砾岩低渗透油藏注水开发后期流动单元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流动单元的提出从油藏地质角度进一步解剖和精细刻画出层间、平面和小层内部及孔喉规模上的储层非均质特性;同时也表征出了流体在储层中运动的轨迹和差异,是储层地质与油藏开发动态有机结合的桥梁和纽带。其井间对比及空间结构问题更需要露头和现代沉积的精细研究及随机建模予以解决。在这些综合交叉科学研究和庞杂的技术系列工程中,本文选择准噶尔盆地西北缘砾岩低渗透攻关难题,从注水开发后期要解决的实际矛盾出发,突出实用性是关键,探索出了一套适合本地区油藏地质特点的流动单元研究理论和技术方法,不断地向砾岩低渗透油藏极限采收率挑战。
     块状非均质砾岩油藏注水开发要比层状砂岩油藏复杂得多,低渗透非线性渗流注水开发难度大,因此开展砾岩低渗透油藏流动单元研究目前在国内外尚处于前缘性研发阶段。在跟踪分析近20年国内外流动单元研究方面最新动态的基础上,本文认为流动单元是介于静态地质和油藏动态的交叉学科,必须考虑流体因素,等渗流特征是最基本性质,而不仅仅是沉积微相研究和储层评价,只有将流体性质和外部采油工艺措施条件引入其中,才能反映出目前油水在储集体空间上的渗流差异。因而论文从流动单元细分与对比、边界条件研究、研究的技术方法、分类与评价、建立流动单元模型和应用综合阐述。每一部分强调动态与静态结合,将静态地质融于动态分析之中,动态结果反过来验证静态地质认识,最后突出流体在储层中渗流的差异。
     与国内外同类技术相比,论文中突出侧向叠加复合砾岩体单一河道识别;图像分形几何学用于流动单元表征、利用毛管压力曲线R35微观孔隙结构参数研究流动单元;井间连通体等渗流特征对比等方法技术。
     通过砾岩低渗透流动单元的综合研究,取得以下结论:
     1)储层自身条件、边界条件、流体条件和采油工艺措施等外部条件是评价流体在孔隙岩石中流动性能的四个条件;
     2)岩相单元的细分与对比是流动单元研究的重要基础,岩相单元、非均质单元和流动单元三者紧密相关,但又不尽相同。沉积间歇面的提出为流动单元的纵向细分和横向对比提供了沉积学依据;
     3)流动单元的方向性很明确,是一个矢量地质参数,这主要取决于沉积储层和构造条件,表现在渗透率的双重各向异性上,三维连续储集体上流动单元的差异是造成水驱油效率差异的主要原因,直接影响着陆相非均质油藏注水开发效果;
     4)五2西克下组油藏可划分为四种类型的流动单元,在研究区块状砾岩体低渗透三维
The views of flow unit point out that heterogeneity of reservoirs should be deeply studied and interpreted in terms of reservoir geology, from interbed, latitude and thin-layer to pore-throat. They can also be used to pose the orbits and differences of reservoir fluids. So the study of flow unit is a bridge connecting reservoir geological characteristics and dynamic oil developments. The inter-well-contrasting and frame-building are depended on delicate study of modern sediments and random modeling. Out of large number of studies on the synthetic interdisciplinary and so much technological engineering, this article chooses the puzzling project for low permeable conglomerate reservoirs of Northwest Bounder in Jungaer Basin. Based on existing contradictions during later period of waterflood recovery, we find a sort of theories and skills of flow unit, which are suitable to reservoir geological characteristics, and we are challenging continuously the oil recovery limit of low permeable conglomerate reservoirs.Due to the heterogeneity of low permeable conglomerate reservoirs, the waterflood development of reservoir is much more complex than layered sandstone reservoir. Waterflood development of low permeable nonline reservoirs is very difficult, so study of flow unit for low permeable conglomerate reservoirs may be in advancing edge. Beyond the latest research of flow unit at home and abroad recent 20 years' research, this article advances that study of flow unit is out of a new interdisciplinary between static geology and dynamic reservoir engineering. We must concern the fluid factors, and realize that equal influent feature is the most basic character. The study is not limited to division of sedimentary microfacies and evaluation of reservoirs; only when fluid features and outer oil recovery techniques are included, it could show the influent differences of oil and water in the space of reservoirs. Therefore, the contents of