双转子三凸起凸轮转子叶片马达的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压马达是液压系统中重要的执行元件,而现有的定量马达在输入定流量和定压力液压油时,只能输出一种转速和转矩,很明显当这种定量马达应用在变速或变转矩较大的系统中时,系统的效率较低。双转子凸轮转子叶片马达是一种新型结构的液压马达,它在一个马达的壳体内形成了内、外多个马达,且内、外马达工作相互独立,通过改变内、外马达油口的连接方式可以实现马达的多级定排量输出。即一台双转子凸轮转子叶片马达在输入定压力、定流量液压油的条件下,不通过辅助调节控制阀就能够实现多种转速和转矩输出。
     本文首先介绍了国内、外液压元件的现状与发展趋势和国内专家、学者对凸轮转子叶片马达的研究方向。在分析了现有马达存在问基的础上,提出了一种新型结构的“双转子”凸轮叶片马达,并对马达的结构特点,工作原理和创新应用进行了详细的介绍,对马达内转子和外转子的受力进行了分析,推导出了马达瞬时转矩公式,找出了影响马达转矩脉动的参数。运用仿真软件solidworks建立了连杆和内转子的三维模型并对其强度进行了仿真,主要包括:对连杆滚柱运动学分析和对连杆磨损前和滚柱直径磨损0.5mm后的连杆抗弯应力强度仿真,以及内马达单独组合工作时,连杆径向抗压强度仿真。建立了马达的泄漏数学模型,找出了影响马达泄漏的主要因素,提出了提高马达容积效率的方法。最后,通过样机的实验,验证了新型结构马达工作原理的可行性,并针对得出的结论进行了分析和对以后工作的展望。
     以上所做的工作,只是马达设计初级阶段工作,这些结论和参数的获取,为双转子凸轮叶片马达的优化设计,以便更好地应用于实际奠定了基础。
Hydraulic motor is an important execution element in hydraulic system , but existingquantitative motor can only output a speed and torque, in the conditions of input constantflow and pressure hydraulic oil. Obviously when the quantitative motor used in variablespeed or variable torque systems, the system efficiency is low. Double-rotor cam-motorvane-rotor is a new type of structure of hydraulic motor. It formed two motors in a casinginside motor and outside motor, also the motors work independly. Through change thecombination way of internal and external motor oil mouth can realize multistage variabledisplacement output. Namely a double-rotor cam-motor vane-rotor motor can achieve avariety speed and torque without adjusting auxiliary control valves when input constantflow and pressure oil.
     Firstly, this paper introduced the domestic and foreign hydraulic components presentsituation and the development trend, also the domestic experts and teachers’researchdirection about cam-rotor vane motor. On the analysis of the current development and theexisting motor shortage, put forward a new type of "double rotor" cam-rotor vane motor,In addition, recommend characteristic structure of the motor and working principle andapplication of innovation in detail. And then derived the instantaneous torque formula ofafter the stress of outside rotor and insid rotor are analyzed, find out the influence factorsfor motor torque output pulse and four kinds of work combination with torque ripple issmaller. Using simulation software established three model and policy of the connectingrod and inside rotor, mainly including, the kinematics analysis of connecting rod and roller,also bending stress intensity check of connecting rod bisides the roller has been 0.5 mmweared . Connecting rod radial force compressive strength is simulated when alone intermotor work, and calculated the inter-rotor maximum stress position. Established internaland outernal leakage mathematics model and find out the main leakage influence factorsfor motor, put forward the way to improve the motor volume efficiency. Finally, throughthe experiment of the prototype verify the feasibility of the new structure motor, analysisthe conclusion and the prospects.
     The above analysis and conclusions just primary stage work of motor theory and experimental design, but these conclusions and parameters laid a foundation fordouble-rotor cam-rotor vane motor of optimization design and better applied in practical.
引文
[1] Wen Desheng, 2010. Theoretical Analysis of Output Speed of Multi-pump and Multi-motorDriving System[J]. Sci China Tech Sci, 2011, 54(4): 992-997.
    [2]赵武,杜长龙.液压元件的研究现状与发展趋势[J].煤炭科学技术2004, 34(14): 71-73.
    [3]张利平,周兰午,刘芬,等.定量泵液压系统节能方法研究[J].中国机械工程:2001,1(增刊):36-38.
