接管焊接机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,机器人已经被广泛应用到焊接领域。在石油、化工、核电、锅炉和管道工程当中存在着大量的接管焊接。现有的机器人难以满足接管焊接需要,接管焊接作业基本上还是手工操作。人工焊接的操作环境恶劣、劳动量大、效率低下。针对现有接管焊接机器人焊接和人工焊接的局限性,在全面总结接管焊接机器人最新研究成果基础上,本文针对接管焊接机器人的若干关键技术问题,在以下方面进行了研究。
     本文针对接管相贯线焊接的特殊性,在综合分析现有接管焊接机器人技术特点及应用的基础上,开发了具有多自由度特殊结构的接管焊接机器人。工作现场借助于其它定位装置,将机器人放置到接管上方实现焊接作业,实现了焊接工艺要求。根据实际需要,研发了采用钢带传动的焊枪摆动机构。
     本文所研究的接管焊接机器人控制系统采用了CAN总线体系结构和工业PC机为开放性系统核心,集成了以PC机为数据运算处理和以单片机作为关节节点控制的硬件平台。
     接管焊接机器人运动模型的建立是实现焊接自动化的一个技术基础。针对研发的接管焊接机器人,利用D-H坐标建立了机器人运动学模型,求解了逆运动学模型,并对其建立了雅可比、力雅可比和动力学模型,为接管焊接机器人的设计开发提供了基础依据。
     针对送丝过程当中阻力呈严重非线性的特点,采用状态观测对扰动力进行观测并进行前馈以提高系统的速度响应,利用模糊PI对送丝机进行控制实现了安全可靠送丝。根据接管相贯线的数学模型建立了焊接的速度控制模型,开发了人机控制界面,实现了各个节点的运动控制。
     焊接实验结果表明接管焊接机器人能实现接管相贯线的自动焊接,焊缝质量良好,系统运行稳定可靠、效率高,焊接实验证明本文所研究的接管焊接机器人设计合理,能可靠地应用于工业现场,是一种提高效率、减少工人劳动强度和焊接质量优良的机器人。
Robots have been widely applied to the welding field with the development of technology. In the petroleum, the chemical industry, the nuclear power, the boiler and the pipeline project, there are a large number of intersected pipes welding, the current robots cannot meet practical needs, and the nozzle welding tasks are basically completed by manual welding operation, which has characteristics of bad environment, high labor intensity, low efficiency, and poor quality. Aiming at the limitations of the manual welding and the robotic welding, an intersecting pipe robot with special structure was developed. Based on a comprehensive summary of the latest research, the related key technologies were researched, the main results outline as follows.
     According to the welding particularity on the intersection of intersected pipe, the multi-freedom robot with special structure was developed based on analyzing the technical features and application foundation of the current robots. By means of other positioning device, the welding operation can be carried out while laying the robot over the top of weldment. A swing mechanism of the gun drived by steel belt was developed according to actual needs.
     The control system of the nozzle welding robot is considered the CAN-bus as network, PC as the core of the open system, PC as data processing and single chip microcomputer as nodes control, the hardware platform of the welding robot control system was integrated, the relevant hardware and interface design were achieved, a more open system hardware and software platform were established.
     The motion model of the welding robot is a theoretical basis for welding automation, aiming to the joints relationship of the welding robot developed, the robot kinematics model was established according to the D-H coordinate, and the inverse kinematics model was solved by using analytic method; the Jacobian, the force Jacobian and dynamic model were established, all these work provide the foundation for design and development.
     The resistances against the wire feeding process show serious nonlinear characteristics, the state observer to observe the interference and feed-forward loop were adopt, which can improve the speed respond, the secure and reliable wire feeding was accomplished by using Fuzzy-PI control. The welding speed control model was established based on the mathematical intersection model, the motion control of each node were realized, and the human-machine interface for system control functions was developed.
     The welding experiments indicate the automatic welding of intersecting line can be achieved, the weld was formed well, and the system operates stably and reliably. The welding experiment shows that the practicability and feasibility of welding robot system are reasonable, and the welding robot has the character of high efficiency, good reliability, reducing the labor intensity of workers, and ensuring welding quality.
引文
[1]周律.基于视觉伺服的弧焊机器人焊接路径获取方法研究.上海交通大学博士论文.2007.
    [2]任福深.基于PC+DSP模式的管道插接专用焊接机器人系统研究.北京工业大学博士论文.2009.
    [3]刘永.弧焊机器人工作站智能化技术研究.南京理工大学博士论文.2005.
    [4]张连新.基于多智能体技术的机器人遥控焊接系统研究.哈尔滨工业大学博士论文.2006.
