半导体光放大器超快动力学过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着视频流媒体等新业务的不断涌现,对网络带宽的需求以超摩尔定律的速度迅速增长,基于超大容量高速光传输和光交换的全光网络已经成为下一代通信骨干网的发展趋势。随着传输链路速率的提升,在高速、低成本、低功耗全光器件的研究上实现突破成为了推动全光网络研究进程的关键一环。近几年来,由于具有非线性强、体积小、易集成等一些独特的优势,半导体光放大器(SOA)作为全光信号处理的重要功能部件之一,成为光学领域和通信领域的研究热点。本论文在国家973项目“面向光路交换网络的光器件理论与关键技术研究”支持下,针对超高速率和超大容量全光网络对高速全光信号处理器件的应用需求,对SOA中的超快增益动态特性、超快相位动态特性和超快啁啾动态特性进行了深入的理论研究,获得的主要创新成果如下:
     1.提出了一个宽带SOA超快动力学模型,并采用已有实验文献报道进行了验证。与目前已有SOA超快模型相比,该模型积分容易收敛、不依赖于常数线宽增强因子和增益压缩因子,尤其适用于大信号分析和泵浦波长与探测波长间隔很大的宽带情形。在此理论模型的基础上,采用标准C++开发了一个面向对象的数值模拟软件库,首次在软件功能上将传统SOA、纵向激光增益钳制SOA和垂直激光增益钳制SOA的数值模拟过程统一起来。
     2.系统地研究了单个亚皮秒光脉冲激励下宽带情形SOA中的超快动态特性,首次发现了超快增益和相位动力学的波长依赖性。在1450-1650 nm的波长范围中,波长越短,载流子加热效应引起的增益变化越大、相位变化越小;波长越接近泵浦光波长,光谱烧孔效应引起的增益变化越大、相位变化越小;而双光子效应无明显波长依赖性。在长波段,增益恢复时间短且动态范围大、相位动态范围小,易于高速交叉增益调制应用;在短波段,相位恢复时间短且动态范围大、增益动态范围小,利于高速交叉相位调制应用。
     3.与皮秒光脉冲激励的情形不同,当考虑了光谱烧孔和双光子吸收效应的影响后,亚皮秒光脉冲激励下的SOA中的啁啾动力学过程包含中间的红移部分和两侧的蓝移部分,并呈现较强的波长依赖性。该结果表明,对于在皮秒光脉冲激励下基于瞬态交叉相位调制与失谐滤波器组合改善交叉增益调制码型效应的方案,在亚皮秒光脉冲激励的应用中将不再适用。
     4.提出了一种基于Mach-Zehnder干涉仪和体材料SOA中交叉增益调制的高速全光逻辑异或门。该方案通过采用带内直流光和较长的SOA改善了长载流子寿命引起的码型效应,可以实现直至Tb/s的工作速率。通过数值模拟验证和评估了基于该方案的250 Gb/s、500 Gb/s和1 Tb/s的全光异或逻辑门,所得异或结果的信号眼图张开度好且Q-factor大。
     5.首次提出采用两个不同带隙SOA的级联,选择合适的SOA带隙、注入电流和长度,可以有效改善高速交叉增益调制的码型效应。本方案具有结构简单和易于单片集成的优点。
With streaming video and other new internet services emerging, the demand for network bandwidth increases rapidly at a rate beyond Moore's Law. All-optical networks based on large-capacity and high-speed optical transmission and switching have become the trend of the backbone of the next generation communication networks. With the increase of the transmission-link speed which may be more than Tb/s, to make a breakthrough in the research of high-speed, low-cost and low-power all-optical devices becomes an important key to promote the research process of all-optical networks. In recent years, owing to their high nonlinearity, small volume, easy integration and other unique properties, semiconductor optical amplifiers (SOAs) as key functional elements in all-optical signal processing have been attracting huge attentions from the fields of optics and communications. Supported by the National 973 Program of "Research on the theory and key techniques of optical devices towards the all-optical switching networks", with the purpose of providing ultrahigh-speed all-optical signal processing devices for the all-optical networks, we deeply and theoretically study the ultrafast gain dynamics, ultrafast phase dynamics and ultrafast chirp dynamics in SOAs. The main contributions of this dissertation are listed as follows:
     1. Verified by the existing experimental literatures, a novel wideband model for describing the ultrafast dynamics and processes in SOAs is presented and realized. Compared with the current ultrafast dynamics models of SOAs, this model has several advantages:the integral in this model easily converging, obviating the approximations of the constant linewidth enhancement factor and the gain compression factors, and especially applicable to large-signal analysis and broadband case such as a wide interval between probe and pump wavelengths. In the frame of this theoretical model, based on object-oriented approach and the standard C++ language, a software library for numerically simulating the ultrafast dynamics in SOAs is developed. Through this software library, for the first time, the numerical simulation processes are unified for the conventional SOAs, SOAs gain-clamped by a longitudinal laser and SOAs gain-clamped by a vertical laser.
