软黏土地基大应变流变固结特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固结理论是土力学研究的基本课题之一,自Terzaghi一维固结理论提出以来,各国学者在其基础上进行了不断的深入和完善。在沿海和沿江沿河地带广泛分布着深厚软土层,人们通过这些地区长期的软土工程实践发现,软黏土地基的固结变形较大,Terzaghi固结理论中的小应变假设不再成立,而需要采用大应变假定。同时,随着现代工程地基工后沉降要求的越来越严格,对合理、准确地预测地基沉降发展过程提出了更高的要求,软黏土的流变特性也随之受到人们的重视。基于此,本文通过理论研究、室内试验、数值模拟和工程实例,对软黏土地基的大应变流变固结问题进行了深入地探讨。本文主要工作有:
     (1)基于连续介质力学原理,同时考虑了几何非线性和材料非线性,建立了U.L.描述的大应变固结问题的平衡方程和连续性方程,并进一步得到了大应变固结有限元法控制方程。
     (2)对宁波软土进行了一系列的一维固结流变试验,并利用自行改装的应力控制式三轴剪力仪,进行了不同围压条件下的三轴固结排水流变试验,对一维固结流变试验结果和三轴固结排水流变试验结果进行了对比研究,系统分析了宁波软土的流变特性。
     (3)将西原模型推广到三维,采用修正剑桥模型屈服准则来描述土体的塑性屈服,推导了土体的本构关系,建立了能够全面反映宁波软土流变特性的三维流变模型,并对三轴排水流变试验成果进行了曲线拟合,验证了本文模型的合理性,得到了不同围压及偏压条件下的模型参数。
     (4)在大型通用有限元软件ABAQUS的基础上,开发了本文所建立的流变模型的用户材料子程序UMAT。通过单轴压缩数值模拟与解析理论的对比,验证了本文UMAT的正确性,并对模型参数进行了敏感性分析。基于本文模型,研究了同时考虑流变效应、自重荷载、渗流非线性等复杂条件下的软黏土地基大应变固结过程中的超静孔压消散过程和地基沉降发展规律,与小应变固结计算结果进行了对比分析。
     (5)利用本文建立的流变模型和拟合的模型参数,通过三维数值模拟计算了某软土地基堆载预压试验过程中地基长期沉降发展过程和超静孔压消散过程,并与实际观测数据进行了对比,验证了本文提出的流变模型应用于宁波软土的适用性,同时验证了深厚软土地基固结过程中考虑大应变效应的必要性。
     本文研究同时考虑了固结过程中的大应变效应和流变效应,所得结果对软黏土地基处理具有重要的参考意义,丰富了软黏土地基的固结理论,为进一步研究软黏土地基复杂非线性固结问题奠定了基础。
Consolidation theory is one of the basic subjects of soil mechanics, since one dimensional consolidation theory was proposed by Terzaghi in 1920s, there were many researchers had made further researches and continuously improvement on the basis of Terzaghi's theory. There is widely distributed of deep soft soil along the coastal areas and rivers all over the world, people found that the consolidation displacement usually was very large, then the hypothsises of Terzaghi's theory were not suitable any more, and the hypothesis of large strain was needed. In the same way, with the increasing strict requirement of foundation post-construction settment, the requirement of reasonably and accurately prediction of foundation settment process was higher and higher, the rheological property of soft soil was paid more and more attention. Based on this, the thesis studied the large strain consolidation of soft soil considering rheological effect through theory analysis, laboratory experiment and engineering example. The main work of this thesis is as follows:
     (1) On the basis of continuum mechanics principle, the balance equation and the continuity equation of large strain consolidation were derived by updated Lagrange description considering the geometric nonlinearity and material nonlinearity simultaneously, further more:the FEA control equation of large strain consolidation was obtained.
     (2) A series of one dimensional consolidation rheological tests were taken on Ningbo soft soil, and triaxial consolidated drained rheological tests were taken through self-refitted stress-controlled triaxial apparatus. The results of one dimensional consolidation rheological tests and triaxial rheological tests were compared, based on which the rheological property of Ningbo soft soil was analyzed systematically.