    [5]董晓雨.机器人焊接工装的即插即用控制技术的研究.上海交通大学硕士论文.2008.
    [6]熊友伦.机器人技术基础.华中科技大学出版社.1992.
    [7]吴林.焊接机器人新一代的自动化焊接手段.电子工艺技术.1985,7:1-7P.
    [8]Satoshi Yamme. Fuzzy Control in Seam Tracking of the Welding Robots Using Sensor Fusion. Industry Applications Society Annual Meeting.1994,3:1741-1747P.
    [9]Shaheen Ahmad. Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination through Constrained Optimization in Cartesian Space. Robotics and Automation.1988,3:963-968P.
    [10]Arlo L. Ames. Automated Generation of Weld Path Trajectories. Assembly and Task Planning, From Nano to Macro Assembly and Manufacturing.2005,182-187P.
    [11]Yuji SUGITANI. Systemization with CAD/CAM Welding Robots for Bridge abrication. Advanced Motion Control,1996. AMC '96-MIE. Proceedings.1996, 1:80-85P.
    [12]Mehrdad Bahrami-Samani. Design and Analysis of a Welding Robot. International Conference on Automation Science and Engineering.1996,1:454-459P.
    [13]SHIMON ANDO. Current Status and Future of Intelligent Industrial Robots. Industrial Electronics, IEEE Transactions on. 1983,30:291-299P.
    [14]Ole Madsen. A SYSTEM FOR COMPLEX ROBOTIC WELDING. Industrial Robot.2002,29(2):127-131P.
    [15]Erika Hedblom. Mutipass welding of nuclear reactor components- computations. Research report of Lulea university of technology.2002.
    [16]P. Chatzakos. On the development of a modular external-pipe crawling omni-directional mobile robot. Industrial Robot.2006, 33(4):291-297P.
    [17]Hans Ole Olsen. Automated Ultrasonic Examination of Inclined Nozzle Welds Using Robot and 3D Reconstruction.7th European Conference on Non-destructive Testing.1998,3(10):232-234P.
    [18]冯胜强.基于UG的弧焊机器人离线编程系统的设备建模.焊接学报.2009,29(4):89-92P.
    [19]冯胜强.基于UG的弧焊机器人模型装配与运动仿真.天津大学学报.2009,42(6):518-522.
    [20]马国红.复杂焊接机器人系统的协同控制.上海交通大学学报.2006,40(6):881-883P.
    [21]李晓辉.骑座相贯线焊接机器人运动学分析及仿真.北京航空航天大学学报.2008,34(8):964-968P.
    [22]霍孟友.基于PMAC的椭球面封头接管自动焊接装置.焊接学报.2005,26(1):74-77P.
    [23]杨新刚.弧焊机器人结构设计与运动学、轨迹规划研究.西安理工大学硕士论文.2005.
    [24]段铁群.基于ADAMS接管马鞍形自动焊机运动仿真.焊接. 2208,11:63-66P.
    [25]任福深.管道插接相贯线专用焊接机器人.焊接学报.2009,30(6):59-62P.
    [26]http://www.weld21.com/company/show_product.asp?id=22296, 2009.9.25
    [27]http://www.hgwelding.com/bjhg/product.asp,2009.9.25
    [28]Qiang Chen. A Robot for Welding Repair of Hydraulic Turbine Blade.2008 IEEE International Conference on Robotics, Automation and Mechatronics.2008,155-159P.
    [29]李亮玉.FANUC弧焊机器人系统标定研究与实现.天津工业大学学报.2007,26(2):69-72.
    [30]Ting Yao. Development of a Robot System for Pipe Welding. 2010 International Conference on Measuring Technology and Mechatronics Automation.2010,1109-1112.
    [31]Sakuma, M. Monitoring and analysis of welder's behavior in manual welding.8th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Evaluation of Human-Machine Systems. 2001.
    [32]张富巨.窄间隙焊及其新进展.Welding Technology.2000,29(6):33-36.
    [33]Xingang, Miao. Research of welding robot controlled by PMAC and ARM two processors. CAR 2009.2009,111-113P.
    [34]刘蕾.基于VC++与PMAC的机器人控制软件的开发.机器人技术.2008,24(2):203-205.
    [35]武传宇.基于PC+DSP模式的开放式机器人控制系统及其应用研究.浙江大学博士学位论文.2002.
