东海大规模赤潮对微型浮游动物群落结构影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从赤潮发生前的现场模拟实验、赤潮发生时的现场培养实验和赤潮发生过程中的现场调查等方面,较为系统地研究了东海大规模赤潮对微型浮游动物群落结构的影响。
     2005年长江口及邻近海区赤潮发生前,赤潮973MC2005-03航次在本海区进行了综合调查,期间分别于4月27日、5月4日和5月8日,在zzf1、zc18a和ra5三个站位利用现场船基培养的方法,研究了添加到赤潮密度10~6 cells L-1的东海原甲藻(Prorocentrum donghaiense)对微型浮游动物群落结构的影响。结果发现,赤潮密度的东海原甲藻对小型无壳纤毛虫的种群数量影响较大,而对中大型砂壳纤毛虫的影响较小,从而使得微型浮游动物群落有向中大型砂壳纤毛虫演替的趋势。在zzf1站位,小型无壳纤毛虫占绝对优势,添加东海原甲藻72 h后,优势种由管游虫(Cyrtostrombidium sp.)演替为另一种小型无壳纤毛虫急游虫4(Strombidium sp.4);在以中型砂壳纤毛虫百乐拟铃虫(Tintinnospsis beroidea)为优势种的zc18a站位,仍然是以此为优势种,但其在群落中的优势度更加明显;ra5站位也是以小型无壳纤毛虫为主,添加东海原甲藻72 h后,其群落结构由急游虫2(Strombidium sp.2)向中大型砂壳纤毛虫纤毛虫百乐拟铃虫和亚速岛网纹虫(Favella azorica)演替。不同站位微型浮游动物群落结构变化的差异与其本身的群落结构组成有一定关系,也与浮游植物的群落组成有关。zzf1和ra5站位实验组中微型浮游动物的总丰度和总生物量都低于对照组,而zc18a站位变化不明显,这是由于前两个站位实验组中的优势种管游虫(zzf1站位)和急游虫2(ra5站位)的丰度和生物量迅速下降,而zc18a站位实验组的优势种百乐拟铃虫的丰度和生物量比较稳定造成的。
     2005年长江口及邻近海区赤潮发生时,赤潮973 MC2005-04航次在本海区进行了综合调查,期间分别于5月26日、5月28日、5月28日和5月29日,在xzm1、srb、sra1和hb8a四个站位利用现场培养的方法,研究了东海大规模赤潮对微型浮游动物群落结构的影响。结果发现,东海大规模赤潮对微型浮游动物群落结构的影响与赤潮藻的密度密切相关:xzm1、srb和sra1站位是赤潮区,两种赤潮藻的总密度分别为,1.3×10~6 cells L-1、1.8×10~6 cells L-1和5.6×10~6 cellsL~(-1),而hb8a站位位于非赤潮区,两种赤潮藻的总密度仅为5×10~5 cells L~(-1);实验进行72 h后,在以大型砂壳纤毛虫网纹虫和筒壳虫(Tintinnidium sp.)为主的xzm1、srb和sra1站位,仍然是以这些大型砂壳纤毛虫为主,且其在群落中的百分比显著增大,尤其在赤潮藻密度最高的的sra1站位,这种演替趋势表现的最明显;而在以小型无壳纤毛虫急游虫2为主的hb8a站位,微型浮游动物群落向中型砂壳纤毛虫真丁丁虫(Eutintinnus sp.)演替。培养过程中微型浮游动物总丰度的变化以及总生物量的变化都与赤潮藻的密度密切相关:赤潮藻密度较低的xzm1站位和srb站位变化不大;赤潮藻密度较高的sra1站位则快速下降;而非赤潮区的hb8a站位呈快速上升的趋势。以上结果进一步表明东海大规模赤潮能使微型浮游动物群落向中大型砂壳纤毛虫演替。
     在2006年4月18日-5月30日,赤潮973项目MC2006航次在长江口及其邻近海区围绕东海原甲藻和米氏凯伦藻赤潮进行了综合调查。为了研究该过程中微型浮游动物群落结构的变化,我们在南北5个断面共计21个站位进行了取样,样品涉及赤潮发生前期、发生期和消退期。本次调查共发现纤毛虫66种,其中砂壳纤毛虫有8属37种,寡毛类无壳纤毛虫25种,另外还有前口类3属4种。在赤潮发生前之前,小型无壳纤毛虫的丰度普遍较高,平均值为1574 ind L~(-1),而中大型砂壳纤毛虫的丰度普遍偏低,平均值仅为14 ind L~(-1);赤潮发生以后,在大多数站位小型无壳纤毛虫的丰度出现不同程度的下降,平均值降为171 ind L~(-1),而中大型砂壳纤毛虫的丰度出现一定程度的上升,平均值增至216 ind L~(-1)。赤潮消退时,小型无壳纤毛虫丰度的平均值降为109 ind L~(-1),而中大型砂壳纤毛虫的丰度继续增长,变为401 ind L~(-1)。不同微型浮游动物百分比的统计结果也表明:微型浮游动物群落由小型无壳纤毛虫向中大型砂壳纤毛虫演替的趋势:小型无壳纤毛虫在群落中百分比的平均值由赤潮发生前的62 %变为赤潮发生时的32 %,至赤潮消退时又降为15 %;而中大型砂壳纤毛虫百分比的平均值从赤潮发生前的10 %变为赤潮发生时的24 %,至赤潮消退时增至50 %。典型站位za3、za5、zb7和zb9的结果再次表明了赤潮发生过程中微型浮游动物群落由小型无壳纤毛虫向中大型砂壳纤毛虫演替的趋势。
     由以上赤潮发生前的现场模拟实验、赤潮发生时的现场培养实验和赤潮发生过程中的现场调查的结果均可见,东海大规模赤潮可以改变微型浮游动物的群落结构,呈现由小型无壳纤毛虫向中大型砂壳纤毛虫演替的趋势,进而有可能影响中大型浮游动物等摄食者的种群数量和群落结构,最终可能会影响整个海洋生态系统的结构和功能。
Based on shipboard inoculation experiment, shipboard incubation experiment and field survey during the large-scale HAB (Harmful algal blooms) in the East China Sea, the effects of large-scale HAB in the East China Sea on microzooplankton community structure were studied in the present paper.
     Before the large-scale HAB in the East China Sea, to study the effects of simulated HAB on microzooplankton community structure, shipboard Prorocentrum donghaiense inoculation experiments (at about 106 cells L~(-1), equivalent to bloom density) were carried out at stations zzf1, zc18a and ra5 in the East China Sea on 27th April, 4th May and 8th May 2005, respectively. The results showed that P. donghaiense at a density of 106 cells L~(-1) could affect the abundance of small-sized aloricate ciliates, but had no significant effect on medium- and large-sized tintinnids, which thereby led to a community succession toward medium- or large-sized individuals. At station zzf1, the microzooplankton community initially dominated by the small-sized aloricate ciliate Cyrtostrombidium sp. was dominated by another small-sized aloricate ciliate Strombidium sp.4 after adding P. donghaiense for 72 h. At station zc18a, the microzooplankton community initially dominated by medium-sized tintinnid Tintinnopsis beroidea was still dominated by the same species and its ratio in the microzooplankton community increased noticeably after adding P. donghaiense for 72 h. At station ra5, the