三值光学处理器控制电路设计和实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三值光学计算机是2000年本团队创立的研究课题,在国家自然科学基金和“211工程”建设基金的支持下,经过十余年的积累,研究水平在国际上处于领先地位,所取得的各项科研成果具有完全自主知识产权。本团队在2005年研制出三值光学计算机原理实验系统,在2007年研制出结构实验系统,目前正在研制用于应用软件算法研究的实验系统——“上大11”(SD11),这个系统将是第一个可以用高级语言编程使用的光电混合型计算机。本论文以这个新实验系统的研制为背景,重点研究三值光学计算机的核心硬件之一——三值光学处理器的控制电路。
     三值光学处理器控制电路的设计目标是:并行控制光学处理器的数千个数据位和以硬件方式将各个数据位重构成具体的运算器。本论文以降值设计理论和已有的两代实验系统为基础,运用已有的数据位管理理论,深入研究了重构光学处理器的硬件技术和电路实现方案,研究了对众多数据位进行有效管理和便捷寻址的硬件支撑方案,设计了完整的三值光学处理器控制电路,并将该电路付诸于实现。实验证明作者的设计正确,制作的电路部件工作正常且有效。
     本文的主要创新点有:
     1)提出了SD11光学处理器控制电路模块的分层控制策略。该策略有效降低了众位数光学处理器控制电路的设计难度,是本项研制工作取得成功的关键,也是三值光学处理器进一步发展的基石之一。
     2)研制成功以硬件方式重构三值光学处理器的技术和器件。该项成果完善了光学处理器的重构理论和技术,推动了三值光学计算机进入应用研究阶段。
     3)实现了对众多数据位数进行并行控制和寻址的硬件支撑。这项成果为完善和实现数据位管理理论提供了实践平台。
In2000the Ternary Optical Computer (TOC), a new kind of computer, is proposed by our research team in China. With the supports of the National Science Foundation of China and the211Leading Academic Discipline Project, a lot of achievements which all with self-owned intellectual property have been gained. Now, the research of our team is in a leading place in the world by more than a decade of hard work. In2005the first TOC experiment system which proved the TOC principles was built and in2007the second system which proved the structures was built too in Shanghai University, China. Since2010a new experiment system, SD11(abbreviation for Shanghai Daxue2011, Daxue is the Chinese pronunciation of University), has being developed in Shanghai University. SD11will offer an experimental platform to researchers who are interested in application software and algorithm, and it will be the first optical-electronic hybrid computer which can be programmed by using high level program language. In SD11, a key subsystem is the ternary optical processor control circuit. This subsystem is intensively investigated in this dissertation.
     The design goals of the optical processor control circuit are to control thousands of data bits of TOC in parallel and to reconstruct each data bit into a specific processor through hardware. Based on the first two experiment systems and the decrease-radix design principle, with the help of the existing data bits management theories, the author has investigated the hardware technique of reconfigurable optical processors, designed the corresponding control circuit and achieved the basic hardware of managing and addressing the many data bits. The results of author's research are focused on that an integrated control circuit of TOC's optical processor is implemented. Soon afterwards some experiments have been done to reveal the effectiveness of the design schemes, and to illustrate the validness of the circuit.
     The main contributions in this paper are as follows:
     1) A layer control policy is proposed for the SD11's optical processor.
     By the policy, the complexity of hardware design of the TOC's optical processor which has many data bits is efficiently reduced. So, the layer policy is the key factor to complete this research work, and is the cornerstone to build further TOC's optical processor.
     2) Hardware of reconfigurable ternary optical processor is developed successfully.
     This achievement has improved the hardware-based reconstruction theory and technology of TOC's optical processor and advanced the TOC to a new stage of application research.
     3) A hardware support for the many data bits management theory is achieved.
     This achievement has provided a practice circumstance for improving and founding the data bits management theory.
