光信号处理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光信号处理技术是未来高速大容量光网络中的关键技术。论文主要基于半导体光放大器(SOA)、延迟干涉仪(DI)和光调制器等器件,研究了全光波长转换、光调制格式转换和全光信号再生等光信号处理技术和光脉冲幅度均衡技术。论文建立了SOA和DI的数值模型并分析了SOA-DI光开关的工作原理。基于SOA的数值模型,研究了基于SOA结合光滤波器的光脉冲幅度均衡技术。
     在理论研究的基础上进行了实验验证,实现了幅度抖动大于40%的20 GHz光脉冲的幅度均衡,当光脉冲重复频率提高至40 GHz、幅度抖动大于30%时,仍可得到很好的均衡效果。
     基于SOA-DI光开关实现了10 Gb/s和40 Gb/s RZ信号波长转换。针对NRZ信号,提出了一种基于非线性偏振开关(NPS)结合DI的NRZ信号波长转换方案。利用DI的整形功能,有效改善了NPS波长转换信号的消光比和Q值,提高了波长转换信号背靠背和传输后的接收灵敏度。
     利用延时量可调的DI,实现了基于SOA-DI光开关的NRZ到RZ全光格式转换。该方案具有适用于不同速率、转换信号脉宽可调的优点,且当SOA工作在饱和状态时,该方案对时钟功率变化不敏感。提出了基于级联铌酸锂相位强度调制器和色散补偿光纤的NRZ到RZ格式转换器,获得了低占空比、低抖动的RZ信号,转换后的RZ信号具有良好的传输性能。
     论文最后部分研究了基于SOA-DI光开关的全光信号再生技术。通过理论和实验研究了基于SOA-DI光开关的全光2R再生,利用蓝移滤波技术抑制了40 Gb/s再生时的码型效应。提出了一种基于SOA-DI-SOA结构的新型全光2R再生器,利用另一SOA中的交叉增益调制效应实现了SOA-DI输出信号的再生放大。该方案有效地提高了SOA-DI 2R再生器的性能和对恶化信号的再生容限。实现了以SOA-DI作判决门、自脉动激光器作时钟提取单元的40 Gb/s全光3R再生,实现了PMD恶化信号的时钟提取和再生,消除了ASE恶化信号的误码平台,实现无误码操作。
Optical signal processing is a key technology in future high-speed and large- capacity optical network. In this dissertation, optical signal processing technologies including all-optical wavelength conversion, optical format conversion and all-optical regeneration as well as optical pulse-amplitude-equalization technology are intensively studied based on optical devices such as semiconductor optical amplifier (SOA), delayed interferometer (DI) and optical modulators.
     Firstly, we present numerical models for SOA and DI, and analyze the operation principle of the SOA-DI optical gate. Based on the numerical model of SOA, a method of optical pulse-amplitude-equalization is proposed and theoretically studied. Experiments are also carried out to verify the proposed scheme. The experimental and numerical results agree well. Amplitude equalization of optical pulses with amplitude fluctuation of more than 40% at a repetition rate of 20 GHz is demonstrated. The scheme also works well when it is applied to the amplitude equalization of 40 GHz optical pulses with amplitude fluctuation of greater than 30%.
     All-optical wavelength conversion of RZ signals at 10 Gb/s and 40 Gb/s is demonstrated based on the SOA-DI optical gate. Wavelength converter based on a nonlinear polarization switch (NPS) and a DI is proposed and demonstrated for the wavelength conversion of NRZ signals. The extinction ratio and the Q-factor of the wavelength-converted signal based on NPS are effectively improved due to the reshaping function of the DI, leading to the receiver sensitivity improvement of the NPS-converted signal before and after transmission.
     By using a DI with variable delays, we demonstrate an all-optical NRZ-to-RZ format converter. The scheme can be used to convert input signals at different bit rates and can obtain converted signals with tunable duty cycles. The format converter is insensitive to the power fluctuation of the optical clock as the SOA works in the saturation regime. Besides, we also propose and demonstrate NRZ-to-RZ format conversion based on cascaded lithium niobate phase and intensity modulators followed by a section of DCF. By using this scheme, RZ signal with a low duty cycle and low timing jitter can be obtained. The converted RZ shows excellent transmission performance.