microzooplankton community initially dominated by the small-sized aloricate ciliate Strombidium sp.2. changed dramatically and was dominated by T. beroidea and large-sized tintinnid Favella azorica after adding P. donghaiense for 72 h. The differences aong microzooplankton community succession of the three stations were closely related to both microzooplankton and phytoplankton community compositions. Compared to the control, the total abundance and biomass of microzooplankton in experimental groups decreased dramatically at stations zzf1 and ra5 due to the reduction of their dominant species Cyrtostrombidium sp. and Strombidium sp.2, whereas no significant variation was found at station zc18a due to the steady abundance of dominant species T. beroidea.
     During the large-scale HAB of P. donghaiense and Karenia mikimotoi in the Changjiang River estuary in summer 2005, the effects of the HAB on microzooplankton community were studied at 4 stations xzm1, srb, sra1 and hb8a, on 26th , 28th , 28th and 29th May, respectively. The results showed the actual effects of HAB were closely related to the concentration of the HAB algae. The concentration of the two HAB algae was 1.3×10~6 cells L~(-1)、1.8×10~6 cells L~(-1) and 5.6×10~6 cells L~(-1) at stations xzm1, srb and sra1, respectively, however, it was only 5×10~5 cells L~(-1) at station hb8a. Cultured 72 h latter, HAB-stations xzm1, srb and sra1 formerly dominated by large-sized tintinnids Favella sp. and Tintinnidium sp. were still dominated by these two individuals, and their dominant degree in the microzooplankton community showed a significantly increasing trend, especially at the station sra1. In contrast, the non-HAB station hb8a formerly dominated by small-sized aloricate ciliates was dominated by medium-sized tintinnid Eutintinnus sp. The total abundance and biomass of microzooplankton were strongly affected by the density of HAB algae too, which increased a little at station xzm1, changed scarcely at station srb, decreased dramatically at station sra1, while increased considerably at station hb8a, respectively. The results further showed that large-scale HAB in the East China Sea could make the microzooplankton community succession from small-sized aloricate ciliates to medium and large-sized tintinnids. The community succession of microzooplankton during the large-scale HAB of P. donghaiense and K. mikimotoi in the East China Sea was studied based on the water samples taken from 21 stations in summer 2006. A total 66 species, including
     Tintinnina 37 species, Oligotrichina 25 species and Prostomatida 4 species were found in the survey area. Before the HAB of P. donghaiense and K. mikimotoi, the abundance of small-sized aloricate ciliates was high at almost all stations and the average value was 1574 ind L~(-1). On the other hand, the abundance of medium- and large-sized tintinnids was low at most stations and the average value was only 14 ind L~(-1). When the HAB broke out, the abundance of small-sized aloricate ciliates showed a decreasing trend at most stations and the average value reduced to 171 ind L~(-1). In contrast, the abundance of medium- and large sized tintinnids showed an increasing trend and the average value increased to 216 ind L~(-1). During the decay of the HAB, the abundance of small-sized aloricate ciliates continued to decrease and the average value reduced to 109 ind L~(-1), whereas, that of medium- and large-sized tintinnids has been still keeping on rising and the average value increased to 401 ind L~(-1). The results of the ratios of different ciliates in microzooplankton community also showed that large-scale HAB could make microzooplankton community succession from small-sized aloricate ciliates to medium and large-sized tintinnids. Before