     (3) The Nishihara model was extended to three dimensions, and the plastic yield of soil was described by modified Cambridge model combined with over-stress theory. The constitutive relationship of soil was derived, and a three dimensional rheological model which can describe the rheological property of soil comprehensively was set up. The model was fitted by triaxial rheological tests, and the model parameters of different confining pressure and deviatoric pressure were obtained.
     (4) On the basis of general FEA software ABAQUS, the user material subroutine (UMAT) of the rheological model proposed by this thesis was coded. The correctness of the UMAT was verified by a uniaxial compression numerical simulation. Based on the model of this thesis, large strain consolidation of soft soil was studied considering rheological effect, self load and permeability nonlinearity simultaneously, and the rules of the dissipation of the excess pore pressure and the displacement of soil was analyzed. The results of large strain were compared with that of small strain, and the sensitivity of the model parameters was analyzed.
     (5) Using the proposed rheological model and the fitted model parameters, three dimensional numerical simulation was performed on a surcharge preloading test of soft soil. The measured data of the displacement of soil and the dissipation of excess pore pressure was compared with the computed results, through which the property of the proposed model and the UMAT was verified.
     Considering the large strain effect and rheological effect simultaneously, the results of this thesis have important reference significance in the foundation treatment of soft soil. The results also will be an enrichment of the consolidation theory of soft soil and an establishment of the foundation of further study of complex nonlinearity consolidation problem.
引文
Abbott M B. One-dimensional consolidation of multi-layered soils [J]. Geotechnique. 1960,10(4):151-165.
    Abu-Hejleh A N. Znidarcic D. Barnes B L. Consolidation characteristics of phosphatic clays [J]. Journal of Geotechnical Engineering,1996,122(4): 295-301.
    Adachi T. et al.Mathematical structure of an overstress elastic-visco-plastic model for clay [J]. Soils and Foundation.1987,27(3):31-42.
    Adachi T, Fusao Oka.Constitutive equations for normally consolidation clay based on elastic-viscoplastic [J]. Soils and Foundation,1982,22(4):47-70.
    Ahmed Z. Large strain primary and secondary consolidation of soft clay using finite element method [D]. University of Florida, PhD Dissertation,1999.
    Barss S V. Soft soil creep modeling of large settlements. Faculty of Civil Engineering. Univ. Tech. Delft, Netherlands,2001.
    Barden L, Berry P L. Consolidation of normally consolidated clay [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1965,91(SMS):15-35.
    Barden L. Consolidation of clay with non-linear viscosity [J]. Geotechnique.1965. 15(4):345-362.
    Barron R. A. Consolidation of Fine-grained Soils by Drain Wells. Proc. American Society of Civil Engineers,1948,73(6):811-835.
    Belytschko T, Liu W K, Moran B连续体和结构的非线性有限元[M].庄茁译.北京:清华大学出版社,2002.
    Biot M A, Willis D G. The elastic coefficients of the theory of consolidation [J]. Journal of Applied Mechanics.1957,24:594-601
    Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941(12):155-164.
    Biot M A. Mechanics of deformation and acoustic propagation in porous media [J]. Journal of Applied Mechanics.1962,33(4):1482-1498.
    Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid [J]. Journal of Applied Physics,1956,27(5):459-467.
    Biot. M.A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of Applied Physics,1955,26(2):182-185.
    Bjerrum L. Engineering geology of Norwegian normally consolidated marine clays as related to the settlement of buildings [J]. Geotechnique.1967,17(2):81-118.
    Borja R I, Alarcon E. A mathematical framework for finite strain elastoplastic consolidation part I:balance laws, variational formation, and linearization [J]. Computer Methods in Applied Mechanics and Engineering.1995.122:145-171.
    Borja R I, Kavazanjian E. A constitutive model for the stress-strain-time behavior of wet clays [J]. Geotechnlque,1985,5(3):283-298.
    Borja R I, Tamagnini C, Alarcon E. Elastoplastic consolidation at finite strain part Ⅱ: finite element implementation and numerical examples [J]. Computer Methods in Applied Mechanics and Engineering.1998.159:103-122.