     Finally, all-optical regeneration based on SOA-DI configuration is investigated. The SOA-DI-based all-optical 2R regenerator is theoretically and experimentally studied. The blue-shifted optical filtering technique is used to mitigate the impact of pattern effects at a bit rate of 40 Gb/s. A novel all-optical 2R regenerator based on SOA-DI-SOA configuration is proposed and demonstrated. The cross-gain modulation in a second SOA is utilized to achieve the regenerative amplification of the optical signal out of DI. The performance of the SOA-DI regenerator is greatly improved and is more tolerant to the degradation of the input signal. Furthermore, 40 Gb/s 3R regeneration of degraded signals is also demonstrated by incorporating the SOA-DI as the optical decision gate and a self-pulsating laser as the clock recovery unit. The waveform of the PMD-degraded signal is successfully restored after the 3R regeneration. The bit-error rate floor of the ASE-degraded signal is removed and error-free operation is achieved.
引文
[1] Gnauck A H, Charlet G, Tran P, et al. 25.6-Tb/s C+L-band transmission of polarizationmultiplexed RZ-DQPSK signals. Proceedings of OFC’07, 2007. PDP19.
    [2] KoosC, VorreauP, VallaitisT, et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4):216-219.
    [3] Hedekvist P O, Karlsson M,Andrekson P A. Fiber four-wave mixing demultiplexing with inherent parametric amplification. Journal of Lightwave Technology, 1997, 15(11):2051-2058.
    [4] Doran N J,Wood D. Nonlinear-optical loop mirror. Optics Letters, 1988, 13(1):56-58.
    [5] Nakazawa M, Yamamoto T,Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24):2027-2029.
    [6] Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6):1428-1435.
    [7] Liu Y, Tangdiongga E, Li Z, et al. Error-Free 320 Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier. Journal of Lightwave Technology, 2007, 25(1):103-108.
    [8] Yoo S J B. Wavelength conversion technologies for WDM network applications. Journal of Lightwave Technology, 1996, 14(6):955-966.
    [9] Ramamurthy B,Mukherjee B. Wavelength conversion in WDM networking. IEEE Journal on Selected Areas in Communications, 1998, 16(7):1061-1073.
    [10] Galili M, Oxenlowe L K, Mulvad H C H, et al. Optical Wavelength Conversion by Cross-Phase Modulation of Data Signals up to 640 Gb/s. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3):573-579.
    [11] Contestabile G, Presi M,Ciaramella E. Multiple wavelength conversion for WDM multicasting by FWM in an SOA. IEEE Photonics Technology Letters, 2004, 16(7):1775-1777.
    [12] Contestabile G, Calabretta N, Presi M, et al. Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA. IEEE Photonics Technology Letters, 2005, 17(12):2652-2654.
    [13] Chung H S, Inohara R, Nishimura K, et al. All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting. Electronics Letters, 2005, 41(7):432-433.
    [14] Norte D, Park E,Willner A E. All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network. IEEE Photonics Technology Letters, 1995, 7(8):920-922.
    [15] Norte D,Willner A E. Experimental demonstrations of all-optical conversions between the RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency. IEEE Photonics Technology Letters, 1996, 8(5):712-714.
    [16] Li W, Minghua C, Yi D, et al. All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror. IEEE Photonics Technology Letters, 2004, 16(1):203-205.
    [17] Lei X, Wang B C, Baby V, et al. All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter. IEEE Photonics Technology Letters, 2003, 15(2):308-310.
    [18] Dong J, Zhang X, Xu J, et al. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express, 2007, 15(6):2907-2914.
    [19] Xuelin Y, Manning R J, Mishra A K, et al. Application of Semiconductor Optical Amplifiers in High-Speed All-Optical NRZ to RZ Format Conversion. Proceedings of ICTON '07, 2007, 228-231.
    [20] Chung Ghiu L, Yun Jong K, Chul Soo P, et al. Experimental demonstration of 10 Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror. Journal of Lightwave Technology, 2005, 23(2):834-841.
    [21] Silveira T G, Teixeira A L J, Ferreira A P S, et al. All-Optical Vestigial Sideband Generation Using a Semiconductor Optical Amplifier. IEEE Photonics Technology Letters, 2006, 18(21):2212-2214.
    [22] Lee S H, Chow K,Shu C. Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion. Optics Express, 2005, 13(5):1710-1715.
    [23] Kwok C H,Lin C. Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(3):451-458.
    [24] Leuthold J, Joyner C H, Mikkelsen B, et al. 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electronics Letters, 2000, 36(13):1129-1130.