    [36]http://www.designnews.com.cn/images/Article/8bbc8365-ddcd-4 607-89c9-c1d9e2c12026/PMAC2.jpg,2009.10.25
    [37]刘蕾.基于VC++与PMAC的机器人控制软件的开发.微计算机信息.2008,24(2):203-205. [38]潘炼东.开放式机器人控制器及相关技术研究.华中科技大学博士学位论文.2007.[39] Xingang, Miao. Research of welding robot controlled by PMAC and ARM two processors. CAR2009,2009,111-113P.
    [40]王恒升.凿岩机器人双三角臂定位及CAN总线控制系统研究.中南大学博士学位论文.2006.
    [41]Wan, Xiao-Feng. Application and implementation of CAN bus technology in industry real-time data communication. ICIMA 2009,2009,278-281P.
    [42]http://articles.e-works.net.cn/bus/article17215.htm,2009.10.25
    [43]Yang, Jun. Redundant design of a CAN BUS testing and communication system for space robot arm. ICARCV 2008.2008, 1894-1898P
    [44]Shen, Fei. Design and application on foot sensor of biped humanoid robot based on CAN bus. Chinese Journal of Sensors and Actuators.2004,17(1):39-41P.
    [45]梁园.CAN总线技术在工业码垛机器人控制系统中的应用研究.今日电子.2009,6:54-55P.
    [46]Wei, R. Distributed hardware-in-the-loop simulation for space robot on CAN bus.32nd Annual Conference on IEEE Industrial Electronics.2006,3928-3933P.
    [47]孙兵.基于CAN总线的机械手控制系统.微计算机信息2003,19(11):14-16.
    [48]粟中权.基于CAN总线的机器人控制系统的设计与实现.应用技术.2004,4:16-18.
    [49]杨旭东.CAN总线在弧焊机器人控制系统中的应用.机械工程与自动化.2006,4(2):39-41.
    [50]C. Y. Ho and Jen Sriwattanathamma. symbolic automation and numerical synthesis. Ablex Publishing Corporation.1990.
    [51]Caux, S. Modeling and control of biped robot dynamics. Robotica. 1999,17(4):413-426P.
    [52]叶长龙.焊接机器人焊接相贯线曲线仿真.沈阳工业大学学报.2003,25(5):426-429.
    [53]Ayiz, Cihan. The kinematics of industrial robot manipulators based on the exponential rotational matrices. IEEE International Symposium on Industrial Electronics.2009,977-982P.
    [54]Liu shaogang. Inverse kinematics and welding experiments of the intersecting pipe welding robot. China welding.2009,4.
    [55]席文明.机器人相对雅可比矩阵解析求解方法研究.东南大学学报.2004,32(4):1-6.
    [56]Mitra, Sanjit K. FAST COMPUTATION OF JACOBIAN AND INVERSE JACOBIAN OF ROBOT MANIPULATORS. The International Society for Optical Engineering.1984, 521:235-242P.
    [57]Fijany, Amir. EFFICIENT JACOBIAN INVERSION FOR THE CONTROL OF SIMPLE ROBOT MANIPULATORS.1988 IEEE International Conference on Robotics and Automation.1988, 999-1007P.
    [58]Bajodah, Abdulrahman H. Servo-constraint generalized inverse dynamics for robot manipulator control design. ICCA 2009. 2009:1019-1026P.
    [59]高海涛.通用组合式教育机器人动力学模型及其快速仿真算法.东南大学学报.2009,25(3):340-345.
    [60]Yuan, Shaoqiang. Modeling and simulation of robot based on matlab/simmechanics. Proceedings of the 27th Chinese Control Conference.2008,161-165P.
    [61]Dong, Yu-Hong. Modeling and simulation of Cobot based on double over-running clutches and SimMechanics. Journal of Harbin Engineering University.2005,26(5):596-602P.
    [62]Liu Shao-gang. Path planning and system simulation for an industrial spot welding robot based on SimMechanics. Key Engineering Materials Vols.419-420 (2010):pp 665-668.
    [63]杜宏旺.接管焊接机器人运动学及轨迹修正.焊接学报.2009,30(7):46-49P.
    [64]Gao, Dao-Xiang. Simulation research of robust adaptive control system for robotic manipulators based on MATLAB/Simulink. Journal of System Simulation.2006,18(7):2022-2025P.
    [65]Awa, Yuhi. Kinematics simulation by using ODE and MATLAB. SICE Annual Conference, SICE 2007.2007,3090-3094P.
    [66]李焰.MIG/MAG焊送丝机控制系统.焊接学报.1991,12(1):59-63P.
    [67]Tunyasrirut, S. Adaptive fuzzy PI controller for speed of separately excited DC motor. IEEE SMC'99 Conference Proceedings.1999,6:196-201P.