    Borja R I. Generalized creep and stress relaxation model for clays [J].Journal of Geotechnical Engineering. ASCE,1992.118(11):1765-1786.
    Burland J B. Ninth laurits Bjerrum memorial lectural:"small is beautiful”. The stiffness of soils at small strains [J]. Canadian Geotechnical Journal.1989, 26(4):499-516.
    Cargill K W. Prediction of consolidation of very soft soil [J]. Journal of Geotechnical Engineering, ASCE.1984.110(6):775-795.
    Carter J P, Small J C, Booker J R. A theory of finite elastic consolidation [J]. International Journal of Solids and structure,1977.13:467-478.
    Cater J P. Finite deformation theory and its application to elastoplastic soil [D]. Australia:University of Sydney.1977.
    Chaff J C. Shen S L. Miura N, et al. Simple method of modeling PVD-improved subsoil [J]. J. Geotech and Geoenviron Engrg. ASCE,2001.127(11):965-972.
    Chai Jin-Chun, Shen Shui-Long. Norihiko Minur etc. Simple method of modeling PVD-improved subsoil [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE.2001. (11):965-972
    Chopra M B. Dargush G F. Finite-element analysis of time-dependent large-deformation problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992,16:101-130.
    Davis E H, Raymond G P. A non-linear theory of consolidation. Geotechnique,1965. 15(2):161-173.
    Garlanger J E. The consolidation of soils exhibiting creep under constant effective stress [J]. Geotechnique,1972.22(1).71-78.
    Gibson R E, England G L. Hussey M J L. The theory of one-dimensional consolidation of saturated clays I:finite nonlinear consolidation of thin homogeneous layers [J]. Geotechnique,1967,17(2):261-327.
    Gibson R E, Lo K Y. A theory of consolidation for soils exhibiting secondary compression [J]. Acta Polytechnica Scandinavica,1961.
    Gibson R E, Schiffman R L, Cargill K W. The theory of one-dimensional consolidation of saturated clays II:finite nonlinear consolidation of thick homogeneous layers [J]. Canadian Geotechnical Journal.1981.18(2):280-293.
    Gibson R E, Gobert A, Schiffman R L. On Cryer's problem with large displacement [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1989,13:251-262.
    Gray H. Simultaneous consolidation of contiguous layers unlike compressible soils [J]. Trans. ASCE,1945,110:1327-1356.
    Hansbo S. Consolidation of clay with special reference to the influence of vertical sand drains. Proc. SGI 1960.18.
    Hefeli R. Creep Problems in Soils [J]. Snow and Ice. In:Prco.3rd. ICS MFE. Mexico. 1953(13):122-126.
    Hinchberger S D. Qu G. Viscoplastic constitutive approach for structured rate-sensitive natural clays [J]. Canadian Geotechnical Journal,2009,46(6): 609-626.
    Hsieh H S, Kavanzanjian, Jr. E. and Borja, R I. Double-yield-surface model I:theory. [J] Journal of Geotechnical Engineering, ASCE,1990.116(9):1381-1401.
    Imai G. Analytical examinations of the foundations to formulate consolidation phenomena with inherent time-dependence [C]. Compression and Consolidation of Clayey Sols [M]. Yoshikuni & Kusakabe, Rotterdam:Balkema.1995, (2):75-120.
    Johnson S J. Precompression for improved foundation soils [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1970,96(1):111-144.
    Keedwell J K. Rheology and Soil Mechanics [M]. London:Elsevier Applied Science Publishingers,1984,91-92.
    Leonands G A, Altschaeffl A G. Compressibility of clay [J]. Journal of Soil Mechanics and Foundation Engineering Division. ASCE.1964.90(5):133-155.
    Lo K Y. Secondary compression of clays [J]. Journal of Soil Mechanics and Foundations, ASCE.1961.87(4),61-87.
    McVay M, Townsend F, Bloomquist D. One dimensional Lagrangian consolidation [J]. Journal of Geotechnical Engineering,1989.115(6).893-898.