     2. The ultrafast dynamic properties in a SOA excited by a sub-picosecond optical pulse are systematicaly and theoretically studied in the wavelength range of 1450-1650 nm. For the first time, the wavelength dependence of the ultrafast gain and phase dynamics is discovered. The shorter the wavelength, the larger the gain change induced by carrier heating, and the smaller the phase change induced by carrier heating. The closer the wavelength to the pump wavelength, the larger the gain change induced by spectral-hole burning, and the smaller the phase change induced by spectral-hole burning. The effect of two-photon absorption is nearly independent of wavelength. Owing to the shorter gain recovery time, larger gain dynamic range and smaller phase dynamic range, in the band of longer wavelength, it is easy to realize high-speed applications based on cross-gain modulation. Owing to the shorter phase recovery time, larger phase dynamic range and smaller gain dynamic range, the band of shorter wavelength is beneficial to high-speed applications based on cross-phase modulation.
     3. Different from the situation in which a SOA is excited by a picosecond optical pulse, when considering the effects of spectral-hole burning and two-photon absorption, the chirp dynamic process in a SOA excited by a sub-picosecond optical pulse contains the middle part of red shift and the two side parts of blue shift. Moreover, the ultrafast chirp dynamics is obviously dependent on wavelength. It is shown that the proposed combination of transient cross-phase modulation and a detuned optical bandpass filter to effectively reduce the pattern-effect in cross-gain modulation in the situation of picosecond optical pulses is out of action in the situation of sub-picosecond optical pulses.
     4. An ultrahigh-speed all-optical XOR logic gate based on a Mach-Zehnder interferometer and cross-gain modulation in bulk SOAs is proposed, which uses continueous-wave light in the gain bandwidth and two long SOAs to reduce the pattern-effect inflicted by long carrier lifetime. Through numerical simulation, we evaluated this XOR logic gate operating at 250 Gb/s,500 Gb/s and 1 Tb/s, respectively. The simulation results show that the eye-diagrams of these XOR output signals are clearly open with high Q-factor.
     5. For the first time, two cascaded SOAs with different bandgaps are proposed and evaluated to reduce the pattern-effect in high-speed cross-gain modulation. Through appropriately arranging the two SOAs'bandgaps, injected currents and lengths, the pattern-effect in high-speed cross-gain modulation can be effectively reduced. This proposal has a simple structure and can be easily integrated into a single chip.
引文
[1]E. Desurvire. Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol.,2006,24(12):4697-4710
    [2]A. L. Chiu, G Choudhury, G. Clapp, et al. Network design and architectures for highly dynamic next-generation IP-over-optical long distance networks. J. Lightwave Technol.,2009, 27(12):1878-1890
    [3]H. Harai. Designing new-generation network-overview of AKARI Architecture Design. in 2009 Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, China,2009, p. FL2
    [4]P. Van Daele. BONE:Your gateway to European optical networks research. in the 11th International Conference on Transparent Optical Networks (ICTON), Azores, Portugal,2009, p. Tu.C5.1
    [5]H. G. Weber, R. Ludwig, S. Ferber, et al. Ultrahigh-speed OTDM-transmission technology. J. Lightwave Technol.,2006,24(12):4616-4627
    [6]L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, et al. Enabling Tb/s photonic routing: Development of advanced hybrid integrated photonic devices to realize high-speed, all-optical packet switching. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):849-860
    [7]A. Rostami, H. Nejad, R. M. Qartavol, et al. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron.,2010,46(3):354-360
    [8]D. F. Welch, F. A. Kish, S. Melle, et al. Large-scale InP photonic integrated circuits:Enabling efficient scaling of optical transport networks. IEEE J. Sel. Top. Quantum Electron.,2007, 13(1):22-31
    [9]H. Teimoori, D. Apostolopoulos, K. G. Vlachos, et al. Optical-logic-gate aided packet-switching in transparent optical networks. J. Lightwave Technol.,2008,26(16): 2848-2856
    [10]S. Watanabe. Optical signal processing using nonlinear fibers. Journal of Optical and Fiber Communications Research,2006,3(1):1-24
    [11]Y. Dai and J. Yao. Design of high-channel-count multichannel fiber Bragg gratings based on a largely chirped structure. IEEE J. Quantum Electron.,2009,45(8):964-971
