基于FGS的拥塞控制机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过因特网对现场或存储的视频进行实时传输是流媒体的主要内容之一。然而,由于当前因特网具有尽力而为的特性,它不为视频流提供任何的服务质量保证。此外,因特网的异构性使得它难于在视频组播中灵活地提供服务,从而满足用户宽范围的服务质量需求。因此,如何在因特网上传输高质量的视频流是当前的一个重要课题。
     本文首先介绍了流媒体技术的现状和发展趋势,分析了传统视频编码方法不适用于网络传输的原因,详述了面向传输的FGS视频编码方法及其特性。在此基础上,本文提出了一个基于FGS的拥塞控制机制。该拥塞控制机制通过RTCP提供的QoS反馈信息和丢包模型来确定视频流的发送速率,并根据FGS码流结构进行码率整形,使得视频流的发送速率能够动态地适应网络带宽的波动,从而最大限度地提高视频质量。最后,本文设计并实现了一个基于FGS的视频流系统。实验结果表明该拥塞控制机制能够实现一定的TCP友好性,并且能够保证视频质量随着网络带宽的波动而平稳地变化。
Real-time transport of live or stored video is one of the predominant parts of streaming media. However, the current best-effort Internet does not offer any QoS guarantees for streaming video. In addition, the heterogeneity of the Internet makes it difficult to efficiently support video multicast while providing service flexibility to meet a wide range of QoS requirements from users. Thus, how to transport streaming video with high quality is currently an important research issue.
    At first, the thesis introduces the status and development trend of streaming media, analyzes the reason that the traditional video coding techniques are not suitable for network transmission, and then expatiates the FGS video coding technique and its characteristics. On this basis, the thesis presents a FGS based congestion control mechanism. The mechanism determines the sending rate of video traffic based on packet loss model and feedback information about the network QoS provided by RTCP, and then adjusts the sending rate to the available network bandwidth through the use of rate shaping based on the structure of the FGS bitstream, so the optimal video quality is achieved. At the end of the thesis, a streaming video system is developed. The experimental results show that the mechanism can achieve the TCP-friendly behavior and the smooth variation of video quality while the network bandwidth varies.
引文
[1] 胡凯,宋京民,等.网络计算新技术.北京:科学出版社,2001.98-99.
    [2] 张丽.流媒体技术大全.北京:中国青年出版社,2001.2-3.
    [3] 钟玉琢,向哲,等.流媒体和视频服务器.北京:清华大学出版社,2003.2-3.
    [4] Wang Y, Ostermann J, Zhang Y Q.视频处理与通信.侯正信,杨喜,等译.北京:电子工业出版社,2003.170-171.
    [5] Pereira F, Ebrahimi T. The MPEG-4 book. Upper Saddle River: Prentice Hall PTR, 2002.37-60.
    [6] ITU-T. Recommendation H.264: Advanced video coding for generic audiovisual services. 2003.
    [7] Hoffman D, Fernando G, Goyal V, et al. RTP payload format for MPEG1/MPEG2 video. IETF, RFC 2250, 1998.
    [8] Liu C L, Layland J W. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of ACM, 1973, 20(1): 46-61.
    [9] Chung J Y, Liu J W S, Lin K J. Scheduling periodic jobs that allows imprecise results. IEEE Transactions on Computers, 1990, 19(9): 1156-1172.
    [10] Gemmell J, Christodoulakis S. Principles of delay sensitive multimedia data storage and retrieval. ACM Transactions on Information Systems, 1992, 10(1): 51-90.
    [11] Vin H M, Goyal P, Goyal A. A statistical admission control algorithm for multimedia servers. Proceedings of the second ACM international conference on Multimedia, San Francisco, CA, USA, 1994: 33-40.
    [12] Reddy A L, Wyllie J. Disk Scheduling in a multimedia I/O system. Proceedings of the first ACM international conference on Multimedia, Anaheim, CA, USA, 1993: 225-233.
    [13] Yu P S, Chen M S, Kandlur D D. Grouped sweeping scheduling for DASD-based multimedia storage management. ACM/Springer Multimedia Systems, 1993, 1(3): 99-109.
    [14] Hamidzadeh B, Tsun-Pin J. Dynamic scheduling techniques for interactive hypermedia servers. IEEE Transactions on Consumer Electronics, 1999, 45(1): 46-56.