    McVay M. Townsend F. Bloomquist D. Quiescent consolidation of phosphatic waste clays [J]. Journal of Geotechnical Engineering. ASCE,1986.112(11):1033-1049.
    Mesri G. Ajiouni M A. Discussion:Viscous behavior of soil under oedometric conditions [J]. Canadian Geotechnical Journal,1997.34:159-161.
    Mesri G. Castro A. Ca/Cc concept and kO during secondary compression [J]. Journal of Geotechnical Engineering. ASCE.1987.113(3):230-247.
    Mesri G. Choi Y K. Settlement analysis of embankments on soft clays [J]. Journal of Geotechnical Engineering. ASCE.1985,111(4):441-464.
    Mesri G, Choi Y K. The uniqueness of the end-of-primary void ratio-effective stress relationship [C]. Proc.of the 11th ICSMFE.1985,587-593.
    Mesri G. Febres-Cordero E. Shields D R & CASTRO A. Shear stress-strain-time behavior of clays [J]. Geotechnique.1981.31(4):537-552.
    Mesri G. Godlewski P M. Time and stress compressibility interrelationship [J]. Journal of Geotechnical Engineering. ASCE.1977,103(5).417-430.
    Mesri G, Godlewski P M. Time and stress-compressibility interrelationship [J]. Journal of Geotechical Engineering Division. ASCE.1977.103(5):417-430.
    Mesri G. Rokhsar A. Theory of consolidation for clays [J]. Journal of Geotechnical Engineering Division. ASCE.1974.100(GT8):889-904.
    Mesri G, Rokhsar A. Theory of consolidation for clays [J]. Journal of Geotechnical Engineering. ASCE.1974.100(8).889-904.
    Mesri G, Tavenas P. Discussion:Permeability and consolidation of normally consolidated soils. Journal of Geotechnical Engineering, ASCE,1983.109(6), 873-878.
    Mesri G.. Coefficient of secondary compression [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1973,99(1):123-137.
    Mikasa M. et al. Nonlinear consolidation theory for non-homogeneous clay layer and its application [J]. Soils and Foundations. JGS,1998.38(4):205-212.
    Mikasa M, Ohnishi H. Soil improvement by dewatering in Osaka south port. Geotechnical aspect of coastal reclamation project in Japan [A]. Proc.9th ISSMFE. case history volume:639-664
    Mikasa M. The consolidation of soft clay-a new consolidation theory and its application [J]. Civil Engineering in Japan, JSCE.1965:21-26.
    Monte J L, Krizek R J. (). One dimensional mathematical model for large strain consolidation [J]. Geotechnique,1976,26(3),495-510.
    Morsy M M. Chan D H. Morgenstem N R.An effective stress model for creep of clay [J].Canadian Geotechnical Journal.1995.32:819-834.
    Newland P L, Alley B H. A study of the consolidation characteristics of clay [J]. Geotechnique,1960,10(2):62-74.
    Niemunis A, Krieg S. Viscous behavior of soil under oedometric conditions [J]. Canadian Geotechnical Journal.1996,33:159-168.
    Olson R E. Ladd C C. One dimensional consolidation problems [J]. Journal of Geotechnical Engineering. ASCE.1979.105(l):11-30.
    Olson R E. Settlement of embankments on soft clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(4):278-288.
    Olson R. E. Consolidation under time dependent loading [J]. Journal of Geotechnical Engineering. ASCE.1977,103(1).55-60.
    Pane V, Schiffman R L. A comparison between two theories of finite strain consolidation [J]. Soils and Foundations.1981,21(4):81-84.
    Perzyna P. Fundamental problems in visco-plasticity [J]. Advances in Applied Mechanics,1997,9:243-377.
    Poskitt T J. Consolidation of clay and peat with variable properties [J]. Journal of Soil Mechanics and Foundations, ASCE.1971.97(6):841-880.
    Poskitt T. J. A note on the consolidation of clay with non-linear viscosity. [J] Geotechnique.1967.17:284-289.
    Poskitt T. J. The consolidation of saturated clay with variable permeability and compressibility. Geotechnique.1969.19(2):234-252.