the HAB, the average value of the ratios of small-sized aloricate ciliates was 62 %, it became 32 % with the HAB breaking out and it reduced to 15 % during the decay of the HAB. In contrast, the average value of the ratios of medium- and large sized tintinnids was 10 % before the HAB, it became 24 % when the HAB broke bout and it rised to 50 % during the decay of the HAB. The results of typical stations za3, za5, zb7 and zb9 also showed that microzooplankton community structure changed from small-sized aloricate ciliates to medium and large-sized tintinnids during the HAB.
     From the above three studies, it can be seen that the large-scale HAB in the East China Sea could make microzooplankton community succession from small-sized aloricate ciliates to medium and large sized tintinnids which implied that the large-scale HAB might affect the abundance and community structure of the organisms at the higher trophic levels, ultimately, might affect the structure and function of marine ecosystem of the East China Sea.
引文
Anderson D M, Garrison D J. Ecology and oceanography of harmful algal bloms. Liminology and Oceanography, 1997, 42(5pt2): 1009-1305.
    Archer S D, Verity P G and Stefels J. Impact of microzooplankton on the progression and fate of the spring bloom in fjords of northern Norway. Aquatic Microbial Ecology, 2000, 22 (1): 27-41.
    Arzul G., Gentien P, Crassous M P. A haemolytic test to assay toxins excreted by the marine dinoflagellate Gyrodinium cf. aureolum. Water Res, 1994, 28: 961–965.
    Azam F, Fenchel T, Field J G, et al. The ecological role of water colum microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263.
    Banes K. Cell volumes, maximal growth rates of unicellular algae and ciliates and the role of ciliates in the marine pelagical. Limnol Oceanogr, 1982, 27: 1059-1071.
    Banse K. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanogr., 1994, 7: 13-20.
    Barria de Cao M S. Abundance and species composition of Tintinnina (Ciliophora) in Bahia Blanca Estuary, Argentina. Estuarine Coastal and Shelf Sciences, 1992, 34: 295-303.
    Batten S D, Fileman E S and Halvorsen E. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Progress in Ocenography, 2001, 51: 385-398.
    Berk S G, Brownlee D C, Heinle D R, et al. Ciliates as a food source for marine planktonic copepods. Micro Ecol, 1977, 4: 27-40.
    Bockstahler K R and Coats D W. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Marine Biology, 1993, 116: 477-487.
    Broglio E, Johansson M, Jonsson P R. Trophic interaction between copepods and ciliates: effects of prey swimming behavior on predation risk. Mar Ecol Prog Ser, 2001, 220: 179-186.
    Burkill P H, Edwards E S and Sleigh M A. Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sen. Deep-Sea Res II, 1995, 42: 1277-1290.
    Burkill P H, Edwards E S, John A W G, et al. Microzooplankton and their herbivorous activity in the northeast Atlantic Ocean. Deep-Sea Res II, 1993, 40:479-494.
    Buskey E J and Hyatt C J. Effects of the Texas(USA)’brown tide’ alga on planktonic grazers. Mar Ecol Prog Ser, 1995, 126: 285-292.
    Buskey E J and Hyatt C J. Effects of the Texas(USA)’brown tide’ alga on planktonic grazers. Mar Ecol Prog Ser, 1995, 126: 285-92.
    Capriulo G M and Carpenter E J. Abundance, species, composition and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar Ecol Prog, Ser, 1983, 10: 277-288.
    Clough J and Strom S. Effects of Heterosigma akashiwo (Raphidophyceae) on protest grazers: laboratory experiments with ciliates and heterotrophic dinoflagellates. Aquat Microb Ecol, 2005, 39:121-134.
    Cordeiro T A, Brandim F P and Martens P. Spatial distribution of the Tintinnina (Ciliophora Protista) in the North Sea spring of 1986. J Plankton Res, 1997, 19: 1371-1383.