    [12]T. von Lerber, S. Honkanen, A. Tervonen, et al. Optical clock recovery methods:Review (Invited). Opt. Fiber Technol.,2009,15(4):363-372
    [13]P. S. J. Russell. Photonic-crystal fibers. J. Lightwave Technol.,2006,24(12):4729-4749
    [14]D. W. Prather, S. Shi, J. Murakowski, et al. Photonic crystal structures and applications: Perspective, overview, and development. IEEE J. Sel. Top. Quantum Electron.,2006,12(6): 1416-1437
    [15]K. Shinoda, S. Makino, T. Kitatani, et al. InGaAlAs-InGaAsP heteromaterial monolithic integration for advanced long-wavelength optoelectronic devices. IEEE J. Quantum Electron., 2009,45(9):1201-1209
    [16]B. Jalali and S. Fathpour. Silicon photonics. J. Lightwave Technol.,2006,24(12):4600-4615
    [17]L. Oxenlφwe, F. Gomez-Agis, C. Ware, et al.640-Gbit/s data transmission and clock recovery using an ultrafast periodically poled lithium niobate device. J. Lightwave Technol.,2009, 27(3):205-213
    [18]D. Cotter, R. J. Manning, K. J. Blow, et al. Nonlinear optics for high-speed digital information processing. Science,1999,286(5444):1523-1528
    [19]I. Kang, C. Dorrer, Z. Liming, et al. Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):758-769
    [20]R. N. Hall, G. E. Fenner, J. D. Kingsley, et al. Coherent light emission from GaAs junctions. Phys. Rev. Lett.,1962,9(9):366-368
    [21]W. P. Dumke. Interband transitions and maser action. Phys. Rev.,1962,127(5):1559-1563
    [22]Z. I. Alferov. Nobel Lecture:The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys.,2001,73(3):767-782
    [23]H. Kroemer. Nobel Lecture:Quasielectric fields and band offsets:teaching electrons new tricks. Rev. Mod. Phys.,2001,73(3):783-793
    [24]J. C. Simon. GaInAsP semiconductor laser amplifiers for single-mode fiber communications. J. Lightwave Technol.,1987,5(9):1286-1295
    [25]T. Saitoh and T. Mukai. Recent progress in semiconductor laser amplifiers. J. Lightwave Technol.,1988,6(11):1656-1664
    [26]S. Yamamoto, K. Mochizuki, H. Wakabayashi, et al. Long-haul high-speed optical communication systems using a semiconductor laser amplifier. J. Lightwave Technol.,1988, 6(10):1554-1558
    [27]N. A. Olsson. Semiconductor optical amplifiers. Proc. IEEE,1992,80(3):375-382
    [28]M. O'Mahony. Semiconductor laser optical amplifiers for use in future fiber systems. J. Lightwave Technol.,1988,6(4):531-544
    [29]J. C. Simon. Polarisation characteristics of a travelling-wave-type semiconductor laser amplifier. Electron. Lett.,1982,18(11):438-439
    [30]T. Saitoh and T. Mukai. 1.5 μm GaInAsP traveling-wave semiconductor laser amplifier. IEEE J. Quantum Electron.,1987,23(6):1010-1020
    [31]M. S. Lin, A. B. Piccirilli, Y. Twu, et al. Temperature dependence of polarization characteristics in buried facet semiconductor laser amplifiers. IEEE J. Quantum Electron., 1990,26(10):1772-1778
    [32]J. Buus, M. C. Farries, and D. J. Robbins. Reflectivity of coated and tilted semiconductor facets. IEEE J. Quantum Electron.,1991,27(6):1837-1842
    [33]J. Lee, T. Tanaka, S. Sasaki, et al. Novel design procedure of broad-band multilayer antireflection coatings for optical and optoelectronic devices. J. Lightwave Technol.,1998, 16(5):884-891
    [34]P. Koonath, S. Kim, W.-J. Cho, et al. Polarization-insensitive quantum-well semiconductor optical amplifiers. IEEE J. Quantum Electron.,2002,38(9):1282-1290
    [35]K. Morito, M. Ekawa, T. Watanabe, et al. High-output-power polarization-insensitive semiconductor optical amplifier. J. Lightwave Technol.,2003,21(1):176-181
    [36]C. Michie, A. E. Kelly, J. McGeough, et al. Polarization-insensitive SOAs using strained bulk active regions. J. Lightwave Technol.,2006,24(11):3920-3927
    [37]K. E. Stubkjaer. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quantum Electron.,2000,6(6):1428-1435
    [38]C. Michie, A. E. Kelly, I. Armstrong et al. An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA). J. Lightwave Technol.,2007,25(6):1466-1473
    [39]C.-Y. Jin, Y.-Z. Huang, L.-J. Yu, et al. Numerical and theoretical analysis of the crosstalk in linear optical amplifiers. IEEE J. Quantum Electron.,2005,41(5):636-641
    [40]T. Akiyama, M. Ekawa, M. Sugawara, et al. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photon. Technol. Lett.,2005,17(8):1614-1616
    [41]A. Tomoyuki, M. Ekawa, M. Sugawara, et al. Quantum dots for semiconductor optical amplifiers. in Optical Fiber Communication Conference,2005, p.OWM2
    [42]T. Akiyama, M. Sugawara, and Y. Arakawa. Quantum-dot semiconductor optical amplifiers. Proc. IEEE,2007,95(9):1757-1766