    Prevost J H. Mechanics of continuous porous media [J]. Int. J. Engng. Sci.,1980. 18:787-800.
    Prevost J H. Nonlinear transient phenomena in saturated porous media [J]. Computer Methods in Applied Mechanics & Engineering.1982,20:3-18.
    Pyrah I C. One dimensional consolidation of layered soils. Geotechnique.1996.46(3). 555-560.
    Raymond G P. Laboratory consolidation of some normally consolidated soils. Canadian Geotechnical Journal.1966.4(4):217-234.
    Samarasinghe A M, Huang Y H, Drnevich V P. Permeability and consolidation of normally consolidated soils. Journal of Geotechnical Engineering, ASCE.1982. 108(6).835-849.
    Schiffman R L, Gibson R E. Consolidation of non-homogeneous clay layers [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1964, 90(SM5):1-30.
    Schiffman R L. Cargill K W. Finite consolidation of sedimenting clay depositing [A] Proceedings of 10th International Conference on Soil Mechanics & Foundation Engineering [C].1981.1:239-242.
    Schiffman R L, Finite and infinitesimal strain consolidation [J] Journal of Geotechnical Engineering. ASCE,1980.106(GT2):203-207.
    Sekiguchi H, Toriihara M. Theory of one-dimensional consolidation of clays with consideration of their rheological properties [J]. Soils and Foundations,1976, 16(1):27-44.
    Semple R M. The effect of time-dependent properties of alted rock on the tunnel support requirements [D]. PhD thesis. University of Illinois.1973.
    Singh A. Mitchell J K. General stress-strain-time function for clay [J]. Journal of the Clay Mechanics and Foundation Division. ASCE,1968,94(1):21-46.
    Skempton A W. Long-term stability of clay slopes [J]. Geotechnique,1964,14(2): 77-101.
    Tan T S. Scott R F. Discussion:Finite strain consolidation-A study of convection [J]. Soils and Foundations.1990.30(2):163-166.
    Tan T S, Scott R F. Finite strain consolidation-A study of convection [J]. Soils and Foundations,1988.28(3):64-74.
    Tavenas F, Jean P. Leblond P, Leroueil S. The permeability of natural soft clays, Part II:Permeability characteristics [J]. Canadian Geotechnical Journal,1983, 20:645-660.
    Tavenas F, Leblond P, Jean P, Leroueil S. The permeability of natural soft clays. Part I: Methods of laboratory measurement [J]. Canadian Geotechnical Journal.1983, 20(4):629-644.
    Taylor D W, Merchant W. A theory of clay consolidation accounting for secondary compression [J]. Journal of Mathematics and Physics.1940.19(3):167-185.
    Tho S H. Fahey M. Numerical and centrifuge modeling of large strain consolidation [J]. Computer Mechanics and Geomechanics,1991,279-284.
    Townsend F C and McVay M C. SOA:large-strain consolidation predictions [J]. J. Geotech. Engng 1990.116(2):166-176.
    Vyalov S S. Rheological Fundamentals of Soil Mechanics [M]. London:Elsevier Applied Science Publishingers.1986.231-232.
    Wahls H E. Analysis of primary and secondary consolidation [J]. Journal of Soil Mechanics and Foundation Engineering Division. ASCE,1962,88(6):207-231.
    Weber W. G. Performance of embankments constructed over peat [J]. Journal of Soil Mechanics and Foundations. ASCE,1969,95(1).53-76.
    Xie K H, Leo C J. A study on one dimensional nonlinear consolidation of soft soils [R]. Research Report. School of Civic Engineering and Environment, UWS. Nepean. Australia.1999.
    Xie K H. Leo C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays [J]. Computers and geotechnics,2004,31: 301-314
    Xie K H, Leo C J. Analytical theory of one dimensional large strain consolidation of saturated and homogeneous clays [R]. Research Report. School of Civil Engineering and Environment. UWS, Nepean. Australia.1999.
    Xie K H, Li B H. Li Q L. () A nonlinear theory of consolidation under time-dependent loading [C]. Proc.2nd ICSSE,1996,1:193-198.