    [15] Shenoy P, Vin H M. Efficient striping techniques for multimedia file servers. Performance Evaluation, 1999, 38(3-4): 175-199.
    [16] Du D H C, Lee Y J. Sealable server and storage architectures for video streaming. IEEE International Conference On Multimedia Computing and
    
    Systems, Florence, Italy, 1999, 1: 62-67.
    [17] Mourad A. Doubly-striped disk mirroring: reliable storage for video servers. Multimedia, Tools and Applications, 1996, 2: 253-272.
    [18] Rejaie R, Handely M, Estrin Deborah. RAP: An end-to-end rate-based congestion control mechanism for realtime streams in the Internet. Proceedings of IEEE INFOCOM, New York, NY, USA, 1999, 3: 1337-1345.
    [19] Sisalem D, Wolisz A. LDA+ TCP-Friendly Adaptation: A Measurement and Comparison Study. IEEE International Conference on Multimedia and Expo, New York, N J, USA, 2000: 1619-1622.
    [20] Padhye J, Kurose J, Towsley D.A model based TCP-friendly rate control protocol. Proceedings of IEEE NOSSDAV, Basking Ridge, NJ, USA, 1999: 137-151.
    [21] Floyd S, Handley M, Padhye J, et al. Equation-based congestion control for unicast applications. Proceedings of ACM SIGCOMM, Stockholm, Sweden, 2000: 43-56.
    [22] Yeadon N, Garica F, Hutchison D, et al. Filters: QoS support mechanisms for multipeer communications. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1245-1262.
    [23] ITU-T. Recommendation H.261: Video codec for audiovisual services at px64kbit/s. 1993.
    [24] ITU-T. Recommendation H.263: Video coding for low bit rate communication. 1998.
    [25] Civanlar M R. Compressed Video over Networks. New York: Marcel Dekker, 2001. 433-464.
    [26] Takishima Y, Wada M, Murakami H. Reversible variable length codes. IEEE Transactions on Communications, 1995, 43 (2): 158-162.
    [27] Redmill D W, Kingsbury N G. The EREC: An error resilient technique for coding variable-length blocks of data. IEEE Transactions on Image Processing, 1996, 5(4): 565-574.
    [28] Stuhlmuller K, Farber N, Link M, et al. Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 2000,18(6): 996-1011.
    [29] Cote G, Shirani S, Kossentini F. Optimal mode selection and synchronization for robust video communications over error prone networks. IEEE Journal on Selected Areas in Communications, 2000,18(6): 952-965.
    [30] Zhang R, Regunathan S L, Rose K. Video coding with optimal
    
    inter/intra-mode switching for packet loss resilience. IEEE Journal on Selected Areas in Communications, 2000, 18(6): 966-976.
    [31] Wu D, et al. An end-to-end approach for optimal mode selection in Internet video communication: Theory and application. IEEE Journal on Selected Areas in Communications, 2000, 18(6): 977-995.
    [32] Wang Y, Orchard M, Vaishampayan V, et al. Multiple description coding using pairwise correlating transform. IEEE Transactions on Image Processing, 2001, 10(3): 351-366.
    [33] Chung D, Wang Y. Multiple descr-iption image coding using signal decomposition and reconstruction based on lapped orthogonal transforms. IEEE Transactions on Circuit and Systems for Video Technology, 1999, 9(6): 895-908.
    [34] Wang Y, Zhu Q F. Maximally smooth image recovery in transform coding. IEEE Transactions on Communications, 1993, 41(10): 1544-1551.
    [35] Sun H, Kwok w. Concealment of damaged block transform coded images using projections onto convex sets. IEEE Transactions on Image Processing, 1995, 4(4): 470-477.
    [36] Lam W M, Reibman A R, Liu B. Recovery of lost or erroneously received motion vectors. Proceedings of IEEE ICASSP, Minneapolis, MN, USA, 1993, 5: 417-420.
    [37] Sun H, Challapali K, Zdepski J. Error concealment in digital simulcast AD-HDTV decoder. IEEE Transactions on Consumer Electronics, 1992, 38(3): 108-117.
    [38] Wen J, Villasenor J. Utilizing soft information in decoding of variable length codes. Data Compression Conference, Snowbird, UT, USA, 1999:131-139.