    [68]Fang, Mingxing. Positioning control of DC motor based on compensation of equivalent-input-disturbance. Chinese Journal of Scientific Instrument.2009,30(9):1801-1807P.
    [69]Tunyasrirut, S. Adaptive fuzzy PI controller for speed of separately excited DC motor. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 1999,6:196-201P.
    [70]董玉红.直流伺服系统中的摩擦力矩仿真研究.模式识别与仿真技术.2004,23(8):25-27P.
    [71]Tsai, J.S.H. Implementation of state-feedback control law for singular systems via an input-output feedback structure. International Journal of Systems Science. 1995, 26(11):2139-2158P.
    [72]Manwong, Uthai. Implementation of a dSPACE DSP-based state feedback with state observer using Matlab/Simulink for a speed control of DC motor system. ICCAS 2008.2009,2433-2436P.
    [73]Chen Rong. Rearch on resist-disturbance performance of servo system based on load bserver. Proeeedings of the CSEE.2008, 24(8):103-108P.
    [74]Zboray, Ladislav. Design of Control of a DC Drive with an Observer. Elektrotechnicky obzor.1985,74(9):491-495P.
    [75]Yoo, Abraham. FOM (Figure of Merit) analysis for low voltage power MOSFETs in DC-DC converter. EDSSC 2007.2007, 1039-1042P.
    [76]王岚.基于Fuzzy控制的零重力操作系统.模式识别与仿真技术.2005,(24)12:48-50P.
    [77]张文.降维状态观测器的两种设计方法及算例.军械工程学院学报.2005 17(3):62-64.
    [78]T, Wey. Modeling and observer design for hydraulic cylinders. IEEE Mediterranean Conference on Control and Systems.1995, 40:1-6P.
    [79]Kim, C.-S.. Speed control of an overcentered variable-displacement hydraulic motor with a load-torque observer. Control Engineering Practice.1996,4(11):1563-1570P.
    [80]Ugur Tumerdem. Haptic Consensus in Bilateral Teleoperation. Proceedings of the 2007 4th IEEE International Conference on Mechatronics.2007,1-6P.
    [81]http://baike.baidu.com/view/857009.htm?func=retitle,2010.2.12
    [82]刘莉莉.基于学习前馈控制的永磁直线伺服系统跟踪控制研究.大连轻工业学院学报.2007,26(1):60-62.
    [83]Mantz, Ricardo J. Regulating and tracking PID controller. Industrial and Engineering Chemistry Research.1990, 29(7):1249-1253P.
    [84]Devanathan, R. Expert pid controller. Proc of the Int Workshop on Artif Intell for Ind Appl.1988,525-530P.
    [85]Lee, Jietae. Improved technique for PID controller tuning from closed-loop tests. AIChE Journal.1990,36(12):1891-1895.
    [86]Khan, Asim Ali. Fuzzy PID controller:Design, tuning and comparison with conventional PID controller. ICEIS 2006.2006.
    [87]Zhang, Yanhong. Research on the parameters self-tuning fuzzy PID controller. KAM 2009.2009,3:77-80P.
    [88]Munoz-Cesar, J.J. Speed control of a DC brush motor with conventional PID and fuzzy PI controllers. CERMA 2008.2008, 344-349P.
    [89]Sae, Kyu Nam. Fuzzy PID control with accelerated reasoning for d.c. servo motors. Engineering Applications of Artificial Intelligence.1994,7(5):559-569P.
    [90]http://zhidao.baidu.com/question/3754219.html,2009.11.8
    [91]Solihin, Mahmud Iwan. Fuzzy-tuned PID control design for automatic gantry crane. ICIAS 2007.2007,1092-1097P.
    [92]Lu, Jianhong. Fuzzy PID controller and its application study in the temperature control system. Proceedings of the Chinese Society of Electrical Engineering.1995,15(1):16-22P.
    [93]Iracleous, D.P. Fuzzy tuned PI controllers for series connected DC motor drives. IEEE International Symposium on Industrial Electronics.1995,2:495-499P.
    [94]Wang, Jack De. A general purpose foolproof fuzzy controller. Abstracts and Summaries.1992:181-183P.
    [95]Lee, C.K. Brushless DC motor speed control system using fuzzy rules. Proceedings of the 5th International Conference on Power Electronics and Variable-Speed Drives.1994,399:101-106.
    [96]Aras, Mohd Shahrieel Mohd. Comparison of fuzzy control rules using MATLAB toolbox and simulink for DC induction motor-speed control. SoCPaR 2009-Soft Computing and Pattern Recognition.2009,711-715P.