    [43]Y. Liu, E. Tangdiongga, M. T. Hill, et al. Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop. IEEE J. Sel. Top. Quantum Electron.,2008,14(3):801-807
    [44]L. A. Coldren. Multi-function integrated InP-based photonic circuits. in the 34th European Conference on Optical Communication, Brussels, Belgium,2008, p. Tu.1.A.2
    [45]P. Runge, R. Elschner, C. A. Bunge, et al. Operational conditions for extinction ratio improvement in ultralong SOAs. IEEE Photon. Technol. Lett.,2009,21(2):106-108
    [46]M. Sugawara, T. Akiyama, N. Hatori, et al. Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators. Meas. Sci. Technol.,2002,13(11):1683-1691
    [47]J. Slovak, C. Bornholdt, U. Busolt, et al. Optically clocked ultra long SOAs:A novel technique for high speed 3R signal regeneration. in Optical Fiber Communication Conference, 2004, p. WD4
    [48]Y Liu, E. Tangdiongga, Z. Li, et al. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. J. Lightwave Technol., 2006,24(1):230-236
    [49]J. Sakaguchi, T. Nishida, and Y. Ueno. 200-Gb/s wavelength conversion using a delayed-interference all-optical semiconductor gate assisted by nonlinear polarization rotation. Opt. Commun.,2009,282(9):1728-1733
    [50]K. Tajima, S. Nakamura, and Y. Ueno. Ultrafast all-optical signal processing with Symmetric Mach-Zehnder type all-optical switches. Opt. Quantum Electron.,2001,33(7):875-897
    [51]J. Dong, X. Zhang, J. Xu, et al.40Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier:Experimental demonstration and theoretical analysis. Opt. Commun.,2008,281(6):1710-1715
    [52]Y. Jung, C. Son, S. Lee, et al. Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates. Opt. Quantum Electron.,2008,40(5): 425-430
    [53]S. Ma, Z. Chen, and N. K. Dutta. All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun.,2009,282(23):4508-4512
    [54]H. J. S. Dorren, D. Lenstra, Y. Liu, et al. Nonlinear polarization rotation in semiconductor optical amplifiers:Theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron.,2003,39(1):141-148
    [55]S. Fu, P. Shum, L. Zhang, et al. Design of SOA-based dual-loop optical buffer with a 3×3 collinear coupler:Guideline and optimizations. J. Lightwave Technol.,2006,24(7): 2768-2778
    [56]E. Zhou, X. Yu, X. Zhang, et al. Photonic generation of ultrawideband monocycle and doublet pulses by using a semiconductor-optical-amplifier-based wavelength converter. Opt. Lett., 2009,34(9):1336-1338
    [57]M. A. Anton, F. Carreno,O. G. Calderon, et al. Phase-controlled slow and fast light in current-modulated semiconductor optical amplifiers. J. Phys. B:At. Mol. Opt. Phys.,2009, 42(9):095403
    [58]J. Dong, X. Zhang, S. Fu, et al. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE J. Sel. Top. Quantum Electron., 2008,14(3):770-778
    [59]K. L. Hall, J. Mark, E. P. Ippen, et al. Femtosecond gain dynamics in InGaAsP optical amplifiers. Appl. Phys. Lett.,1990,56(18):1740-1742
    [60]K. L. Hall, Y. Lai, E. P. Ippen, et al. Femtosecond gain dynamics and saturation behavior in InGaAsP multiple quantum well optical amplifiers. Appl. Phys. Lett.,1990,57(27): 2888-2890
    [61]Y. Lai, K. L. Hall, E. P. Ippen, et al. Short pulse gain saturation in InGaAsP diode laser amplifiers. IEEE Photon. Technol. Lett.,1990,2(10):711-713
    [62]K. L. Hall, G. Lenz, E. P. Ippen, et al. Carrier heating and spectral hole burning in strained-layer quantum-well laser amplifiers at 1.5μm. Appl. Phys. Lett.,1992,61(21): 2512-2514
    [63]K. L. Hall, A. M. Darwish, E. P. Ippen, et al. Femtosecond index nonlinearities in InGaAsP optical amplifiers. Appl. Phys. Lett.,1993,62(12):1320-1322
    [64]K. L. Hall, G. Lenz, A. M. Darwish, et al. Subpicosecond gain and index nonlinearities in InGaAsP diode lasers. Opt. Commun.,1994,111(5-6):589-612
    [65]J. Mφrk and A. Mecozzi. Theory of the ultrafast optical response of active semiconductor waveguides. J. Opt. Soc. Am. B,1996,13(8):1803-1816
    [66]J. Zhou, N. Park, J. W. Dawson, et al. Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier. Appl. Phys. Lett.,1993,63(9): 1179-1181
    [67]A. D'Ottavi, E. Iannone, A. Mecozzi, et al. Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing. Appl. Phys. Lett.,1994,64(19):2492-2494
    [68]K. Kikuchi, M. Amano, C. E. Zah, et al. Analysis of origin of nonlinear gain in 1.5μm semiconductor active layers by highly nondegenerate four-wave mixing. Appl. Phys. Lett., 1994,64(5):548-550
    [69]A. Girndt, A. Knorr, M. Hofmann, et al. Theoretical analysis of ultrafast pump-probe experiments in semiconductor amplifiers. Appl. Phys. Lett.,1995,66(5):550-552
    [70]P. Borri, W. Langbein, J. Mork, et al. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection. Opt. Commun.,1999, 169(1-6):317-324