    [4]李俊明,周云山,赵丁选.液压系统负载传感功率匹配与比例控制研究[J].农业机械学报,1998, 29(3): 62-66.
    [5] Paul J. Heney, Kathleen A. Franzinger. Fluid power 20/20.Hydraulics & Pneumatics, 2005,(1):20-26.
    [6]彭天好,徐兵,杨华勇.变频液压技术的发展及研究综述[J].浙江大学学报, 2004, 38(2):215-221.
    [7]许明.基于能量调节的电液变转速阀控马达驱动系统研究[D].浙江:浙江大学机械电子学科工学博士学位论文, 2009: 4-15,21-27.
    [8] Xu Bing,Yang Jian,Yang Hua-Yong. Conparision of energy-saving on the speed control of theVVVF hydraulic elevator with and without the pressure accumulator[J]. Mechatronics, 2005, 15:1159-1174.
    [9]闻德生,徐添,杜孝杰,等.多泵/多马达容积调速回路的理论分析[J].上海交通大学学报,2011, 45(9): 1294-1298.
    [10]闻德生,郭高峰,杜孝杰等.新型液压多泵在液压调速系统中的节能分析[J].中国机械工程, 2011, 22(24): 2966-2969.
    [11]闻德生,张勇,王志力,等.三作用多泵多马达输出转速和转矩的理论分析[J].西安交通大学学报, 2011, 45(3): 81-84.
    [12]刘延俊.液压与气压传动[M].北京:机械工业出版社, 2007: 20-24.
    [13] Max Lakkonen,Kari T. Koskinen,Matti Vilenius. Low pressure water hyraulics makes its move[J].Hydraulics & Pneumatics, 2005 (3):40-42.
    [14] Vikas Chawla,S. Prakash,B.S.Sidhu.State of the Art: Applications of Mechanically AlloyedNanomaterials—A Review[J]. Materials and Manufacturing Processes, 2007, (22): 469-473.
    [15] Max Lakkonen,Kari T. Koskinen,Matti Vilenius. Low pressure water hyraulics makes its move[J].Hydraulics & Pneumatics, 2005 (3): 40-42.
    [16]徐文震.新型纳米复合陶瓷材料在纯水比例溢流阀上的应用与研究[J].科学技术与工程,2011, 11(8): 1798-1801.
    [17] Vikas Chawla,S. Prakash,B.S.Sidhu.State of the Art: Applications of Mechanically AlloyedNanomaterials—A Review[J]. Materials and Manufacturing Processes,2007,(22):469-473.
    [18]许国超.绿色液压技术发展与推广[J].机床与液压, 2010, 38(20): 112-114.
    [19]李壮云.液压元件与系统[M].北京:机械工业出版社, 2010: 7-13.
    [20]陈丹.生物可降解液压油[J].液压气动与密封, 2004 (5):10-11.
    [21]李壮云,贺小峰,于祖耀,等.水液压技术的发展、机遇与展望[J].流体传动与控制2003,1(1): 13-19.
    [22]彭熙伟,陈建平.液压技术的发展动向[J].液压与气动, 2007, 3: 1-4.
    [23]王小红.现代液压传动技术发展的新方向-纯水液压传动[J].机床与液压, 2006, 8: 226-231.
    [24] Alan L. Hithchcox. On board electronics benefit mobile hydraulic systems[J]. Hydraulics &Pneumatics, 2003, (3): 20-24.
    [25]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报, 2003, 39(10): 95-99.
    [26]权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报, 2008, 44(11):87-91.
    [27]权龙,李凤兰,王祥.伺服电机定量泵驱动差动液压缸系统效率的研究[J].中国电机工程学报, 2006, 26(8): 93-97.
    [28]李建国,权龙.电液泵空差动缸的动态控制[J].流体传动与控制, 2009, 4(35): 5-7.
    [29]闻德生,高俊,王志力,等.双作用多泵多马达传动中马达输出转矩分析[J].中国机械工程,2010, 21(23): 2836-2838.
    [30] WEN Desheng, WANG Zhili, LV Shijun etal. Single-acting Double-stator Multi-pumps andMulti-motors[J]. Chongqing Univ: Eng Ed, 2010, 9(4): 208-215.
