. Diversity and structure of fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87-100.
    Sathiyadash Kullaiyan, Muthukumar T and Uma E.2010. Arbuscular mycorrhizal and dark septate endophyte fungal associations in South Indian grasses. Symbiosis 52:21-32.
    Schadt CW, Mullen RB and Schmidt SK.2001. Isolation and phylogenetic identification of a dark-septate fungus associated with the alpine plant Ranunculus adonens. New Phyto 150: 747-755.
    Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRF and Schadt CW.2008. Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct Antarct Alp Res 40:576-583.
    Schulz B and Boyle C.2005. The endophytic continuum. Mycol Res 109:661-686.
    Schulz B.2006. Mutualistic Interactions with Fungal Root Endophytes. Soil Biol 9:261-279.
    Sieber TN.1989. Endophytic funggi in twigs of healthy and diseased Norway spruce and white fir. Mycol Res 92:627-632.
    Sieber TN.2007. Endophytic fungi in forest trees:are they mutualists? Fungal Biol Rev 21:75-89.
    Sieber TN and Grunig CR.2006. Biodiversity of fungal root-endophyte communities and populations, in particular of the dark septate endophyte Phialocephala fortinii s.1. Soil Biol 9:108-132.
    Silvani VA, Fracchia S, Fernandez L, Pergola M and Godeas A.2008. A simple method to obtain endophytic microorganisms from field-collected roots. Soil Biol Biochem 40:1259-1263.
    Soares CRFS and Siqueira JO.2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44:833-841.
    Sraj-Krzic N, Pongrac P, Klemenc M. Kladnik A, Regvar M and Gaberscik A.2006. Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331-336.
    Stevens KJ, Wellner MR and Acevedo MF.2010. Dark septate endophyte and arbuscular mycorrhizal status of vegetation colonizing a bottomland hardwood forest after a 100 year flood. Aquat Bot 92:105-111.
    Straker CJ.1996.Ericoid mycorrhiza:ecological and host specificity.Mycrrhiza 6:215-225.
    Suihko ML Alakomi HL, Gorbushina A, Fortune I, Marquardt J and Saarel M.2007. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Systemat Appl Microbiol 30:494-508.
    Summerbell RC.2005. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat:influence of site factors on fungal distributions. Stud Mycol 53:121-145.
    Suryanarayanan TS, Ravishankar JP, Venkatesan G and Murali TS.2004. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol Res 108:974-978.
    Taylor DL.2000. A new dawn- the ecolodical genetics of mycorrhizal fungi. New Phytol 147:236-239.
    Tejesvi MV, Ruotsalainen AL, Markkola AM and Pirttila AM.2010. Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125-134.
    Thompson J, Gibson T, Plewniak F, Jeanmougin F and Higgins D.1997.The CIUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by analysis tools. Nucleic Acids Res 25:4876-4882.
    Thormann MN, Currah R and Bay ley SE.1999. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta. Canada. Wetlands 19:438-450.
    Treu R, Laursen GA, Stephenson SL, Landolt JC and Densmore R.1996. Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza 6:21-29.
    Trowbridge J and Jumpponen A.2004. Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283-293.
    Turnau K, Anielska T, Ryszka P, Gawroriski S, Ostachowicz B and Jurkiewicz A.2008. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes-new solution for waste revegetation. Plant Soil 305: 267-280.
    Uma E, Muthukumar T, Sathiyadash K and Muniappan V.2010. Mycorrhizal and dark septate fungal associations in gingers and spiral gingers. Botany 88:500-511.
    Upson R, Read DJ and Newsham KK.2009. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1-11.
    Urcelay C.2002. Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12:89-92.
    Usuki F and Narisawa K.2005. Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots of Rhododendron obtusum var. kaempferi. Mycorrhiza 15:61-64.
    Valentine LL, Fiedler TL, Haney SR, Berninghausen HK and Southworth D.2002. Biodiversity of mycorrhizas on Garry Oak (Quercus garryana) in a Southern Oregon Savanna. In Standiford RB, McCreary D, Purcell KL (eds). Proceedings of the fifth symposium on oak woodlands: oaks in California's changing landscape. USDA Forest Service General Technical Report PSW-GTR-184:151-157.