引文
[1]. R. F. Service, Computer science. What it'll take to go exascale [J]. Science,2012, 335(6067):394-396
    [2].吴龙生,生物计算机[J].化工时刊,2011(3):23-25
    [3]. J. M. Cai,A. Miyake,W. Dur et al., Universal quantum computer from a quantum magnet [J].PHYSICAL REVIEW A,2010,82(5):052309.1-052309.5
    [4]. T. D. Ladd, F. Jelezko, R. Laflamme et al., Quantum computers [J]. NATURE,2010, 464(7285):45-53
    [5].董孝义,第一台光学计算机[J].光电子·激光,1990(1):23
    [6].第一台可编程序的光学计算机试制成功[J].自然杂志,1993(5):5
    [7]. Z. Merali, First sale for quantum computing [J]. Nature,2011,474(7349):18
    [8].王潮,张焕国,加拿大商用量子计算机对密码学的影响[J].信息安全与通信保密,2012(2):31-32
    [9].母国光,光计算的四十年[J].量子电子学,1994,11(2):1
    [10].金翊,走近光学计算机[J].上海大学学报(自然科学版),2011(4):401-411
    [11].于荣金,集成光学与光子学[J].光电子·激光,1998,9(02):4
    [12].戎瑞,相干光学计算机原理[J].激光与红外,1975(1):27-34
    [13]. D. A. Young,田晋,欧洲研究人员将建造光学计算机[J].激光与光电子学进展,1985(10):42-43
    [14]. A. K. Cherri, M. Hamad. Algorithms for optoelectronics implementation of trigonometric functions based on modified signed-digit numbers[C]. in: Microelectronics, The 14th International Conference on 2002-ICM.2002:109-113
    [15]. Abdallah K. Cherri, Ayman S. Al-Zayed, Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and Mach-Zehnder interferometer [J]. Optik-International Journal for Light and Electron Optics,2010, 121(17):1577-1585
    [16]. A. K. Cherri, M. K. Habib, M. S. Alam. Optoelectronics recoded trinary signed-digit adder using optical correlators[C]. in:Aerospace and Electronics Conference,1997. NAECON 1997., Proceedings of the IEEE 1997 National.1997:495-502
    [17]. R. S. Fyath, A. A. W. Alsaffar, M. S. Alam, Optical binary logic gate-based modified signed-digit arithmetic[J]. Optics & Laser Technology,2002,34(7):501-508
    [18]. Louri, A., Hwang, K. A bit-plane architecture for optical computing with two-dimensional symbolic substitution[J]. SIGARCH Comput. Archit. News.1988, 16(2):18-27
    [19]. A. K. Cherri, A. A. S. Awwal. Canonical modified signed-digit arithmetic using opto-electronics symbolic substitution[C]. in:Aerospace and Electronics Conference, 1995. NAECON 1995., Proceedings of the IEEE 1995 National.1995:859-862
    [20]. Guoqiang Li, Feng Qian, Hao Ruan et al., Compact Parallel Optical Modified-Signed-Digit Arithmetic-Logic Array Processor with Electron-Trapping Device [J]. Appl. Opt.,1999,38(23):5039-5045
    [21]. Jeon, H. I., Abushagur, M. A. G. Digital optical arithmetic processor based on symbolic substitution, in:System Theory,1988., Proceedings of the Twentieth Southeastern Symposium on System Theory,1988:221-223.