    Dale T and Dahl E. Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J Plankton Res, 1987, 9: 871-879.
    Dohi K. Seasonal change of tintinnid community in Funka Bay. Bull Plankton soc Jpn. 1982, 29: 77-87.
    Edler L. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Batic Marine Biol, 1979, 5: 1-38.
    Elbrachter M and Qi Y Z. Aspects of Noctiluca (Dinophyceae) population dynamics [A]. Physiological Ecology of Harmful Algae Blooms. New York: Springer, 1998, 315-335.
    Froneman P W, Pakhomov E A, Perissinotto R, et al. Role of microplankton in the diet and daily ration of Antarctic zooplankton species during austral summer. Mar Ecol Prog Ser, 1996, 143: 15-23.
    Froneman P W, Pakhomov E A, Perissinotto R, et al. Role of microzooplankton in the diet and daily ration of Antarctic zooplankton species during austral summer. Mar Ecol Prog Ser, 1996,143: 15-23.
    Froneman P W. Perissinoto R and McQuaid C D. Dynamics of microplankton communities at the ice-edge zone of the Lazarev Sea during a summer drogue study. J Plankton Res, 1996, 18: 1455-1470.
    GEOHAB. Science plane, 2001, iii. http://ioc.unesco.org/hab/GEOHAB.htm.
    Gifford D J. Laboratory culture of marine planktonic oligotrichs (ciliophora, ologotrichida). Mar Ecol Prog Ser, 1995, 23: 257-267.
    Gifford D J. The protozoan-metazoan trophic link in pelagic ecosystems. J Protozool, 1991, 38: 81-86.
    Granéli E and Johansson N. Effects the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Mar. Ecol. Prog. Ser., 2003, 254: 49-56.
    Graziano C. On the ecology of tintinnids (Ciliophora: Oligotrichida) in the North Irish Sea. Estuarine Coastal and Shelf Sciences, 1989, 29: 233-245.
    Halhgraef G M, Anderson D M and CemheUaAD et al. Manual on Harmful Marine Microalgae. IOC Manuals Guides No. 33. 1995, Paris: UNESCO. Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993, 32:79-99.
    Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993, 32:79-99.
    Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993, 32:79-99.
    Hansen P J, Cembella A D and Moestrup ?. The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition, and toxicity to a tintinnid ciliate]. Journal of Phycology, 1992, 28: 597-603.
    Hansen P J. Dinophysis-a planktonic dinoflagellate genus which can act both as prey and a predator of a ciliate]. Mar Ecol Prog Ser, 1991, 73: 253-261.
    Hansen P J. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga. Mar. Ecol. Prog. Ser., 1995, 121: 65-72.
    Hansen P J. The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser, 1989, 53: 105-116.
    Harrison W G, Head E J H and Horne E P W. The western North Atlantic bloom experiment. Deep-Sea Res II, 1993, 40: 279-305.
    Hedin H. On the ecology of tintinnids on the Sweden west coast. Zoon, 1975, 3: 125-140
    Heinbolel J F. Studies on functional role of tintinnids in the southern California Bight. I Grazing and growth rates in laboratory cultures. Mar Biol, 1978, 47: 177-189.
    Ho K. C. & Hodgkiss I. J. Severe fishkills in Hong Kong caused by Noctiluca scintillans blooms. Red Tide Newsletter, 1992, 5: 12.
    Hodgkiss I J and Yang Z B. New and dominant species from Sam Xing wan sai Kung during the 1998b massive fish killing red tide in Hong Kong. Harmful Algal Blooms 2000, 2001, 62-65. Paris: Intergovermental Oceanographic Commission of UNESCO.
    Hong H S, Ke L, Huang B Q, et al. Spatial-temporal distribution characteristics of the composition and abundance of ciliate in Taiwan Strait. Acta Oceanologica Sinica, 2000, 22(supp): 250-260.
    Hopkins T L and Torres J J. Midwater foof web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Res, 1989, 36: 543-560.
    Huang C J, Qi S, Qi Y Z, et al. The position and function of Noctiluca scintillans in its ecological community in Dapeng Bay the South China Sea , Oceanology ET Liminology Sinica,1997, 28(4): 348-355.
    James M R, Hall J A. Microzooplankton grazing in different water masses associated with the Subtropical Convergence round the South Island, New Zealand. Deep-Sea Research I, 1998, 45: 1689-1707.
    Jennifer C and Strom S. Effects of Heterosigma akashiwo (Raphidophyceae) on protest grazers: laboratory experiments with ciliates and heterotrophic dinoflagellates. Aquat Microbl Ecol, 2005, 39: 121-134.
    Jeong H J, Du Yoo Y Park J Y, et al. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol, 2005, 40 (2): 133-150.