    Xie K H, Liu X W. A study on one dimensional consolidation of soils exhibiting rheological characteristics [C]. Compression and Consolidation of Clayey Soils [M].1995.1:385-388.
    Xie K H, Wang K H, Zeng G X. A study on one dimensional consolidation of soils exhibiting rheological characteristics with impeded boundary. Proceeding 2nd ICSSE.Nanjing.1996.1:357-362.
    Xie K H. Xie X Y. Jiang W. A study on one dimensional nonlinear consolidation of double-layered soil [J]. Computers and Geotechnics,2002.29:151-168.
    Xie K H, Guo S, Li B H. Zeng G X. A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading [C]. Proc.9th Int. Conf on Computer Methods and Advances in Geomechanics, Balkema, Rotterdam.1997. 2:1053-1058.
    Yin J H, Graham J. Equivalent times and one dimensional elastic viscoplastic modeling of time-dependent stress-strain behavior of clays [J]. Canadian Geotechnical Journal.1994,31:42-52.
    Yin J H, Graham J. Viscous-elastic-plastic modeling of one dimensional time-dependent behavior of clays [J]. Canadian Geotechnical Journal,1989, 26:199-209.
    Yin J H. Non-linear creep of soils in oedometer tests, Geotechnique.1999. 49(5):699-707.
    Yin Z Y. Chang C S, Karstunen M, Hicher P Y.An anisotropic elastic-viscoplastic model for soft clays [J]. International Journal of Solids and Structures,2010. 47:665-677
    Yin Z Y, Hicher P Y, Riou Y, Huang H W. An elasto-viscoplastic model for soft clay [C]. Soil and Rock Behavior and Modeling-Proceedings of the GeoShanghai Conference, Shanghai, Geotechnical Special Publication.2006,312-319.
    Yin Z Y, Hincher P Y. Identifying parameters controlling soil delayed behavior from laboratory and in situ pressure meter testing [J]. Int. J. Numer. Anal. Meth. Geomech.2008,32(12):1515-1535.
    Zienkiewicz O C. Cormeau I C. Visco-plasticity and creep in elastic solids-an unified numerical solution approach [J]. Int.J.for Num.Methodsin Eng.,1974, (8):821-845.
    Znidarcic D, Croce P, Pane V. The theory of one dimensional consolidation of saturated clays III:Existing testing procedures and analyses [J]. Geotechnical Testing Journal, ASTM,1984,7(3):123-133.
    Znidarcic D, Schiffman R L. On Terzaghi's concept of consolidation [J]. Geotechnique,1982.32(4),387-389.
    Znidarcic D, Schiffman R. L. Finite strain consolidation:Test conditions [J]. Journal of Geotechnical Engineering, ASCE,1981,107(5),684-688.
    岑威钧,朱岳明.基于ABAQUS的土石料本构模型二次开发及其应用[J].水利水电科技进展.2005,25(6):78-81.
    常林越,王金昌,朱向荣.多级线性荷载下饱和软黏土一维大应变固结解析解[J].岩土力学,2009,30(8):2343-2347.
    陈敬虞,龚晓南,邓亚虹.软黏土层一维有限应变固结的孔压消散研究[.J].岩土力学,2009,30(1):191-195.
    陈敬虞.软黏土地基非线性有限应变固结理论及有限元法分析[D].杭州:浙江大学博士学位论文,2007.
    陈小丹,赵维炳.考虑井阻和涂抹的砂井地基平面应变等效方法分析[J].岩土力学,2005,26(4):567-571.
    陈晓平,周秋娟,朱鸿鹄,等.软土蠕变固结特性研究[J].岩土力学,2007,28(增):1-10.
    陈宗基.Structure Mechanics of Clay[J].中国科学,1959,8(1):41-45.
    陈宗基.固结及次时间效应的单向问题[J].土木工程学报,1958,5(1):1-9
    陈宗基.黏土层沉陷(由于固结和次时间效应)的二维问题[J].力学学报,1958,2(1):1-9.
    戴永浩,陈卫忠,伍国军等.非饱和岩体弹塑性损伤模型研究与应用[J].岩石力学与工程学报,2008.27(4):728-735.