    [71]T. Katayama and H. Kawaguchi. Measurement of self- and cross-gain saturation dynamics using two-color heterodyne pump-probe technique. IEEE Photon. Technol. Lett.,2005,17(6): 1244-1246
    [72]L. Occhi, Y. Ito, H. Kawaguchi, et al. Intraband gain dynamics in bulk semiconductor optical amplifiers:Measurements and simulations. IEEE J. Quantum Electron.,2002,38(1):54-60
    [73]P. Borri, S. Scaffetti, J. Mφrk, et al. Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Opt. Commun.,1999,164(1-3):51-55
    [74]T. Akiyama, H. Kuwatsuka, T. Simoyama, et al. Ultrafast nonlinear processes in quantum-dot optical amplifiers. Opt. Quantum Electron.,2001,33(7):927-938
    [75]H. J. S. Dorren, X. Yang, A. K. Mishra, et al. All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier. IEEE J. Sel. Top. Quantum Electron., 2004,10(5):1079-1092
    [76]A. Uskov, J. Mork, and J. Mark. Theory of short-pulse gain saturation in semiconductor laser amplifiers. IEEE Photon. Technol. Lett.,1992,4(5):443-446
    [77]B. R. Bennett, R. A. Soref, and J. A. Del Alamo. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron.,1990,26(1):113-122
    [78]R. Giller, R. J. Manning, and D. Cotter. Gain and phase recovery of optically excited semiconductor optical amplifiers. IEEE Photon. Technol. Lett.,2006,18(9):1061-1063
    [79]J. M. Dailey and T. L. Koch. Impact of carrier heating on SOA transmission dynamics for wavelength conversion. IEEE Photon. Technol. Lett.,2007,19(14):1078-1080
    [80]J. Wang, A. Maitra, C. G. Poulton, et al. Temporal dynamics of the alpha factor in semiconductor optical amplifiers. J. Lightwave Technol.,2007,25(3):891-900
    [81]P. B. Hansen, J. M. Wiesenfeld, G. Eisenstein, et al. Repetition-rate dependence of gain compression in InGaAsP optical amplifiers using picosecond optical pulses. IEEE J. Quantum Electron.,1989,25(12):2611-2620
    [82]Y. Ueno, S. Nakamura, and K. Tajima. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B,2002,19(11): 2573-2589
    [83]L. Schares, C. Schubert, C. Schmidt, et al. Phase dynamics of semiconductor optical amplifiers at 10-40 GHz. IEEE J. Quantum Electron.,2003,39(11):1394-1408
    [84]M. L. Nielsen and J. Mφrk. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. J. Opt. Soc. Am. B, 2004,21(9):1606-1619
    [85]E. Zhou, F. Ohman, C. Cheng, et al. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt. Express,2008,16(26):21522-21528
    [86]E. Zhou, X. Zhang, Y. Yu, et al. Suppression of nonlinear patterning effect in wavelength conversion based on transient cross-phase modulation in semiconductor optical amplifier assisted with a detuning filter. Chin. Phys. Lett.,2009,26(3):034213
    [87]D. Mahgerfteh, C. Pak, J. Goldhar, et al. Technique for suppression of pattern dependence in a semiconductor-optical-amplifier wavelength converter. IEEE Photon. Technol. Lett.,1997, 9(12):1583-1585
    [88]M. L. Nielsen, J. Mφrk, R. Suzuki, et al. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Opt. Express,2006,14(1):331-347
    [89]R. J. Manning, D. A. O. Davies, and J. K. Lucek. Recovery rates in semiconductor laser amplifiers:Optical and electrical bias dependencies. Electron. Lett.,1994,30(15):1233-1235
    [90]F. Ginovart and J. C. Simon. Semiconductor optical amplifier length effects on gain dynamics. J. Phys. D:Appl. Phys.,2003,36(13):1473-1476
    [91]S. Dommers, V. Temnov, U. Woggon, et al. Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett.,2007,90:033508
    [92]J. Kim, C. Meuer, D. Bimberg, et al. Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett.,2009,94(4):041112-3
    [93]M. Usami, M. Tsurusawa, and Y. Matsushima. Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier. Appl. Phys. Lett.,1998,72(21): 2657-2659
    [94]T. P. Hessler, M. A. Dupertuis, B. Deveaud, et al. Optical speedup at transparency of the gain recovery in semiconductor optical amplifiers. Appl. Phys. Lett.,2002,81(17):3119-3121
    [95]M. T. Hill, E. Tangdiongga, H. de Waardt, et al. Carrier recovery time in semiconductor optical amplifiers that employ holding beams. Opt. Lett.,2002,27(18):1625-1627
    [96]J. L. Pleumeekers, M. Kauer, K. Dreyer, et al. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Technol. Lett.,2002,14(1):12-14
    [97]M. Nielsen and J. Mφrk. Bandwidth enhancement of SOA-based switches using optical filtering:Theory and experimental verification. Opt. Express,2006,14(3):1260-1265
    [98]Y. Liu, E. Tangdiongga, Z. Li, et al. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. J. Lightwave Technol.,2007,25(1):103-108