    Kamiyama T and Arima S. Feding characteristics of two tintinnid ciliate species on phytoplankton indluding harmful species: effects of prey size on ingestion rates and selectivity. Journal of Experimental Marine Biology and Ecology, 2001, 257: 281-296.
    Kamiyama T and Arima S. Lethal effect of the dinoflagellate Heterocapsa cirvularisquama upon the tintinnid ciliate Favella taraikaensis. Mar Ecol Prog Ser, 1997, 150: 27-33.
    Kamiyama T and Matsuyama Y. Temporal changes in the ciliates assemblage and consecutive estimates of their grazing effect during the course of Heterocapsa circularisquama bloom. J Plankton Res, 2005, 27(4):303-311.
    Kamiyama T and Tsujino M. Seasonal variation in the species composition of tintinnid ciliates in Hiroshima Bay, the Seto Inland Sea of Japan. J Plankton Res, 1996, 18: 2313-2327.
    Kamiyama T. Application of a vital staining method to measure feeding rates of field ciliate assemblages on a harmful alga. Mar Ecol Prog Ser, 2000, 197:299-303.
    Kamiyama T. Change in the microzooplankton community during decay of a Heterosigma akashiwo bloom. J Oceanogra, 1995, 51: 279-287.
    Kamiyama T. Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Marine Biology, 1997, 128: 509-515.
    Kamiyama T. The impact of grazing by microzooplankton in northern Hiroshima Bay, the Seto Inland Seam, Japan. Mar Biol, 1994, 119: 77-88.
    Kiorboe T and Titelman J. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J Plankton Res, 1998, 20; 1615-1636.
    Kofoid C A and Campbell A S. The ciliata: the Tintinoinca. Bull. Mus. Comp. Zool, 1939, 84-473.
    Kofoid C A and Campbell A S. The ciliata: the Tintinoinca. Bull. Mus. Comp. Zool, 1939, 84-473.
    Krsinic F. On vertical distribution of tintinniens (Ciliata, Oligotrichida Ttintinnina) in the open waters of the South Adriatic. Mar Biol, 1982, 68: 83-90.
    Krsinic F. Tintinnines (Ciliata, Oligotrichida Tintinnina) in Eastern Adriatic Bays. Estuarine Coastal and Shelf Sciences, 1987, 24:527-538.
    Kuidong X, Joog Ki Choi, Eun Jin Yang, et al. Assessment of planktonic ciliate communites as indicators of water quality in Inchon coastal waters. The Yellow Sea, 2000, 6: 50-58.
    Landry M R and Hassett H P. Estimating the grazing impact of marine microzooplankton. Mar Biol, 1982, 67: 283-288.
    Landry M R, Brown S L, Campbell L, et al. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep-Sea Research II, 45, 1998, 2353-2368.
    Landry M R, Monger B C and Selph K E. Time-dependency of microzooplankton grazing and phytoplankton growth in the subarctic Pacific. Progress in Oceanography, 1993, 32: 205-222.
    Landsberg J H. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheres Science, 2002, 10(2): 113-390.
    Liu H, Dagg M J, Wu C J, et al. Mesozooplankton consumption of microplankton in the Mississippi River plume, with special emphasis on planktonic ciliates. Mar Ecol Prog Ser, 2005, 286: 133-144.
    Merrell J R and Stoecker D K. Differential grazing on protozoan microplankton by developmental stages of the calanoid copepod Eugytemora affinis Poppe. J Plankton Res, 1998, 20 (2): 289-304.
    Miller C B. Pelagic production processes in the Subarctic Pacific. Progress in Oceanography, 1993, 32: 1-15.
    Murrell M C, Hollibaugh J T. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquatic Microbial Ecology, 1998, 15: 53-63.
    Nakagawa Y, Ota T, Endo Y, et al. Improtance of ciliates as prey of the euphausiid Euphausia pacifica in the NW North Pacific. Mar Ecol Prog Ser, 2004, 271: 261-266.
    Nelly T and Campbell L. A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae, 2006, 5: 592–598.
    Nielsen T G and Hansen B. Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. Mar Ecol Prog Ser, 1995, 125: 230-257.
    Okaichi T. Red tides. Terra Scientific Publishing Company, 2002, Tokyo. Paranjape M A. Grazing by microzooplankton in the eastern Canadian arctic in summer 1983. Mar Ecol Prog Ser, 1987, 40: 239-246.
    Park K J and Cha S S. Food organisms of postlarvae of Jananese anchovry in Kwsangyang Bay. J Korean Fish Res, 1995, 28(3): 247-252.
    Putland J N. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. Journal of Plankton Research, 2000, 22(2): 253-277
    Putt M and Stoecker D K. An experimentally determined carbon: volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol Oceanogr, 1989, 34: 1097-1103.
    Qi Y., Zhang Z., Hong Y., et al. Occurrence of red tides on the coasts of China. Toxic Marine Phytoplanktou. Amsterdam: Elsevier, 1993, 43-46.