    但汉波.天然软粘土的流变特性[D].杭州:浙江大学博士学位论文,2009.
    丁洲祥,龚晓南,谢永利.欧拉描述的大变形固结理论[J].力学学报,2005,37(1):92-99.
    丁洲祥.连续介质固结理论及其工程应用[D].杭州:浙江大学博士学位论文,2005.
    范庆来,栾茂田,杨庆.修正剑桥模型的隐式积分算法在ABAQUS中的数值实施[J].岩土力学,2008,29(1):269-273.
    冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报,,2003,31(4):379-382.
    付凯敏,黄晓明.基于ABAQUS的修正Burgers 蠕变模型二次开发[J].公路工程,2008,33(3):132-137.
    龚晓南,袁静,益德清.岩土流变模型研究的现状与展望[J].工程力学,2000,(增刊):145-155.
    黄雨,周子舟.下负荷面剑桥模型在ABAQUS中的开发实现[J].岩土工程学报,2010,32(1):115-119.
    姜弘,沈水龙,钭逢光,等.塑料排水板处理的软土地基的分析[J].岩土力学,2004,25(supp2):437-440.
    蒋明镜,沈珠江.结构性黏土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108.
    蓝柳和.成层软粘土地基非线性流变固结形状研究[D].杭州:浙江大学博士学位论文,2002.
    李冰河.成层饱和软黏土地基大应变固结理论研究[D].杭州:浙江大学博士学位论文,1999.
    李金柱,朱向荣,刘用海.结构性软土弹塑性损伤模型及其应用[J].浙江大学学报 (工学版),2010,44(4):806-811.
    李军世,林咏梅.上海淤泥质粉质黏土的Singh-Mitchell蠕变模型[J].岩土力学,2000,21(4):363-366.
    李军世,孙钧.上海淤泥质黏土的Mesri蠕变模型[J].土木工程学报,2001,34(6):74-79.
    李西斌.软土流变固结理论与试验研究[D].杭州:浙江大学博士学位论文,2005.
    梁国钱,张民强,俞炯奇等.浙江沿海地区软土工程特性[J].中国矿业大学学报,2002,31(5):435-437.
    梁旭,蔡袁强,杜灶锋,潘晓东,半透水边界的粘弹性土层在循球荷载作用下的一维固结。土木工程学报,2003,36(8):86-90.
    刘雄.岩石流变学概论[M].北京:地质出版社,1994:139-143.
    刘用海.宁波软土工程特性及其本构模型应用研究[D].杭州:浙江大学,2008
    卢萍珍,曾静,盛谦.软黏土蠕变试验及其经验模型研究[J].岩土力学,2008,29(4):1041-1044.
    门福录.上海黏土流变性质及地面沉降问题初步研究(一)[J].自然灾害学报,1999,8(3):117-]26.
    潘家军,饶锡保,徐晗,何晓民.分级单屈服面模型在ABAQUS中的实现及验证[J].岩土力学,2009,30(增2):532-535.
    施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44.
    史玉成.上海地区软土流变特性理论分析与工程应用研究[D].上海:同济大学博士学位论文,1990.
    苏伯苓.宁波软土流变规律及其工程应用[J].河北地质学院学报,1990,13(2):111-120.
    孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型[J].岩土力学,.2000,21(3):222-226.
    孙德安,甄文战,黄文雄.三维弹塑性模型在路堤软基固结分析中应用[J].岩土力学,2009,30(3):66-674.
    孙吉主,高晖ABAQUS在软基固结过程分析中的应用[J].岩土力学,2007,28(增):919-922.
    孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999:1-344.
    万伟.宁波栎社机场软土地基处理方法探讨[J].机场建设,2005(2):22-24.
    王安明,杨春和,陈剑文等.层状盐岩体非线性蠕变本构模型[J].岩石力学与工程学报,2009,28(增1):2708-2714.
    王宏贵,魏丽敏,赫晓光.根据长期单向压缩试验结果确定三维流变模型参数[J].岩土工程学报,2006,28(5):669-673.