    [31] Wen Desheng, Wang Zhili, Gao Jun etal. Output speed and flow of double-acting multi-pumpand multi-motor[J]. Journal of Zhejiang University-Science A, 2011, 12(4): 301-309.
    [32]祁冠芳,虞万海.日本液压技术的发展与新动向[J].液压与气动, 2004, 1: 34-36.
    [33] Kim Hyun,Marie, Hazel1.Two-dimensional CFD Analysis of a Hydraulic Gear Pump[C]. ASEEAnnual Conference and Exposition, Conference Proceedings, 2007, June 24.
    [34]张或定.凸轮转子型叶片泵和叶片马达的结构与计算[J].机床与液压, 1977, 3: 42-53.
    [35]林信彰.凸轮转子叶片马达的研究[J].福州大学学报, 1995, 23(2): 59-64.
    [36]邱永榴,陈楚琳.凸轮转子式叶片泵的流量和叶片马达的转矩问题分析[J].机床与液压,1978, 2: 1-15.
    [37]李富成.凸轮转子叶片式气动马达主要参数设计计算[J].凿岩机械气动工具, 1998, 3:10-13.
    [38]刘鹏,王旭永,陶建峰.无磁仿真转台用凸轮转子马达叶片干扰力矩[J].上海交通大学学报, 2009, 44(12): 1773-1777.
    [39]赵辰,陶建峰,黄建.凸轮转子叶片马达端面缝隙压力场研究.中国科技论文在线http://www.paper.edu.cn
    [40]闻德生,吕世君,杜孝杰,等.双定子液压马达差动连接的理论分析[J].农业机械学报, 2011,42(9): 219-224.
    [41]谭雪松. SolidWorks机械设计中文版[M].北京:人民邮电出版社, 2008: 1-35.
    [42]池宁骏. Solidworks2007产品设计教程[M].西安:西北工业大学出版社, 2008: 95-145
    [43]何存兴.液压元件[M].北京:机械工业出版社, 1981: 159-165.
    [44]李壮云.液压元件与系统[M].北京:机械工业出版社, 2010, :53-5.
    [45]聂松林,李壮云,余祖耀.轴向柱塞式液压马达转矩特性的理论研究[J].液压与气动, 2002,7: 7-9.
    [46] Baranova, I.V, Aleksenko, O.V, Omelianenko, K.A, Shendryk, V.V. The specifics of vanepump firmness features research by means of COSMOSWorks[C] .Intelligent Data Acquisitionand Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference :684–687.
    [47]何庆中,王明超,赵献丹.基于Solidworks Simulation码垛机械手末端执行器导杆静力学分析[J].四川理工学院学报, 2011, 24(1): 109-112.
    [48]宁小波,邢刚,蒋全胜.基于COSMOSMotion/Works对运动构件的应力分析[J]. 2010, 12(6):69-72.
    [49]张文斌,韦深群,胡守忠.径向叶片式气动马达的泄漏分析和计算[J].上海力学, 1991, 12,(4):35-41.
    [50]曲鲁滨,王仲勋,周大鹏.少齿差液压马达径向泄漏特性分析[J].机床与液压, 2008, 36,(11): 77-79.
    [51]高殿荣,吴晓明.工程流体力学[M].北京:机械工业出版社, 1999:115-122.
    [52]曲鲁滨,王仲勋,周大鹏.少齿差液压马达轴向泄漏特性分析[J].煤矿机械, 2008, 29,(11):70-72.
    [53] Matsumoto, Kazuyuki; Ikeya, Mitsuei. Friction and leakage characteristics between the valve plateand cylinder for starting and low-speed conditions in a swashplate-type axial piston motor[J].Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of MechanicalEngineers, 1991, 57(538): 2023-2028.
    [54]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985:266.
    [55]万丽荣,曾庆良.液压马达加载测试装置的设计研究[J].机床与液压,2003,6:297-298.
    [56]曾庆良,万丽荣.电动机试验台的信号采集与数据处理[J].煤矿机械,2000,(6): 31-32.
    [57]黎克英,陆祥生.叶片式液压泵和马达[M].北京:机械工业出版社,1993:57-61.
    [58] Heon-Sul Jeong, Hyoung-Eui Kim. A Novel Performance Model Given by the PhysicalDimensions of Hydraulic Axial Piston Motors Experimental Analysis[J]. Journal of MechanicalScience and Technology, 2007, 21(4): 17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700