    [97]Weon, S. Learning achievement evaluation strategy using fuzzy membership function. Frontiers in Education Conference.2001, 1:19-24.
    [98]Zhou, Shumin. A fuzzy radon replenishment control method based on Takagi-Sugeno model. The International Society for Optical Engineering.2008,7129:71291D.1-71291D.7.
    [99]亨塞尔曼.精通Matlab 7.清华大学出版社.2006.
    [100]王立权.基于Fuzzy-PID的水下作业机械手控制系统设计.液压与气动.2005,1:27-31P.
    [101]潘炼东.开放式机器人控制器及相关技术研究.华中科技大学博士学位论文.2007.
    [102]边广韬.机器人作两圆柱相贯线运动的一种轨迹规划方法.组合机床与自动化技术.2009,9:24-26P.
    [103]吕燕.马鞍形曲线自动焊接四轴联动插补算法.焊接学报.2009,30(5):81-84P.
    [104]周锋.五轴相贯线焊接机器人控制系统研究.制造技术基础.2007,10(5):4-8P.
    [105]霍孟友.自动焊接相贯线接缝的实时插补控制算法与仿真焊接学报.2006,27(11):37-40P.
    [106]张敏.多自由度切割机器人的软件设计.哈尔滨工程大学硕士学位论文.2005.
    [107]霍孟友.复杂相贯线接缝自动焊接的运动控制算法.焊接学报.2006,27(2):9-12P.
    [108]Saikawa, Shikoh. STUDY ON MULTI-PASS WELDING OF NOZZLES (REPORT 2)-WELDING PROCEDURE BY INDUSTRIAL ROBOT. Quarterly Journal of the Japan Welding Society.1984,2(2):77-81P.
    [109]边广韬.机器人作两圆柱相贯线运动的一种轨迹规划方法. 组合机床与自动化技术.2009,9:24-26P.
    [110]任福深.管道插接相贯线专用焊接机器人.焊接学报.2009,30(6):59-62P.
    [111]李鑫.Robot焊接过程自适应模糊控制技术.哈尔滨理工大学学报.2004,9(6):21-23P.
    [112]王攀峰.相贯线切割机器人作业单元关键技术研究.天津大学博士学位论文.2008.
    [113]黄卫权.基于可编程多轴控制器(PMAC)三轴转台伺服控制系统设.导弹与制导学报.2008,28(6):75-78P.
    [114]Wang, Lisong. Economical CNC machine tool semi-closed control and screw error compensation algorithm. China Mechanical Engineering.2006,17(1):64-66+70P.
    [115]Xingang, Miao. Research of welding robot controlled by PMAC and ARM two processors. CAR 2009.2009,111-113P.
    [116]吴鑫.基于CAN总线的弧焊机器人控制系统的设计.制造业自动化.2000,22(7):44-46.
    [117]刘军.三种阶跃响应模型及控制器参数整定.控制工程.2006,13:1-3.
    [118]Terbuc, Martin. Open structure multiprocessor robot controller. IEEE International Symposium on Industrial Electronics.1999, 2:899-902P.
    [119]Lin, Shir-Kuan. Multiprocessor multitasking robot control system. Journal of Control Systems and Technology.1997, 5(2):87-98P.
    [120]Pelich, Ch. A multiprocessor based system for programming and controlling manipulators in robotic applications. International Conference on Advanced Robotics.1997,545-550P.
    [121]伊吉.工业机器人智能化技术在IGM焊接机器人中的应用研究.合肥工业大学硕士学位论文.2005.
    [122]George Shepherd, David Kruglinski. Programming with Microsoft Visual C++. China Machine Press.2003.
    [123]陈焕明.弧焊机器人离线编程系统的设计与实现.上海交通大学学报.2008,42(11):25-27+31P.
    [124]杨正祥.面向对象的机器人控制系统设计.武汉交通职业学院学报.2006,9(2):75-77.
    [125]李欣.工业机器人体系结构及其在焊接切割机器人中的应用研究.哈尔滨工程大学硕士学位论文.2008.3.
    [126]贾立山.基于多线程技术的3R机器人控制系统.微计算机信息.2007,23(6):243-245.
    [127]许春山.基于Visual C++6.0的机器人控制系统软件实现.计算机应用与软件.2003,1:11-13P.
    [128]http://www.lincolnelectric.com.cn/chinese/corporate.htm, 2010.3.1
    [129]潘际銮.现代弧焊控制.机械工业出版社.2000.
    [130]中国机械工程学会焊接学会.焊接手册.机械工业出版社.2001.
    [131]刘志平.高速列车铝合金车体的焊缝检验.焊接质量控制与管理.2008,37(1):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700