    [99]P. Runge, C. A. Bunge, and K. Petermann. All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZ-Signals in ultralong bulk semiconductor optical amplifiers. IEEE J. Quantum Electron.,2010,46(6):937-944
    [100]M. J. Connelly. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron.,2001,37(3):439-447
    [101]C.-Y. Jin, W.-H. Guo, Y.-Z. Huang, et al. Photon iterative numerical technique for steady-state simulation of gain-clamped semiconductor optical amplifiers. IEE Proc.:Optoelectron.,2003, 150(6):503-507
    [102]M. Connelly. Wideband steady-state numerical model of a tensile-strained bulk semiconductor optical amplifier. Opt. Quantum Electron.,2006,38(12):1061-1068
    [103]D. A. O. Davies. Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation. IEEE Photon. Technol. Lett.,1995,7(6):617-619
    [104]A. Mecozzi. Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett.,1996,8(11):1471-1473
    [105]M. L. Nielsen, D. J. Blumenthal, and J. Mork. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers. J. Lightwave Technol.,2000,18(12): 2151-2157
    [106]T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion. J. Lightwave Technol., 1992,10(8):1056-1065
    [107]D. Cassioli, S. Scotti, and A. Mecozzi. A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J. Quantum Electron.,2000,36(9): 1072-1080
    [108]J. Park, X. Li, and W. P. Huang. Comparative study of mixed frequency-time-domain models of semiconductor laser optical amplifiers. IEE Proc.:Optoelectron.,2005,152(3):151-159
    [109]M. A. Summerfield and R. S. Tucker. Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron.,1999,5(3):839-850
    [110]P. Morel, A. Sharaiha, R. Brenot, et al. Wideband Gain and Noise Figure Modelling in SOA. Opt. Quantum Electron.,2006,38(1):231-236
    [111]M. Y. Hong, Y. H. Chang, A. Dienes, et al. Subpicosecond pulse amplification in semiconductor laser amplifiers:Theory and experiment. IEEE J. Quantum Electron.,1994, 30(4):1122-1131
    [112]M. Premaratne, D. Nesic, and G. P. Agrawal. Pulse amplification and gain recovery in semiconductor optical amplifiers:A systematic analytical approach. J. Lightwave Technol., 2008,26(12):1653-1660
    [113]J. Carroll, J. Whiteaway, and D. Plumb. Distributed feedback semiconductor lasers. London, UK:The Institution of Electrical Engineers,1998
    [114]B. Kim, Y. Chung, and J. Lee. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron.,2000,36(7):787-794
    [115]O. Hess and T. Kuhn. Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. Ⅱ. Spatiotemporal dynamics. Phys. Rev. A,1996,54(4):3360-3368
    [116]H. F. Hofmann and O. Hess. Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. Phys. Rev. A,1999,59(3):2342-2358
    [117]H. Haug and S. W. Koch. Quantum theory of the optical and electronic processes of semiconductors.4th ed. Singapore:World Scientific,2004
    [118]C. Klingshirn. Semiconductor Optics.3rd ed. Berlin Heidelberg:Springer,2007
    [119]W. Li, G. X. Chen, W. P. Huang, et al. An advanced quasi-3D model for semiconductor optical amplifiers. in Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Canada,2004, pp.2131-2134
    [120]J. Park and Y. Kawakami. Time-domain models for the performance simulation of semiconductor optical amplifiers. Opt. Express,2006,14(7):2956-2968
    [121]G. P. Agrawal. Gain nonlinearities in semiconductor lasers:Theory and application to distributed feedback lasers. IEEE J. Quantum Electron.,1987,23(6):860-868
    [122]A. Uskov, J. Mork, and J. Mark. Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electron.,1994,30(8):1769-1781
    [123]A. Mecozzi and J. Mork. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers. IEEE J. Sel. Top. Quantum Electron.,1997, 3(5):1190-1207
    [124]L. Occhi, L. Schares, and G Guekos. Phase modeling based on the a-factor in bulk semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron.,2003,9(3):788-797
    [125]K. A. Shore and D. A. S. Chan. Kramers-Kronig relations for nonlinear optics. Electron. Lett., 1990,26(15):1206-1207
    [126]D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, et al. Kramers-Kronig relations in nonlinear optics. Opt. Quantum Electron.,1992,24(1):1-30
    [127]L. Kador. Kramers-Kronig relations in nonlinear optics. Appl. Phys. Lett.,1995,66(22): 2938-2939
    [128]G. P. Agrawal and N. K. Dutta. Semiconductor lasers.2nd ed. New York:Van Nostrand Reinhold,1993
    [129]L. A. Coldren and S. W. Corzine. Diode lasers and photonic integrated circuits. New York: Wiley,1995
    [130]T. P. Hessler, P. E. Selbmann, J. L. Pleumeekers, et al. Propagation effects on the ultrafast cross-gain modulation in semiconductor optical amplifiers. Opt. Commun.,2005,248(1-3): 267-280