    Rosetta C H and McManus G B. Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum mimimum. Harmful Algae, 2003, 2: 109-126.
    Sanders R W. Tintinnids and other microzooplankton seasonal distribution and relationship to resources and by drought in a Maine estuary. J Plankton Res, 1987, 9: 65-77.
    Sellem F, Pesando D, Bodennec G, et al.. Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotus livisus. Wat Res, 2000, 34(2): 550-556.
    Smalley G W and Coats D W. Ecology of the red-tide dinoflagellate Ceratium furca: distribution, mixtrophy and grazing impact on ciliate population of Chesapeak Bay. J Eukaryot Microbial, 2002, 49: 63-73.
    Smalley G W, Coats D W and Adams E J. A new method using fluorescent microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate Ceratium furca. Aquat Microb Ecol, 1999, 17: 167-179.
    Sournia A. Red tide and marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Lassus P, Arzul G, Denn E et al. Harmful Marine Alagl Blooms. London, New York, Paris: Technique & Docummentation Lavoisier/Andover, Eangland UK: Intercept Ltd, 103-112.
    Stoecker D K, Taniguchi A and Michale A E. Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar Ecol Prog, Ser, 1989, 50: 241-254.
    Stoecker D K, Verity P V, Michaels A E, et al. Feeding by larval and post-larval ctenophores on microzooplankton. J Planlton Res, 1987, 9(4): 667-683.
    Stoecker, D K and Capuzzo J M. predation of protozoa: its importance to zooplankton. J Plankton Res, 1990, 12: 891-908.
    Strom S L and Morello T A. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J Plankton Res, 1998, 20: 571-584.
    Strom S L, Welschmeyer N A. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific ocean. Liminology and Oceanography, 1991, 36: 50-63.
    Strom S, Wolfe G, Holmes J, et al. Chemical defense in the microplankton I: Feeding and growth rates of heteotrophic protists on the DMS-producing phytoplankter Emiliania Huxleyi. Limnol. Oceanogr., 2003, 48 (1): 217-229.
    Subba Rao D. V., Quilliam M. A. & Pocklington R. Domoic acid, a neurotoxic amino acid produced by the marine diatom Nitzschia pungens in culture. Can. J. Fish Aquat. Sci. 1988, 45: 2076-2079.
    Suzuki T and Taniguchi A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar Biol, 1998, 132: 375-382.
    Tett P and Wilson H. From biogeochemical to ecological models of marine microplankton. J Mar Syst, 2000, 25:431-446.
    Tillmann U and John U. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser, 2002, 230:47-58
    Tillmann U. Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol, 2004, 51(2): 156-168.
    Tilmann U and John U. Toxic effects of Alexandrium spp. On heterotrophic dianoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser, 2002, 230: 47-58.
    Tomas C R. Identifying Marine Phytoplankton. San Diego: Academic Press, 1997.
    Uchida T, Kamiyama T and Matsuyama Y. Predation by a photosynthetic dinoflagellate Gyrodinium instriatum on loricated ciliates. J Plankton Rres, 1997, 19 (5): 603-608.
    Uhlig G and Sabliag G. Long-term studies on Noctiluca scintilans in the German Bight population and red tide phenomena 1968-1988. Netherlands J Sea Res, 1997, 25(1/2): 101-112.
    Umani S F, Beran A, Parlato S, et al. Noctiluca scintillans MACARTNEY in the Northern Adriatic Sea: long-term dynamics, relationships with temperature and eutrophication, and role in the food web. J Plankton Res, 2004, 26(5): 545-561.
    Urrutxurtu I. Seasonal succession of tintinnids in the Nerviòn River estuary, Basque country, Spain. J Plankton Res, 2004, 26(3): 307-314.
    Utermohl H. Zur vervollkommnung der quantitaven phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung fur Limnologir, 1958, 9: 1-38.
    Uye S, Nagano N and Shimazu T. Biomass, production and trophic roles of micro- and net-zooplankton in Dokai inlet, a heavily eutrophic inlet in summer. Plankton Biol Ecol, 1998, 45: 171-182.
    Verity P G and Langdon C. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragensett Bay. J Plankton Rres, 1984, 6: 859-868.
    Verity P G and Stoecker D. Effects of Olisthodiscus luteus on the Growth and Abundance of Tintinnids. Marine Biology, 1982, 72: 79-87.
    Verity P G, Stoecker D K, Sieracke M E, ea al. Abundance, biomass and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. Deep-Sea Research, 1993, 40: 227-244.
    Verity P G, Stoecker D K, Sieracki M E, et al. Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N, 18°W. Deep-Sea Res II, 1993, 40: 1793-1814.
    Verity P G. Abundance, community composition, size distribution and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuarine Coastal and Shelf Sciences, 1987, 24: 671-690.