    [39] Girod B, N Farber. Feedback-based error control for mobile video transmission. Proceedings of the IEEE Special Issue on Video for Mobile Multimedia, 1999, 87: 1707-1723.
    [40] Zhu Q F. Device and method of signal loss recovery for real-time and/or interactive communications. U. S. Patent 5,550,847, Aug 1996.
    [41] FastForwardNetworks. FastForward Networks' broadcast overlay architecture. http://www.ffnet.com/pdfs/boa-whitepaper.pdf.
    [42] Rejaie R, Handley M, Yu H, et al. Proxy caching mechanism for multimedia playback streams in the Internet, Proceedings of the 4th International Web Caching Workshop, San Diego, CA, USA, 1999.
    [43] Tewari R, Vin H M, Dan A, Sitaram D. Resource-based caching for web
    
    servers. Proceedings of ACM/SPIE Multimedia Computing and Networking, San Jose, CA, USA, 1998: 191-204.
    [44] Yu F, Zhang Q, Zhu W, et al. QoS-adaptive proxy caching for multimedia streaming over the Internet, IEEE Transactions on Circuit and Systems for Video Technology, 2003, 13(3): 257-269.
    [45] Rejaie R, Yu H, Handely M, et al. Multimedia Proxy Caching Mechanism for Quality Adaptive Streaming Applications in the Internet. Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, 2000: 980-989.
    [46] Fan L, Jacobson Q, Cao P, et al. Web Prefetching Between Low-Bandwidth Clients and Proxies: Potential and Performance. Proceedings of ACM SIGMETRICS, Atlanta, GA, USA, 1999: 178-187.
    [47] Amon P, Pandel J. Evaluation of adaptive and reliable video transmission technologies. Proceedings of the Packet Video Workshop, Nantes, France, 2003.
    [48] Youn J, Xin J, Sun M T. Fast video stranscoding architecture for networked multimedia applications. Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000, 4:25-28.
    [49] 蔡安妮,孙景鳌.多媒体通信技术基础.北京:电子工业出版社,2000.262-270.
    [50] Li W P. Overview of fine granularity scalability in MPEG-4 video standard. IEEE Transactions on Circuit and Systems for Video Technology, 2001, 11(3): 301-317.
    [51] Li W P. Fine granularity scalability in MPEG-4 for streaming video. Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000, 1:299-302.
    [52] Wu. F, Li S P, Zhang Y Q. A framework for efficient progressive fine granularity scalable video coding. IEEE Transactions on Circuit and Systems for Video Technology, 2001, 11(3): 332-344.
    [53] Sun X Y, Wu F, Li S P, et al. Macroblock-based progressive fine granularity sealable video coding. International Conference on Multimedia and Expo, Tokyo, Japan, 2001: 345-348.
    [54] Schulzrinne H, Casner S, Frederick R, et al. RTP: a transport protocol for real-time applications. IETF, RFC 1889, 1996.
    [55] Yajnik M, Moon S, Kurose J, et al. Measurement and modeling of the temporal dependence in packet loss. Proceedings of IEEE INFOCOM, New York, NY, USA, 1999: 345-352.
    
    
    [56] Padhye J, Kurose J, D Towsley, et al. A model based TCP-friendly rate control protocol. Proceedings of IEEE NOSSDAV, Basking Ridge, NJ, USA, 1999: 137-151.
    [57] Padhey J, Firoiu V, Towsley D, et al. Modeling TCP throughput: a simple model and its empirical validation. Proceedings of ACM SIGCOMM, Vancouver, CA, USA, 1998: 303-314.
    [58] Zhang Q, Zhu W W, Zhang Y Q. Resource allocation for multimedia streaming over the Internet. IEEE Transactions on Multimedia, 2001, 3(3): 339-355.
    [59] StevenS W R. TCP/IP 详解,卷1:协议.范建华,张涛,等译.北京:机械工业出版社,2000.226-244.
    [60] Floyd S, Handley M, Padhye J, et al. Equation based congestion control for unicast applications, http://www.icir.org/tfrc/
    [61] Fall K, Floyd S. Simulation-based comparision of tahoe, reno and sack TCP. Computer Communication Review, 1996,26(3): 5-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700