    Vamerali T, Bandiera M. Mosca G,2010. Field crops for phytoremediation of metal-contaminated land.A review. Environ Chem Lett 8:1-17.
    Vare H, Vestberg M and Eurola S.1992. Mycorrhiza and root-associated fungi in Spitsbergen. Mvcorrhiza 1:93-104
    Verkley GJM, Zijlstra JD, Summerbell RC and Berendse F.2003. Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res 107:689-698.
    Vitousek PM and Hooper DU.1994. Biological diversity and terrestrial ecosystem biogeochemistry. In:Schulze ED and Mooney HA (eds). Biodiversity and ecosystem function. New York:Springer-Verlag,3-14.
    Vralstad T, Myhre E and Schumacher T.2002a. Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131-148.
    Vralstad T, Schumacher T and Taylor AFS.2002b. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143-152.
    Wang JL and Chen C.2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195-226.
    Wang K and Zhao ZW.2006. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Internat Rev Hydrobiol 91:29-37.
    Weishampel PA and Bedford BL.2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495-502.
    Wilberforce EM, Boddy L, Griffiths R and Griffith GW.2003. Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biol Biochem 35:1143-1154.
    White TJ, Bruns T, Lee S and Taylor J.1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.315-322. In. Innis MA, Gelfand DH, Sninsky JJ,White TJ (eds). PCR protocols:a guide to methods and applications. New York:Academic Press.
    Wilson BJ, Addy HD, Tsuneda A, Hambleton S and Currah RS.2004. Phialocephala sphaeroides sp. Nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607-617.
    Wu LQ and Guo SX.2008. Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrate. Mycorrhiza 18:79-85.
    Wu G, Kang HB, Zhang XY, Shao HB, Chu LY and Ruan CJ.2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1-8.
    Wu YQ, Liu TT and He XL.2009. Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China. Front Agric China 3:164-170.
    Yu T, Nassuth A and Peterson RL.2001a. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol 47:741-753.
    Yu T, Egger KN and Peterson RL.2001b. Ectendomycorrhizal associations-characteristics and functions. Mycorrhiza 11:167-177.
    Yuan ZL, Chen YC and Yang Y.2009. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nohile):estimation and characterization. World J Microbiol Biotechnol 25:295-303.
    Yuan ZL, Zhang CL, Lin FC and Kubicek CP.2010. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Envioron Microbiol 76:1642-1652.
    Zafar S, Aqil F and Ahmad I.2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technol 98:2557-2561.
    Zhang CY, Yin LJ and Dai SL.2009. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza 19:417-423.
    Zubek S, Blaszkowski J, Delimat A and Turnau K.2009. Arbuscular mycorrhizal and dark septate endophyte colonization along altitudinal gradients in the Tatra Mountains. Arct Antarc Alp Res 41:272-279.
    段晓梅,杨云,李晶.2009.版纳热带雨林保护与修复规划研究.安徽农业科学37:10786-10787.
    房辉,曹敏.2009.云南会泽废弃铅锌矿重金属污染评价.生态学杂志28:1277-1283.
    高正文.2005.云南矿业“求解”可持续发展.环境经济杂志23:30-33.
    韩利刚,王罡,袁毅.2000.瓶霉属和外瓶霉属真菌的RAPD分析.吉林农业大学学报22:45-51.
    金振洲.2002.滇川干热河谷与干暖河谷植物区系特征.昆明:云南科技出版社.
    李瑞萍,王安建,曹殿华,耿诺,高兰,邹为雷,赵以辛,修群业.2009.云南兰坪金顶铅锌矿区土壤中Pb分布特征.地球学报1:72-78.
    王宏镔,文传浩,谭晓勇,王映雪,段昌群.1998.云南会泽铅锌矿矿渣废弃地植被重建初探.云南环境科学2:43-46.
    武军,黄玉,于强.2005.云南矿山环境保护与整治建议.中国工程科学4:397400.
    http://fund2.jrj.com.cn/news/2006-06-14/000001525048.html.
    http://lpxzb.com/publish/show.php?id=14.
    http://news.sina.com.cn/c/2006-04-04/11319527264.shtml.
    http://news.xinhuanet.com/travel/2005-10/11/content_3605644.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700