    Wong P. S & Wu R. S. S. Red Tides in Hong Kong: problems and management strategy with special reference to the mariculture industy. J. Shoreline Management, 1987, 3: 2-21.
    Yamaji I. Illustrations of the marine plankton of Japan. Hoikusha Publishing Co. Ltd, 1984, 1-154.
    Zhang Liyong, Sun Jun, Liu Dongyan, et al. Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China. Acta Oceanologica Sinica, 2005, 24(2): 85-101
    Zhou M J,Li J,Luckas B,et al.,1999.A recent shellfish toxin investigation in China,Marine Pollution Bulletin,39:331-334.
    Zingone A and Enevoldsen H. The diversity of harmful algal blooms: a challenge for science and management. Ocean Coas Manage, 2000, 43: 725–748.
    陈洋. 有害赤潮对海洋浮游生态系统结构和功能影响的初步研究. 200, 硕士学位论文. 费鸿年. 赤潮发生的原因. 学艺, 1952, 22 (1): 1-3.
    郭 皓, 王健国, 易晓蕾, 等. 中国近海赤潮生物图谱 (第一版). 北京: 海洋出版社, 2004, pp. 1.
    国家海洋局中国海洋灾害公报, 1989-2006: http://www.soa.gov.cn/hygb/index.html.
    韩刚, 颜天, 张利永, 等. 东海大规模赤潮对中华哲水蚤存活和繁殖影响的现场与实验室研究. 海洋与湖沼, 2007(已接收).
    郝建华, 霍文毅. 胶州湾增养殖海域营养状况与赤潮形成的初步研究. 海洋科学,2000, 24(4): 37-41.
    洪华生, 柯林, 黄邦钦, 等. 台湾海峡纤毛虫的种类组成及其丰度时空分布特征.海洋学报, 2000, 22(增刊): 250-260.
    华泽爱. 赤潮灾害. 北京: 海洋出版社, 1994.
    黄长江, 杞桑, 齐雨藻, 等. 南海大鹏湾夜光虫种群在其生态群落中的地位和功能. 海洋与湖沼, 1997, 28(4): 348-355.
    金德祥, 陈金环, 黄凯歌. 中国海洋浮游硅藻类. 上海: 上海科学技术出版社, 1965. 20-214.
    类彦立, 徐奎栋, 宋微波. 单细胞培养中一敌害纤毛虫——具沟急游虫的生态习性及形态学初探. 中国水产科学, 1996, 3(4): 39-47.
    李超伦, 孙松, 吉鹏, 等. 南极普里兹湾边缘浮冰区微型浮游动物的摄食及其氮的排泄. 海洋与湖沼, 2000, 31(6): 657-663.
    陆斗定, 齐雨藻, Goebel J, 等. 东海原甲藻修订及与相关原甲藻的分类学比较. 应用生态学报, 2003, 14(7): 1060-1064.
    陆斗定, 张志道, 朱根海, 等. 浙江金海夜光藻的分布及其生态学特点. 东海海洋, 1994, 12(3): 62-69.
    吕颂辉, 齐雨藻 . 中国的赤潮 、 危害 、 成因和防治 . http://www.eastsea.gov.cn/Module/Show.aspx?id=2263.
    马志华, 杨 翼, 董军兴. 1998-2005 年中国海洋赤潮灾害分析研究. 第三届南中国海有害赤潮的防治与管理国际研讨会.中国香港: 科学出版社, 2005, 349-356.
    孟田湘. 黄海中南部鳀鱼各发育阶段对浮游动物的摄食. 海洋水产研究, 2003, 24 (3): 1-9.
    齐雨藻, 王 艳, 王寿松, 等. 中国沿海赤潮 (第一版). 北京: 科学出版社, 2003, pp. 1.
    沈锦兰, 林元烧, 杨圣云, 等. 厦门杏林虾池夏冬季微型浮游动物对浮游植物的摄食压力. 台湾海峡, 2002, 21(1): 31-36.
    宋微波, 徐奎栋. 南极威德尔海冰层下的砂壳纤毛虫. 极地研究, 1999, 11(1): 34-38.
    宋微波. 原生动物学专论. 青岛: 青岛海洋大学出版社, 1999, 1, 155-176.
    孙军, John D, 刘东艳. 夏季胶州湾微型浮游动物摄食初步研究. 应用生态学报, 2004, 15 (7): 1245-1252.
    孙军, 刘东艳, 王宗灵, 等. 春季赤潮频发期东海微型浮游动物摄食研究. 应用生态学报, 2003, 14(7): 1073-1080.
    孙军, 刘东艳, 王宗灵, 等. 浮游动物摄食在赤潮生消过程中的作用. 生态学报, 2004, 24(7):1514-1522.
    孙军, 宋秀贤, 殷克东, 等. 香港水域夏季微型浮游动物摄食研究.生态学报, 2003, 23(4): 712-724.