    [22]. Karl-Heinz Brenner, Alan Huang, Norbert Streibl, Digital optical computing with symbolic substitution [J]. Appl. Opt.,1986,25 (18):3054-3060
    [23]. H. I. Jeon, M. A. G. Abushagur. Digital optical modified signed-digit arithmetic based on symbolic substitution and its encoding scheme[C]. in:System Theory,1989. Proceedings., Twenty-First Southeastern Symposium on System Theory.1989:252-256
    [24]. B. Wang, F. H. Yu, X. Liu et al., Optical modified signed-digit addition module based on Boolean polarization-encoded logic algebra [J]. OPTICAL ENGINEERING,1996, 35(10):2989-2994
    [25]. A. K. Cherri, M. S. Alam,A. A. S. Awwal, Optoelectronic symbolic substitution based canonical modified signed-digit arithmetic [J]. Optics and Laser Technology,1997, 29(3):151-157
    [26]. Berlin Ha, Yao Li, Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor [J]. Appl. Opt.,1994,33 (17):3647-3662
    [27]. Thomas J. Cloonan, Performance analysis of optical symbolic substitution [J]. Appl. Opt.,1988,27 (9):1701-1707
    [28]. Karl-Heinz Brenner, Programmable optical processor based on symbolic substitution [J]. Appl. Opt.,1988,27(9):1687-1691
    [29]. David Casasent, Paul Woodford, Symbolic substitution modified signed-digit optical adder [J]. Appl. Opt.,1994,33 (8):1498-1506
    [30].陈历学,吕其昌,胡强生等,采用符号替换的先行进位光学并行全加器的研究[J].应用激光,1990(2):49-53
    [31].周少敏,卞新高,金国藩等,光学符号代换多值运算[J].光学机械,1991(5):62-65
    [32].周少敏,邬敏贤,金国藩,光学符号代换矩阵乘法器[J].仪器仪表学报,1990(1):34-39
    [33].罗金平,陈书明,周兴铭,基于符号替换逻辑的光学数字计算[J].计算机科学,1996(1):5-9
    [34].申铉京,千庆姬,张晓旭,基于符号替换算法的光电混合型计算机的设计[J].光学技术,2000(1):62-65
    [35].余飞鸿,洪华,张俊,基于异或逻辑运算的光学单通道符号替换系统[J].光学仪器,1995(17):80-84
    [36].周少敏,邬敬贤,金国藩,利用改进的符号数算法和光学符号代换实现矩阵计算[J].光学学报,1991(1):43-50
    [37].杨世宁,王天及,李耀棠等,使用光学自反关联存储技术的符号替换运算[J].光学学报,1995(7):888-892
    [38].周少敏,金国藩,卞新高等,一种利用光学符号代换法则实现并行光学多值运算的方法[J].应用激光,1988(5):208-210
    [39].曹明翠,刘夏安,李幼平等,一种实现二进制加法符号替换规律的光逻辑系统[J].光学学报,1989(12):1129-1132
    [40].薛唯,陈历学,李淳飞等,用投影法实现符号代换[J].光学学报,1989(9):843-847
    [41].陈历学,袁石夫,吕其昌等,真值表查询式光学符号替换[J].光学学报,1992(1):43-48
    [42]. J. M. Martinez, F. Ramos,J. Marti,10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI [J]. FIBER AND INTEGRATED OPTICS,2008, 27(1):15-23
    [43]. R. J. Manning,I. D. Phillips,A. D. Ellis et al, lOGbit/s all-optical regenerative memory using single SOA-based logic gate [J]. ELECTRONICS LETTERS,1999, 35 (2):158-159
    [44]. J. Sakaguchi, T. Nishida,Y. Ueno,200-Gb/s wavelength conversion using a delayed-interference all-optical semiconductor gate assisted by nonlinear polarization rotation [J]. OPTICS COMMUNICATIONS,2009,282 (9):1728-1733
    [45]. J. J. Dong,X. F. Zhang,J. Xu et al.,40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier:Experimental demonstration and theoretical analysis [J]. OPTICS COMMUNICATIONS,2008,281 (6):1710-1715
    [46]. J. Zhang, J. Wu,C. Feng et al.,40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering [J]. ELECTRONICS LETTERS,2006,42(21):1243-1244
    [47]. J. Dong,X. Zhang,Y. Wang et al.,40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA [J]. ELECTRONICS LETTERS,2007, 43(16):884-886