    [131]M. Matsuura, N. Kishi, and T. Miki. All-optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters. IEEE Photon. Technol. Lett.,2006,18(8):926-928
    [132]N. Ogasawara and R. Ito. Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. Ⅱ. Theory. Jpn. J. Appl. Phys.,1988,27(4):615-626
    [133]M. Asada and Y. Suematsu. Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers. IEEE J. Quantum Electron.,1985,21(5):434-442
    [134]C. Z. Ning, R. A. Indik, and J. V. Moloney. Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum Electron.,1997,33(9):1543-1550
    [135]M. Willatzen, A. Uskov, J. Mork, et al. Nonlinear gain suppression in semiconductor lasers due to carrier heating. IEEE Photon. Technol. Lett.,1991,3(7):606-609
    [136]O. Hess and T. Kuhn. Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation. Phys. Rev. A,1996,54(4):3347-3359
    [137]A. J. Lowery. Amplified spontaneous emission in semiconductor laser amplifiers:Validity of the transmission-line laser model. IEE Proc:Optoelectron.,1990,137(4):241-247
    [138]M. G. Davis and R. F. O'Dowd. A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers. IEEE J. Quantum Electron.,1994,30(11):2458-2466
    [139]G P. Agrawal and N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron.,1989,25(11): 2297-2306
    [140]A. Yariv. Quantum electronics.3rd ed. New York:Wiley,1989
    [141]J. Park, X. Li, and W.-P. Huang. Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors. IEEE J. Quantum Electron.,2003,39(11):1415-1423
    [142]G. X. Chen, W. Li, C. L. Xu, et al. Time and spectral domain properties of distributed-feedback-type gain-clamped semiconductor optical amplifiers. IEEE Photon. Technol. Lett.,2006,18(8):932-934
    [143]C.-Y. Jin, Y.-Z. Huang, L.-J. Yu, et al. Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field. IEEE J. Quantum Electron.,2004,40(5):513-518
    [144]S. L. Chuang. Physics of optoelectronic devices. New York:John Wiley & Sons,1995
    [145]N. K. Dutta and Q. Wang. Semiconductor optical amplifiers. Singapore:World Scientific, 2006
    [146]B. N. Gomatam and A. P. DeFonzo. Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers. IEEE J. Quantum Electron.,1990,26(10):1689-1704
    [147]W. H. Knox, D. S. Chemla, G. Livescu, et al. Femtosecond carrier thermalization in dense fermi seas. Phys. Rev. Lett.,1988,61(11):1290-1294
    [148]R. H. Yan, S. W. Corzine, L. A. Coldren, et al. Corrections to the expression for gain in GaAs. IEEE J. Quantum Electron.,1990,26(2):213-216
    [149]C. H. Henry, R. A. Logan, and K. A. Bertness. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers. J. Appl. Phys.,1981,52(7):4457-4461
    [150]J. Wang and H. C. Schweizer. Time-development of transient-carrier temperature, density, and gain spectrum in ultrashort optical pulse excited InGaAs multiquantum-well laser structure. IEEE J. Sel. Top. Quantum Electron.,1997,3(2):218-222
    [151]J. Manning, R. Olshansky, and S. Chin. The carrier-induced index change in AlGaAs and.1.3 μm InGaAsP diode lasers. IEEE J. Quantum Electron.,1983,19(10):1525-1530
    [152]J. Mφrk, J. Mark, and C. P. Seltzer. Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Appl. Phys. Lett.,1994,64(17):2206-2208
    [153]J. Mark and J. Mφrk. Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory. Appl. Phys. Lett.,1992,61(19):2281-2283
    [154]J. M. Tang and K. A. Shore. Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency. IEEE J. Quantum Electron.,1998,34(7):1263-1269
    [155]J. Lin, J. Zhang, F.-S. Choa, et al. A low-crosstalk semiconductor optical amplifier. IEEE Photon. Technol. Lett.,2004,16(2):392-394
    [156]W. H. Press, S. A. Teukolsky, W. T. Vetterling, et al. Numerical recipes in C++:The art of scientific computing.2nd ed. New York:Cambridge University Press,2002
    [157]M. Sheik-Bahae, J. Wang, and E. W. Van Stryland. Nondegenerate optical Kerr effect in semiconductors. IEEE J. Quantum Electron.,1994,30(2):249-255
    [158]M. Y. Hong, Y. H. Chang, A. Dienes, et al. Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers. IEEE J. Sel. Top. Quantum Electron.,1996,2(3):523-539
    [159]Y. H. Kao, T. J. Xia, M. N. Islam, et al. Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current. J. Appl. Phys.,1999,86(9): 4740-4747
    [160]C. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron.,1982, 18(2):259-264
    [161]M. Osinski and J. Buus. Linewidth broadening factor in semiconductor lasers--An overview. IEEE J. Quantum Electron.,1987,23(1):9-29
    [162]L. D. Westbrook and M. J. Adams. Simple expressions for the linewidth enhancement factor in direct-gap semiconductors. IEE Proc.:Optoelectron.,1987,134(4):209-214