    [25] Yu Y, Zhang X, Rosas-Fernández J B, et al. Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s. Optics Express, 2009, 17(5):3964-3969.
    [26] Mishina K, Maruta A, Mitani S, et al. NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter. Journal of Lightwave Technology, 2006, 24(10):3751-3758.
    [27] Cishuo Y, Yikai S, Lilin Y, et al. All-Optical Format Conversion From NRZ to BPSK Using a Single Saturated SOA. IEEE Photonics Technology Letters, 2006, 18(22):2368-2370.
    [28] Huan J, He W, Liuyan H, et al. All-Optical NRZ-OOK to BPSK Format Conversion in an SOA-Based Nonlinear Polarization Switch. IEEE Photonics Technology Letters, 2007, 19(24):1985-1987.
    [29] Guo-Wei L,Miyazaki T. Optical Phase Add–Drop for Format Conversion Between DQPSK and DPSK and its Application in Optical Label Switching Systems. IEEE Photonics Technology Letters, 2009, 21(5):322-324.
    [30] Jian W, Junqiang S, Xinliang Z, et al. Proposal for PPLN-Based All-Optical NRZ-to-CSRZ, RZ-to-CSRZ, NRZ-DPSK-to-CSRZ-DPSK, and RZ-DPSK-to-CSRZ-DPSK Format Conversions. IEEE Photonics Technology Letters, 2008, 20(12):1039-1041.
    [31] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect. Proceedings of ECOC’98, 471:475-476.
    [32] Matsumoto M. Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration. Optics Express, 2006, 14(23):11018-11023.
    [33] Petropoulos P, Provost L, Parmigiani F, et al. Simultaneous 2R regeneration of WDM signals in a single optical fibre. Proceedings of IEEE/LEOS Winter Topicals Meeting Series, 2009, 252-253.
    [34] Provost L, Parmigiani F, Petropoulos P, et al. Investigation of Simultaneous 2R Regeneration of Two 40 Gb/s Channels in a Single Optical Fiber. IEEE Photonics Technology Letters, 2008, 20(4):270-272.
    [35] Rouvillain D, Brindel P, Seguineau E, et al. Optical 2R regenerator based on passive saturable absorber for 40 Gbit/s WDM long-haul transmissions. Electronics Letters, 2002, 38(19):1113-1114.
    [36] Leuthold J,Kauer M. Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters. Electronics Letters, 2002, 38(24):1567-1569.
    [37] Contestabile G, Presi M, Proietti R, et al. Optical Reshaping of 40 Gb/s NRZ and RZ Signals Without Wavelength Conversion. IEEE Photonics Technology Letters, 2008, 20(13):1133-1135.
    [38] D'Errico A, Contestabile G, Proietti R, et al. 2R Optical Regeneration combining XGC in a SOA and a Saturable Absorber. Proceedings of OFC’08, OWK4.
    [39] Zuqing Z, Funabashi M, Zhong P, et al. Jitter and Amplitude Noise Accumulations in Cascaded All-Optical Regenerators. Journal of Lightwave Technology, 2008, 26(12):1640-1652.
    [40] Wang Z, Wang T, Lou C, et al. A novel approach for clock recovery without pattern effect from degraded signal. Optics Communications, 2003, 219(1-6):301-306.
    [41] Lasri J, Devgan P, Renyong T, et al. Ultralow timing jitter 40 Gb/s clock recovery using a self-starting optoelectronic oscillator. IEEE Photonics Technology Letters, 2004, 16(1):263-265.
    [42] Pan S,Yao J. Optical Clock Recovery Using a Polarization-Modulator-Based Frequency-Doubling Optoelectronic Oscillator. Journal of Lightwave Technology, 2009, 27(16):3531-3539.
    [43] Tsuchida H,Suzuki M. 40 Gb/s optical clock recovery using an injection-locked optoelectronic oscillator. IEEE Photonics Technology Letters, 2005, 17(1):211-213.
    [44]权爽,姚敏玉,张洪明,等.利用光锁相环路实现40Gb/s时钟恢复.光学学报, 2007, 27(8):1382-1386.
    [45] Smith K,Lucek J K. All-optical clock recovery using a mode-locked laser. Electronics Letters, 1992, 28(19):1814-1816.