    [48]. Surinder Singh,R. S. Kaler, All optical wavelength converters based on cross phase modulation in SOA-MZI configuration [J]. Optik-International Journal for Light and Electron Optics,2007,118 (8):390-394
    [49]. Mahdi Sahafi, Ali Rostami, Ali Sahafi, All-optical high speed logic gates using SOA [J]. Optics Communications,2012,285 (9):2289-2292
    [50]. Sun, H., Chen, Z., Ma, S., Dutta, N. K. All-optical logic NOR gate at 40 Gb/s using SOA based Mach-Zehnder interferometer-art. no.67750F[C]. in:Dutta, A. K. O., Yasutake; Dutta, Niloy K.; Lavrinenko, Andrei V., editor. Active and Passive Optical Components for Communications Vii. vol.2007(6775):67750F.67751-67750F.67759
    [51]. Q. Wang, H. Dong, G. Zhu et al., All-optical logic OR gate using SOA and delayed interferometer [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS,2006, 42(8):81-86
    [52]. H. Z. Sun,Q. Wang,H. Dong et al., All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS,2006, 42(7-8):747-751
    [53]. Xiaohua Ye, Peida Ye, Min Zhang, All-optical NAND gate using integrated SOA-based Mach-Zehnder interferometer [J]. Optical Fiber Technology,2006,12 (4):312-316
    [54]. T. Fjelde, D. Wolfson, A. Kloch et al., Demonstration of 20Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter [J]. ELECTRONICS LETTERS,2000,36 (22):1863-1864
    [55]. Jitendra Nath Roy, Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations [J]. Optik-International Journal for Light and Electron Optics,2009,120(7):318-324
    [56]. Wang, Q., Dong, H., Zhu, G., Jaques, J., et al. Optical logic OR gate using a SOA-based interferometer[J]. Integrated Optics:Devices, Materials, and Technologies IX.2005, 5728:146-153
    [57]. Lovkesh, Realization optical signal processing components using SOA [J]. Optik International Journal for Light and Electron Optics,2011,122 (23):2136-2139
    [58].吴重庆,半导体光放大器的光-光互作用及其应用[J].物理,2007(8):631-636
    [59].潘炜,张晓霞,罗斌等,垂直腔半导体光放大器双稳及逻辑特性的理论研究[J].半导体学报,2005(2):357-362
    [60].王韧,郭淑琴,鲍卫兵等,基于SOA-FWM的全光逻辑与门码型效应的抑制方法[J].浙江工业大学学报,2010,38(3):286-288,293
    [61].邵宇挺,罗斌,潘炜等,基于SOA-XPM的光数据包信息头提取[J].半导体光电,2007(6):847-850
    [62].李亚捷,吴重庆,基于SOA的两种干涉仪结构性能分析[J].光通信技术,2009,33(10):49-52
    [63].王会军,基于SOA非线性的全光逻辑门的理论与实验研究[D].[硕士论文]北京:北京化工大学,2007
    [64].王会军,伦秀君,何敬锁等,基于SOA非线性的全光逻辑运算的理论研究[J].半导体技术,2007(7):589-592
    [65].白晓棠,段惠丹,李二龙,基于SOA辅助的全光逻辑异或门性能研究[J].光电技术应用,2009,24(4):34-37
    [66].张金磊,王智,疏达,基于SOA交叉增益调制效应的全光组合逻辑[J].光学与光电技术,2008(2):29-31
    [67].张圆成,张洪明,姚敏玉,基于半导体光放大器的光单稳态触发器[J].光电子.激光,2012(2):219-223
    [68]. J. Xu, X. Zhang, J. Dong et al., Ultrafast all-optical AND gate based on cascaded SOAs with assistance of optical filters [J]. ELECTRONICS LETTERS,2007, 43(10):585-587
    [69]. R. Gutierrez-Castrejon, ICEEE.160 Gb/s XOR Gate Using Bulk SOA Turbo-Switched Mach-Zehnder Interferometer[C]. in:Electrical and Electronics Engineering,2007 4th International Conference on Electrical and Electronics Engineering (ICEEE 2007); Mexico City:Mexic,2007:134-137