    沈韫芬, 章宗涉, 龚循矩, 等. 微型生物监测新技术. 北京: 中国建筑工业出版社, 1990, 1-6.
    谭志军, 颜天, 周名江,等.塔玛亚历山大藻对黑褐新糠虾存活、生长以及种群繁殖的影响, 生态学报, 2002, 22(10): 1635-1639.
    唐启升, 苏纪兰. 中国海洋生态系统动力学研究 I. 关键科学问题与研究发展战略. 北京: 科学出版社, 2000, 214.
    王安利, 王维娜, 刘存岐. 唐海县虾池赤潮生物种类与赤潮类型的研究. 河北渔业, 1994, (9): 3-4.
    王朝晖, 尹伊伟, 齐雨藻, 等. 珠海桂山岛米氏裸甲藻赤潮对鱼鳃损伤的病理学组织观察. 海洋学报, 2001, 23(1): 133-138.
    王丽平. 有害赤潮藻对海湾扇贝早期发育和褶皱臂尾轮虫种群数量的影响. 2004博士学位论文.
    王丽平, 颜天, 谭志军, 等. 塔玛亚历山大藻和东海原甲藻对褶皱臂尾轮虫种群数量的影响. 应用生态学报, 2003,14(7): 1151-1155.
    王丽平, 颜天, 谭志军, 等. 有害赤潮藻对浮游动物影响的研究进展, 应用生态学报, 2003, 14(7): 1191-1196.
    王鹏, 梁君荣, 高亚辉, 等. 基于核糖体 DNA 大亚基片断序列探讨中国东海海域原甲藻的分子分类. 厦门大学学报(自然科学版), 2005, 44 (3): 437-440.
    王云峰, 张清春, 于仁成,等. 东海有毒亚历山大藻赤潮的分布特征和毒素研究. 见 何建宗, 吕颂辉, 王丰, 等. 南中国海红潮的关键研究. 南中国海赤潮学会, 2006, 292-295.
    徐大鹏, 宋微波. 青岛沿海砂壳纤毛虫(原生动物, 纤毛门, 砂纤目). 动物分类学报, 2005, 30(3):501-508.
    徐奎栋, 洪华生, 宋微波, 等. 台湾海峡的砂壳纤毛虫研究(纤毛动物门: 砂壳亚目). 动物分类学报, 2001, 26(4):454-466.
    徐兆礼. 东海近海春季赤潮发生与浮游动物群落结构的关系. 中国环境科学, 2004, 24(3): 257-260.
    徐兆礼, 陈亚瞿. 东海毛颚类优势种及与环境的关系. 中国水产科学, 2005, 12(1): 76-82.
    徐兆礼, 崔雪森, 陈卫忠. 东海浮游桡足类的种类组成及优势种. 水产学报, 2004, 28(1): 35-40.
    尹光德. 胶州湾砂壳纤毛虫之初步调查. 山东大学学报, 1952, 2: 36-56.
    曾祥波, 黄邦钦, 陈纪新, 等. 台湾海峡小型浮游动物的摄食对夏季藻华演替的影响. 海洋学报, 2006, 28(5): 108-116.
    张武昌, 王荣. 渤海微型浮游动物及其对浮游植物的摄食压力. 海洋与湖沼, 2000, 31 (3): 252-258.
    张武昌, 王荣. 海洋微型浮游动物的丰度和生物量. 生态学报, 2001, 21(11):1893-1908.
    张武昌, 王荣. 胶州湾桡足类幼虫和浮游生纤毛虫的丰度与生物量. 海洋与湖沼, 2001, 32(3): 280-287.
    张永山, 吴玉霖, 邹景忠, 等. 胶州湾浮动弯角藻赤潮生消过程. 海洋与湖沼, 2002, 31(3): 55-61.
    周名江, 颜天, 邹景忠. 长江口临近海域赤潮发生区基本特征初探. 应用生态学报, 2003, 14(7): 1031-1038.
    周名江, 朱明远, 张经. 中国赤潮的发生趋势和研究进展. 生命科学, 2001, 13(2): 54-59.
    周名江, 朱明远. 我国近海有害赤潮发生的生态学、海洋学机制及预测防治研究. 应用生态学报, 2003, 14(7): INVITED FEATHURE.
    周名江, 朱明远. 我国近海有害赤潮发生的生态学、海洋学机制及预测防治研究进展.地球科学进展, 2006, 21(7): 673-679.
    朱明远, 叶属峰, 李瑞香 等, 2002 年东海区的赤潮发生. 见:何建宗, 吕颂辉, 俞子修, 等. 南中国海红潮预防和管理的前沿发展, 2003, 35-40.
    邹景忠. 赤潮生物与赤潮灾害. 中国海洋科学研究及开发. 青岛: 青岛出版社. 1992: 284-287.
    邹景忠. 海洋环境科学. 山东教育出版社, 253-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700