    王奎华,谢康和,曾国熙.双面半透水边界的一维粘弹性固结理论[J].岩土工程学报,1998,20(2):34-36.
    王盛源.变荷载下的粘弹性体一维固结问题.水利水运科学研究,1981,(2):10-17.
    王婷婷.滨海软土流变模型及其在结构物稳定分析中的应用研究[D].天津:天津大学博士学位论文,2008.
    王勖成.有限单元法[M].北京:清华大学出版社,2003.
    王勇,殷宗泽.一个用于面板坝流变分析的堆石流变模型[J].岩土力学,2000,21(3):227-230.
    王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京,科学出版社,2008,20-22.
    魏丽敏.软土路基双重非线性流-固耦合仿真分析与沉降预测[D].长沙:中南大学博士学位论文,2005.
    谢康和,郑辉,LEO C J.变荷载作用下饱和软黏土一维大应变固结解析理论[J].水利学报,2003,(10):6-13.
    谢宁,孙钧.上海地区饱和软黏土流变特性[J].同济大学学报,1996,24(3):233-237.
    谢宁.软土非线性流变的理论、试验和应用[D].上海:同济大学博士学位论文,1993.
    谢新宇,朱向荣,谢康和等.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    谢新宇.一维大变形固结理论的研究[D].杭州:浙江大学博士学位论文,1996.
    谢永利.大变形固结理论及其有限元法[M].北京:人民交通出版社,1998.
    谢永利.大变形固结理论及其有限元分析[D].杭州:浙江大学博士学位论文,1994.
    徐远杰,王观琪,李健,唐碧华.在ABAQUS中开发实现Duncan-Chang本构模 型[J]..岩土力学,2004,25(7):1032-1036.
    徐志英,沈珠江.高尾矿坝地震液化和稳定分析[J].岩土工程学报,1981,3(4):22-31.
    徐志英.考虑到土骨架蠕变的三向固结理论.水利学报,1964,(4).
    殷德顺,任俊娟,和成亮等.一种新的岩土流变模型元件[J].岩石力学与工程学报,2007,26(9):1899-1903.
    殷宗泽.一个土体的双屈服面应力应变模型[J].岩土工程学报,1988,10(4):64-71.
    詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62.
    詹美礼.软土流变试验及隧道有限元分析[D].南京:河海大学博士学位论文,1991.
    张继发.一维大应变固结问题的解析理论研究[D].杭州:浙江大学博士学位论文,2002.
    张均锋,祁涛,李正国.岩石材料的三维各向异性损伤破坏模型与数值模拟[J].岩土力学,2006,27(增):27-30.
    张敏江,姚敏,邱欣等.辽南海积软土流变本构模型的研究[J].沈阳建筑工程学院学报(自然科学版),2003,19(4):260-263.
    张敏江,张丽萍.结构性软土微观结构参数及结构性流变模型[J].沈阳建筑大学学报(自然科学版),2006,22(2):177-180.
    张欣,丁秀丽,李术才ABAQUS有限元分析软件中Duncan-Chang模型的二次开发[J].长江科学院院报,2005,22(4):45-51.
    郑辉,谢康和,杨晓强.双层饱和软土地基一维大应变固结研究[J].岩土力学,2004,25(11):1770-1774.
    郑辉.软粘土地基大应变非线性流变固结理论研究[D].杭州:浙江大学博士学位论文,2004.
    郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1-13.
    周秋娟,陈晓平.软土蠕变试验特性研究[J].岩土工程学报,2006,28(5):626-630.
    周小平.宁波地区软土地基设计及处理之要点[J].有色冶金设计与研究,1995,16(2):50-54.
    朱鸿鹄,陈晓平,程小俊,等.考虑排水条件的软土蠕变特性及模型研究,岩土力学,2006,27(5):694-698.
    朱向荣,潘秋元,卞守中,等.超载预压加固宁波机场场道软基[J].岩土工程学报,1992,14(增刊):30-38.
    庄海洋,陈国兴,梁艳仙,徐明.土体动非线性黏弹性模型及其ABAQUS软件的实现[J].岩土力学,2007,28(3):436-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700