    [70]. S.K. Chandra, S. Mukhopadhyay, An all-optical approach of implementing a different kind of phase encoded XOR and XNOR logic operations with the help of four wave mixing in SOA[C], Optik-Int. J. Light Electron Opt. (2012), doi:10.1016/j.ijleo.2011.12.048
    [71]. R. Clavero, F. Ramos,J. Marti, Bistability analysis for optical flip-flops based on a SOA-MZI with feedback [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY,2007, 25(11):3641-3648
    [72]. Young Jin Jung, Chang Wan Son, Seok Lee et al., Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates [J]. Optical and Quantum Electronics,2008,40 (5-6):425-430
    [73]. Dong, H., Wang, Q., Zhu, G., Jaques, J., et al. Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer[J]. Optics Communications.2004,242(4-6):479-485
    [74]. A. Hamie, A. Sharaiha, M. Guegan, Demonstration of an all-optical logic OR gate using gain saturation in an SOA [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2003,39(1):39-42
    [75]. Zhao, M. S., Morthier, G., Baets, R. Demonstration of extinction ratio improvement from 2 to 9 dB and intensity noise reduction with the MZI-GCSOA all-optical 2R regenerator[J]. Ieee Photonics Technology Letters.2002,14(7):992-994
    [76]. Zhang, X. Demonstration on all-optical logic AND and NOR gates at 20Gb/s with cascaded SOAs[C]. in:ICO20:Optical Communication..2006(6025):183-188
    [77]. T. Houbavlis, K. E. Zoiros, Experimental demonstration of all-optical SOA-assisted Sagnac recirculating shift register with an inverter and SOA feedback [J]. Optik-International Journal for Light and Electron Optics,2003,114 (7):322-328
    [78]. Xu, J., Zhang, X., Dong, J., Liu, D., et al. Investigation of ultrafast all-optical AND gate based on cascaded SOAs and optical filters[C]. in:Optoelectronic Materials and Devices Ⅱ:vol.6782 (2),2007:678209.1-678209.7
    [79]. Lovkesh, Sandeep Singh Gill, Ultra high-speed optical signal processing based on single SOA at 60Gb/s [J]. Optik-International Journal for Light and Electron Optics,2011, 122(11):978-985
    [80].陈桂英,张春平,郭宗霞等,细菌视紫红质在全光逻辑器件中的研究与应用[J].物理实验,2005(2):13-17
    [81]. G. Y. Chen, X. D. Shang, G. Yang et al., All-optical continuous-tunable image switch based on nonlinear photoinduced anisotropy in bacteriorhodopsin film [J]. Optik,2009, 120(14):721-725
    [82]. G. Y. Chen, X. Liang, Y. Z. Yuan et al., All-optical image switch based on bacteriorhodopsin film [J]. Optik,2007,118 (8):377-380
    [83]. J. H. Han,B. L. Yao,P. Gao et al., All-optical logic gates based on photoinduced anisotropy of bacteriorhodopsin film [J].Journal of Modern Optics,2012, 59(7):636-642
    [84]. S. Roy, M. Prasad, J. Topolancik et al., All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits [J]. Journal of Applied Physics,2010,107(5):053115.1-053115.9
    [85]. G. Y. Chen, W. Q. Lu, X. X. Xu et al., All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film [J]. Applied optics,2009, 48(28):5205-5211
    [86]. G. Y. Chen, X. X. Xu, C. P. Zhang et al., An all-optical time-delay relay based on a bacteriorhodopsin film [J]. Chinese Physics B,2008,17(11):4218-4225
    [87].杨文正,侯洵,陈烽等,BR_(D96N)光调制吸收增强现象的实验研究[J].物理学报,2004(1):296-300