    [163]M. Gioannini, A. Sevega, and I. Montrosset. Simulations of Differential Gain and Linewidth Enhancement Factor of Quantum Dot Semiconductor Lasers. Opt. Quantum Electron.,2006, 38(4):381-394
    [164]S. Nakamura, Y. Ueno, and K. Tajima. Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch. Appl. Phys. Lett.,2001,78(25):3929-3931
    [165]C.-K. Sun, B. Golubovic, H.-K. Choi, et al. Femtosecond investigations of spectral hole burning in semiconductor lasers. Appl. Phys. Lett.,1995,66(13):1650-1652
    [166]A. J. Zilkie, J. Meier, P. W. E. Smith, et al. Linewidth enhancement factors in 1.55μm quantum dot, quantum dash, and quantum well amplifiers. in Conference on Lasers and Electro-Optics,2007, p. CThK2
    [167]J. R. Cary, S. G. Shasharina, J. C. Cummings, et al. Comparison of C++ and Fortran 90 for object-oriented scientific programming. Comput. Phys. Commun.,1997,105(1):20-36
    [168]C. Blilie. Patterns in scientific software: An introduction. Comput. Sci. Eng.,2002,4(3): 48-53
    [169]D. T. Schaafsma, E. Miles, and E. M. Bradley. Comparison of conventional and gain-clamped semiconductor optical amplifiers for wavelength-division-multiplexed transmission systems. J. Lightwave Technol.,2000,18(7):922-925
    [170]T. G. Silveira, A. Teixeira, G. T. Beleffi, et al. All-optical conversion from RZ to NRZ using gain-clamped SOA. IEEE Photon. Technol. Lett.,2007,19(6):357-359
    [171]M. van der Poel and J. M. Hvam. Ultrafast dynamics of quantum-dot semiconductor optical amplifiers. J. Mater. Sci.:Mater. Electron.,2007,18(0):51-55
    [172]J. Vazquez, J. Z. Zhang, and I. Galbraith. Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification. Opt. Quantum Electron.,2004, 36(6):539-549
    [173]M. vanderPoel, E. Gehrig, O. Hess, et al. Ultrafast gain dynamics in quantum-dot amplifiers: Theoretical analysis and experimental investigations. IEEE J. Quantum Electron.,2005,41(9): 1115-1123
    [174]W. Mathlouthi, F. Vacondio, P. Lemieux, et al. SOA gain recovery wavelength dependence: Simulation and measurement using a single-color pump-probe technique. Opt. Express,2008, 16(25):20656-20665
    [175]J. Leuthold, D. M. Marom, S. Cabot, et al. All-optical wavelength conversion using a pulse reformatting optical filter. J. Lightwave Technol.,2004,22(1):186-192
    [176]H. Chen, G. Zhu, Q. Wang, et al. All-optical logic XOR using differential scheme and Mach-Zehnder interferometer. Electron. Lett.,2002,38(21):1271-1273
    [177]M. Zhang, Y. Zhao, L. Wang et al. Design and analysis of all-optical XOR gate using SOA-based Mach-Zehnder interferometer. Opt. Commun.,2003,223(4-6):301-308
    [178]Q. Wang, G. Zhu, H. Chen, et al. Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme. IEEE J. Quantum Electron.,2004,40(6):703-710
    [179]P. Runge, R. Elschner, C. A. Bunge, et al. Extinction ratio improvement due to a Bogatov-like effect in ultralong semiconductor optical amplifiers. IEEE J. Quantum Electron.,2009,45(6): 629-636
    [180]G. Contestabile, R. Proietti, N. Calabretta, et al. Cross-gain compression in semiconductor optical amplifiers. J. Lightwave Technol.,2007,25(3):915-921
    [181]R. J. Manning and D. A. O. Davies. Three-wavelength device for all-optical signal processing. Opt. Lett.,1994,19(12):889-991
    [182]A. D. Ellis, A. E. Kelly, D. Nesset, et al. Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier. Electron. Lett., 1998,34(20):1958-1959
    [183]H. Han, M. Zhang, P. Ye, et al. Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear mach-zehnder interferometer. Opt. Commun.,2008,281(20):5140-5145
    [184]P. Runge, R. Elschner, and K. Petermann. Time-domain modeling of ultralong semiconductor optical amplifiers. IEEE J. Quantum Electron.,2010,46(4):484-491
    [185]H. Ju, S. Zhang, D. Lenstra, et al.SOA-based all-optical switch with subpicosecond full recovery. Opt. Express,2005,13(3):942-947
    [186]R. J. Manning, D. A. O. Davies, S. Cotter, et al. Enhanced recovery rates in semiconductor laser amplifiers using optical pumping. Electron. Lett.,1994,30(10):787-788
    [187]M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, et al. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photon. Technol. Lett.,2000, 12(11):1453-1455
    [188]S. Schuster and H. Haug. Influence of carrier kinetics on subpicosecond gain dynamics in diode laser amplifiers. Appl. Phys. Lett.,1995,66(22):2987-2989
    [189]H. Ju, A. V. Uskov, R. Notzel, et al. Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers. Appl. Phys. B,2006,82(4):615-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700