    [46] Ellis A D, Smith K,Patrick D M. All optical clock recovery at bit rates up to 40 Gbit/s. Electronics Letters, 1993, 29(15):1323-1324.
    [47] Xiang Z, Chao L, Ping S, et al. A performance analysis of an all-optical clock extraction circuit based on Fabry-Perot filter. Journal of Lightwave Technology, 2001, 19(5):603-613.
    [48] Contestabile G, Errico A D, Presi M, et al. 40 GHz all-optical clock extraction using a semiconductor-assisted fabry-Pe´rot filter. IEEE Photonics Technology Letters, 2004, 16(11):2523-2525.
    [49] Sartorius B, Bornholdt C, Brox O, et al. All-optical clock recovery module based on self-pulsating DFB laser. Electronics Letters, 1998, 34(17):1664-1665.
    [50] Lavigne B, Renaudier J, Lelarge F, et al. Polarization-Insensitive Low Timing Jitter and Highly Optical Noise Tolerant All-Optical 40 GHz Clock Recovery Using a Bulk and a Quantum-Dots-Based Self-Pulsating Laser Cascade. Journal of Lightwave Technology, 2007, 25(1):170-176.
    [51] Lavigne B, Renaudier J, Lelarge F, et al. Polarization-Insensitive Low Timing Jitter and Highly Optical Noise Tolerant All-Optical 40 GHz Clock Recovery Using a Bulk and a Quantum-Dots-Based Self-Pulsating Laser Cascade. Journal of Lightwave Technology, 2007, 25(1):170-176.
    [52] Nakazawa M, Yamada E, Kubota H, et al. 10 Gbit/s soliton data transmission over one million kilometres. Electronics Letters, 1991, 27(14):1270-1272.
    [53] Zuqing Z, Funabashi M, Zhong P, et al. 10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10 Gb/s transmission. IEEE Photonics Technology Letters, 2006, 18(5):718-720.
    [54] Chris I,Cartledge J C. Polarization Independent All-Optical 3R Regeneration Based on the Kerr Effect in Highly Nonlinear Fiber and Offset Spectral Slicing. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3):616-624.
    [55] Ueno Y, Nakamura S,Tajima K. Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator. IEEE Photonics Technology Letters, 2001, 13(5):469-471.
    [56] Huang Y-K, Glesk I, Shankar R, et al. Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD. Optics Express, 2006, 14(22):10339-10344.
    [57] Savage S, Robinson B, Hamilton S, et al. Wavelength-maintaining polarization-insensitive all-optical 3R regenerator. Optics Express, 2006, 14(5):1748-1754.
    [58] Leuthold J, Mikkelsen B, Behringer R E, et al. Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration. IEEE Photonics Technology Letters, 2001, 13(8):860-862.
    [59] Leuthold J, Raybon G, Su Y, et al. 40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1000000 km. Electronics Letters, 2002, 38(16):890-892.
    [60] Zhong P, Zuqing Z, Funabashi M, et al. 101-hop cascaded operation of an optical-label switching router with all-optical clock recovery and 3R regeneration. IEEE Photonics Technology Letters, 2006, 18(15):1654-1656.
    [61] Huo L, Pan S, Wang Z, et al. Optical 3R regeneration of 40 Gbit/s degraded data signals. Optics Communications, 2006, 266(1):290-295.
    [62] Hwan Seok C, Inohara R, Nishimura K, et al. 40 Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer. IEEE Photonics Technology Letters, 2006, 18(2):337-339.
    [63] Joergensen C, Durhuus T, Braagaard C, et al. 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1993, 5(6):657-660.
    [64] Durhuus T, Joergensen C, Mikkelsen B, et al. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration. IEEE Photonics Technology Letters, 1994, 6(1):53-55.
    [65] Patel N S, Hall K L,Rauschenbach K A. 40 Gbitys cascadable all-optical logic with an ultrafast nonlinear interferometer. Optics Letters, 1996, 21(18):1466-1468.
    [66] Sokoloff J P, Prucnal P R, Glesk I, et al. A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technology Letters, 1993, 5(7):787-790.
    [67] Ueno Y, Nakamura S, Tajima K, et al. 3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC). IEEE Photonics Technology Letters, 1998, 10(3):346-348.
    [68] Wolfson D, Kloch A, Fjelde T, et al. 40 Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 2000, 12(3):332-334.
    [69] Nielsen M, M?rk J, Suzuki R, et al. Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches. Optics Express, 2005, 13(13):5080-5086.