    [88]. L. Fabian, E. K. Wolff, L. Oroszi et al., Fast integrated optical switching by the protein bacteriorhodopsin [J]. Applied Physics Letters,2010,97(2):023305.1-023305.3
    [89]. A. Der, S. Valkai, L. Fabian et al., Integrated optical switching based on the protein bacteriorhodopsin [J]. Photochemistry and Photobiology,2007,83 (2):393-396
    [90]. S. O. Korposh, Y. R. Sharkan, M. Y. Sichka et al., Matrix influence on the optical response of composite bacteriorhodopsin films to ammonia [J]. Sensors and Actuators B-Chemical,2008,133(1):281-290
    [91]. N. Arun, S. Mukhopadhyay, K. S. Narayan, Monitoring intermediate states of bacteriorhodopsin monolayers using near-field optical microscopy [J]. Applied optics, 2010,49(7):1131-1138
    [92]. L. Wei, J. Luo, J. Zhu et al., Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film [J]. Applied Physics Letters,2007,90(17):173902.1-173902.3
    [93]. A. B. Druzhko, Optical Characteristics of Polymer Films Based on Bacteriorhodopsin for Irreversible Recording of Optical Information [J]. Photochemistry and Photobiology, 2009,85 (2):614-616
    [94]. M. C. Larciprete, A. Belardini, C. Sibilia et al., Optical chirality of bacteriorhodopsin films via second harmonic Maker's fringes measurements [J]. Applied Physics Letters, 2010,96(22):221108.1-221108.3
    [95]. V. N. Zakharov, I. K. Kudryavtsev, L. A. Aslanov, Optical trigger based on the molecules of bacteriorhodopsin adsorbed on AgBr nanocrystals [J]. Surface and Interface Analysis,2008,40 (3-4):495-497
    [96]. L. Wei, X. L. Teng, M. Lu et al., Photoinduced birefringence and broadband all-optical photonic switch in a bacteriorhodopsin/polymer composite film [J]. Chinese Physics Letters,2007,24(12):3416-3419
    [97]. J. Topolancik, F. Vollmer, Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities [J]. Biophysical Journal,2007, 92(6):2223-2229
    [98]. A. Colonna,G. I. Groma,J. L. Martin et al., Quantification of sudden light-induced polarization in bacteriorhodopsin by optical rectification [J]. Journal of Physical Chemistry B,2007,111(10):2707-2710
    [99]. Burykin, N., Stepanchikov, D., Dyukova, T., Savchuk, A., et al. Real-Time Optical Information Processing Through the Use of Low-Saturable Absorption in Bacteriorhodopsin Films[J]. Molecular Crystals and Liquid Crystals.2011, 535(1):140-147
    [100]. J. W. Kakareka, P. D. Smith, T. J. Pohida et al., Simultaneous measurements of fast optical and proton current kinetics in the bacteriorhodopsin photocycle using an enhanced spectrophotometer [J]. Journal of Biochemical and Biophysical Methods, 2008,70(6):1116-1123
    [101].杨文正,杨青,陈烽等,基于细菌视紫红质薄膜的空间光调制器实验研究[J].物理学报,2003(3):761-766
    [102].冯晓强,侯洵,杨文正等,基于细菌视紫红质光子逻辑门的实验研究[J].物理学报,2003(11):2803-2806
    [103].陈烽,侯洵,李宝芳等,菌紫质生物分子膜多波长信息读写系统的研究[J].中国激光,2001(2):176-178
    [104].张天浩,张春平,富光华等,生物光敏蛋白bR膜应用于光子逻辑门的研究[J].红外与毫米波学报,1999(3):3-8
    [105].李玉栋,孙骞,张春平等,细菌视紫红质膜非线性吸收特性及其光子学应用[J].光学学报,1999(5):102-107
    [106].冯晓强,陈烽,田燕宁等,细菌视紫红质用于光子逻辑门的研究[J].光子学报,2001(1):1-5
    [107].顾立群,陈桂英,郭宗霞等,用细菌视紫红质膜实现多进制数字光学运算[J].物理学报,2004(12):4236-4242
    [108].左开中,基于细菌视紫红质薄膜的三值光学数据存储研究[J].计算机技术与发展,2008(3):132-134
    [109].孙懋琮,纪素玲,吴继友,基于量子阱包络态跃迁和集成光学技术的光计算机[J].光电子·激光,1997(6):77-79
    [110]. E. P. Mosca, R. D. Griffin, F. P. Pursel et al., Acoustooptical matrix-vector product processor:implementation issues [J]. Applied optics,1989,28(18):3843-3851
    [111].吴重庆,半导体光放大器的光-光互作用及在全光信号处理中的应用(Ⅰ)[J].激光与光电子学进展,2007(10):17-25
    [112].吴重庆,半导体光放大器的光-光互作用及在全光信号处理中的应用(Ⅱ)[J].激光与光电子学进展,2007(11):12-17
    [113]. Ashish Bhardwaj, Per Olof Hedekvist, Kerry Vahala, All-optical logic circuits based on polarization properties of nondegenerate four-wave mixing [J]. J. Opt. Soc. Am. B,2001, 18(5):657-665
    [114].苏锋,“光计算机”又迈出一大步——英特尔高性能硅基雪崩光电探测器[J].微电脑世界,2009(1):12-14
    [115].金翊,三值光计算机原理和结构[D].[博士论文]西安:西北工业大学,2002
    [116].任广军,姚建铨,李国华等,液晶的磁旋光特性[J].天津大学学报,2006(8):973-977
    [117].严军勇,金翊,孙浩,三值光计算机多位编码器与解码器的可行性实验研究[J].计算机工程,2004,30(14):175-177
    [118].黄伟刚,金翊,艾丽蓉等,三值光计算机百位编码器的设计与构造[J].计算机工程与科学,2006,28(4):139-142
    [119].蔡超,金翊,对称三进制光学加法器的进位直达通道设计[J].微电子学与计算机,2007,24(6):150-152
    [120].蔡超,金翊,包九龙等,三值光计算机的对称三进制半加器原理设计[J].计算机工程,2007,33(17):278-279
    [121].包九龙,金翊,蔡超,三值光计算机百位量级编码器的实现[J].计算机技术与发展,2007,17(2):19-22
    [122].严军勇,降值设计理论[D].[博士论文]上海:上海大学,2009
    [123].金翊,三值光计算机高数据宽度的管理策略[J].上海大学学报:自然科学版,2007,13(5):519-523
    [124].严军勇,金翊,左开中,无进(借)位运算器的降值设计理论及其在三值光计算机中的应用[J].中国科学(E辑:信息科学),2008(12):2112-2122
    [125].李梅,金翊,何华灿等,基于三值逻辑光学处理器实现向量矩阵乘法[J].计算机应 用研究,2009(08):2839-2841
    [126]. Xianchao Wang, Junjie Peng, Mei Li et al., Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform [J]. Appl. Opt0,2010,49(12):2352-2362
    [127]. Liang Teng, Junjie Peng, Yi Jin et al.A Cellular Automata Calculation Model Based on Ternary Optical Computers[C]. in:the 2nd International Conference on High Performance Computing and Application (HPCA2009).2010. Shang Hai:Springer Berlin/Heidelberg,2010:377-383
    [128].左开中,金翊,薛涛等,三值光计算机解码模拟器的图像采集系统[J].半导体光电,2008,29(6):949-952
    [129].左开中,金翊,彭俊杰等,三值光计算机百位量级解码器的设计[J].中国激光,2009(4):823-827
    [130].左开中,吲哚俘精酸酐实现三值偏振全息光学存储器[J].光电工程,2008(7):121-125
    [131].谌章义,千位三值光学处理器理论、结构和实现[D].[博士论文]上海:上海大学,2010
    [132]. M. Kaykobad, Md M. Islam, M. E. Amyeen et al.,3 is a more promising algorithmic parameter than 2 [J]. Computers & Mathematics with Applications,1998,36(6):19-24
    [133].詹小奇,彭俊杰,金翊等,三值光计算机数据位资源的静态分配策略[J].上海大学学报(自然科学版),2009,15(5):528-533
    [134].詹小奇,三值光计算机数据位资源的静态分配策略[D].[硕士论文]上海:上海大学,2009
    [135].张赵云,三值光计算机数据位回收策略及其实现[D].[硕士论文]上海:上海大学,2009
    [136].李双凤,金翊,三值光学计算机数据位与运算部件像素的映射技术[J].计算机工程与设计,2010(05):1077-1080
    [137]. JunYong Yan, Yi Jin, KaiZhong Zuo, Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer [J]. Science in China Series F:Information Sciences,2008,51 (10):1415-1426
    [138]. Yi Jin, HongJian Wang, Shan Ouyang et al., Principles, structures, and implementation of reconfigurable ternary optical processors [J]. Science China Information Sciences, 2011,54(11):2236-2246
    [139].詹小奇,彭俊杰,金翊等,三值光计算机数据位资源的静态分配策略[J].上海大学学报(自然科学版),2009,15(5):528-533
    [140].詹小奇,三值光计算机数据位资源的静态分配策略[D].[硕士论文]上海:上海大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700