    [70] Nakamura S, Ueno Y,Tajima K. 168 Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch. IEEE Photonics Technology Letters, 2001, 13(10):1091-1093.
    [71] Leuthold J, Moller L, Jaques J, et al. 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters, 2004, 40(9):554-555.
    [72] Xuefeng T, Na Young K,Cartledge J C. Noise Transfer Characteristics in a Semiconductor Optical Amplifier With Application to Wavelength Conversion Based on a Delay Interferometer. Journal of Lightwave Technology, 2008, 26(12):1715-1721.
    [73] Nielsen M L, Lavigne B,Dagens B. Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering. Electronics Letters, 2003, 39(18):1334-1335.
    [74] Tangdiongga E, Liu Y, Waardt H d, et al. 320-to-40 Gb/s demultiplexing using a single SOA assisted by an optical filter. IEEE Photonics Technology Letters, 2006, 18(8):908-910.
    [75] Tangdiongga E, Liu Y, de Waardt H, et al. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Optics Letters, 2007, 32(7):835-837.
    [76] Mahgerfteh D, Pak C, Goldhar J, et al. Technique for suppression of pattern dependence in a semiconductor-optical-amplifier wavelength converter. IEEE Photonics Technology Letters, 1997, 9(12):1583-1585.
    [77] Nielsen M L, M?rk J, Suzuki R, et al. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1):331-347.
    [78] Hsiao-Yun Y, Mahgerefteh D, Cho P S, et al. Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating. Journal of Lightwave Technology, 1999, 17(2):308-315.
    [79] Nielsen M L, M?rk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optical Society of America B, 2004, 21(9):1606-1619.
    [80] Hsiao-Yun Y, Mahgerefteh D, Cho P S, et al. Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter. Journal of Lightwave Technology, 1999, 17(5):898-903.
    [81] Leuthold J, Marom D, Cabot S, et al. All-optical wavelength converter based on a pulse reformatting optical filter. Proceedings of OFC’03, 2003, PD41.
    [82] Xiang T, Huan J, LanGbin H, et al. Improvement of the performance for wavelength converters based on cross-polarization modulation. Proceedings of ECOC’05, 2005, 3:661-662.
    [83] Zhang J, Wu J, Feng C, et al. All-Optical Logic Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering. IEEE Photonics Technology Letters, 2007, 19(1):33-35.
    [84] Liu Y, Tangdiongga E, Li Z, et al. 80 Gbit/s wavelength conversion using semiconductor optical amplifier and optical bandpass filter. Electronics Letters, 2005, 41(8):487-489.
    [85] Liu Y, Tangdiongga E, Li Z, et al. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology, 2006, 24(1):230-236.
    [86] Soto H, Erasme D,Guekos G. Cross-polarization modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1999, 11(8):970-972.
    [87] Liu Y, Hill M T, Tangdiongga E, et al. Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier. IEEE Photonics Technology Letters, 2003, 15(1):90-92.
    [88] Fu S, Zhong W-D, Shum P P, et al. All-optical NRZ-OOK-to-RZ-OOK format conversions with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier. Optics Communications, 2009, 282(11):2143-2146.
    [89] Guo L Q,Connelly M J. All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier. Optics Express, 2006, 14(7):2938-2943.
    [90] Mu C, Chongqing W, Hiltunen J, et al. A Variable Delay Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifier. IEEE Photonics Technology Letters, 2009, 21(24):1885-1887.
    [91] Mingshan Z, Merlier J D, Morthier G, et al. All-optical 2R regeneration based on polarization rotation in a linear optical amplifier. IEEE Photonics Technology Letters, 2003, 15(2):305-307.
    [92] Yi D, Zhihong L, Chao L, et al. 3R all-optical regeneration and wavelength conversion based on cross polarization modulation effect from a single semiconductor optical amplifier. Proceedings of LEOS’03, 2003, 401:403-404.
    [93] Sakaguchi J, Nishida T,Ueno Y. 200 Gb/s wavelength conversion using a delayed-interference all-optical semiconductor gate assisted by nonlinear polarization rotation. Optics Communications, 2009, 282(9):1728-1733.
    [94] Agrawal G P,Olsson N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1989, 25(11):2297-2306.
    [95] Mecozzi A, M?rk J. Saturation induced by picosecond pulses in semiconductor optical amplifiers. Journal of the Optical Society of America B, 1997, 14(4):761-770.
    [96] Asghari M, White I H,Penty R V. Wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 1997, 15(7):1181-1190.
    [97] Occhi L, Schares L,Guekos G. Phase modeling based on the α-factor in bulk semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(3):788-797.
    [98] Willner A E,Shieh W. Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability. Journal of Lightwave Technology, 1995, 13(5):771-781.
    [99] Henry C. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 1986, 4(3):288-297.
    [100] Lowery A J. Amplified spontaneous emission in semiconductor laser amplifiers: validity of the transmission-line laser model. IEE Proceedings of Optoelectronics, 1990, 137(4):241-247.
    [101]滕翔.基于半导体光放大器中载流子调制效应的波长转换器[博士学位论文].北京:清华大学, 2008.
    [102] Jeon M-Y, Lee H K, Ahn J T, et al. Pulse-amplitude-equalized output from a rational harmonic mode-locked fiber laser. Optics Letters, 1998, 23(11):855-857.
    [103] Lee H J, Kim K,Kim H G. Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror. Optics Communications, 1999, 160(1-3):51-56.
    [104] Zhihong L, Caiyun L, Kam Tai C, et al. Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser. IEEE Journal of Quantum Electronics, 2001, 37(1):33-37.
    [105] Lee C G, Kim Y J, Choi H K, et al. Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback. Optics Communications, 2002, 209(4-6):417-425.
    [106] Yang S, Li Z, Zhao C, et al. Pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both mode locker and equalizer. IEEE Photonics Technology Letters, 2003, 15(3):389-391.
    [107] Xinhuan F, Yange L, Shuzhong Y, et al. Pulse-amplitude equalization in a rational harmonic mode-locked fiber laser using nonlinear modulation. IEEE Photonics Technology Letters, 2004, 16(8):1813-1815.
    [108] Zhan L, Wang P H, Gu Z C, et al. Amplitude-equalized high-order arbitrary numerator rational harmonic mode-locked pulse generation in fiber-ring lasers using nonlinear polarization rotation. Optics Express, 2005, 13(3):836-841.
    [109] Doi M, Sugiyama M, Tanaka K, et al. Advanced LiNbO/sub 3/ optical modulators for broadband optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4):745-750.
    [110]杨彦甫. 160 Gb/s OTDM的关键技术及EAM在光通信中的应用[博士学位论文].北京:清华大学, 2007.
    [111]周鸿波.基于铌酸锂调制器的超短光脉冲源[硕士学位论文].北京:清华大学, 2007.
    [112] Chia Chien W, Ming Fang H,Chen J. Enhancing the frequency response of cross-polarization wavelength conversion. IEEE Photonics Technology Letters, 2005, 17(8):1683-1685.
    [113] Sato K, Kuwahara S,Miyamoto Y. Chirp characteristics of 40 Gb/s directly Modulated distributed-feedback laser diodes. Journal of Lightwave Technology, 2005, 23(11):3790-3797.
    [114] Matsuura M, Iwatsu N, Kitamura K, et al. Time-Resolved Chirp Properties of SOAs Measured With an Optical Bandpass Filter. IEEE Photonics Technology Letters, 2008, 20(23):2001-2003.
    [115] Sahara A, Kubota H,Nakazawa M. Ultra-high speed soliton transmission in presence of polarisation mode dispersion using in-line synchronous modulation. Electronics Letters, 1999, 35(1):76-78.
    [116] Kolner B H. Space-time duality and the theory of temporal imaging. IEEE Journal of Quantum Electronics, 1994, 30(8):1951-1963.
    [117] Jiang L A, Grein M E, Haus H A, et al. Timing jitter eater for optical pulse trains. Optics Letters, 2003, 28(2):78-80.
    [118] Agrawal G P. Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.
    [119] Li H, Yi D, Caiyun L, et al. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technology Letters, 2003, 15(7):981-983.
    [120]霍力.光电振荡器注入锁定特性研究及其应用[硕士学位论文].北京:清华大学, 2003.
    [121] Bischoff S, Lading B,Mork J. BER estimation for all-optical regenerators influenced by pattern effects. IEEE Photonics Technology Letters, 2002, 14(1):33-35.
    [122] Sun Y, Pan J Q, Zhao L J, et al. All optical clock recovery for 40Gbs using an amplified feedback DFB laser. Proceedings of SPIE, 2009, 76310E .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700