this article are widely involved high division and contrast of flow unit, study of bounder conditions, the techniques and methods of the study, classification and evaluation of the study, building of flow unit model and utilization of flow unit. Each part stresses the binding of static and dynamic data, and pays attention to the influent differences of reservoir fluids.based on the studies of flow unit for low permeable conglomerate reservoirs, the follow conclusions are derived:1) four factors using to evaluate flow ability of subsurface fluids are natural condition, boundary condition, fluid condition and outer conditions of oil recovery
    techniques;2) subdivision and contrast of lithofacies unit is the important base of the study of flow unit, and lithofacies unit, heterogeneity unit, and flow unit are not same but tighly relative, what's more the raise of sedimentary pause surface provides sedimentary references to vertical subdivision and lateral contrast of flow unit;3) flow unit, a geologic vector, has definite direction, which mainly is controlled by sedimentary and tectonic conditions of reservoirs, and the direction is expressed as twofold anisotropy, and then the difference of flow unit in 3D connective reservoirs controls mainly the difference of waterflood efficiency, meanwhile it directly influences the effectiveness of waterflood oil recovery for continental heterogeneous reservoirs;4) West Wu2 Reservoirs of Lower Kuramay Fm.^k1) can be divided into four types of flow units, and their difference is the main reason for differences of waterflood efficiency for these 3D connective oil beds of block low permeable conglomerate reservoirs.5) with resolves of flow unit, we can judge lateral conformance effective of water flood, analyze vertical water out degree, anticipate drawdown, prospect the distribution of remnant oil, and provide overall reservoir static and dynamic models for reservoir numerical simulation, so it raises a important way for improving oil recovery during latter period of oilfield development.
引文
[1] 吴胜和,王仲林.陆相储层流动单元研究的新思路,1999,17(2):252~257
    [2] 孙健评,徐学品.双河油田开发后期流动单元划分方法,新疆石油地质,1999,20(2):154~157
    [3] 杨勤勇.Duri油田蒸汽驱的时延地震监测,石油物探译丛,1999,(2):87~94
    [4] 孙来喜,孙建平.井间不同流动单元生产压差预测方法,石油与天然气地质,1999,20(2):176~178
    [5] 尹太举,陈程.建立储层流动单元模型的新方法,石油与天然气地质,1999,20(2):170~175
    [6] 牛宝荣.提高油井产能的综合性研究方法,新疆石油科技信息,1999,20(2):9~12
    [7] 胡恒.原始油藏烃饱和度分布建模的一项改进技术:在伊利诺斯(美国)Aux Vases油藏中的应用,天然气勘探与开发,1999,22(3):55~60
    [8] 杜劲松.皇甫煊,应用定量的地质和岩石物理数据改进储层动态预测,油气勘探开发信息,1999,16(3):31~36
    [9] 阎长辉,羊裔常,等.动态流动单元研究,成都理工学院学报,1999,26(3):273~275
    [10] 吴胜和,王仲林.温米油田开发阶段高分辨率层序地层学研究,石油学报,1999,20(5):33~38
    [11] 赵永胜,邵进忠.储层流体流动单元的矿场试验,石油学报,1999,20(6):43~46
    [12] 郭燕华,熊琦华.陆相储层流动单元的研究方法,石油大学学报(自然科学版),1999,23(6):13~16
    [13] 胡恒.碳酸盐岩缓坡油藏的综合储层表征研究:得克萨斯州Gaines县Seminole San Andres组,国外油气勘探,1999,11(5):542~555
    [14] 王洪辉,王岩.河南双河油田IV1-3层系微型构造研究,成都理工学院学报,1999,26(4):418~422
    [15] 陆如华,陈明霞.储家楼油田中南断块水驱油藏可采储量,华东油气勘查,1999,17(3):38~42
    [16] 冯晓宏.现代流体流动单元概念及识别方法,滇黔桂油气,1998,11(2):54~61
    [17] 焦养泉,李祯.碎屑岩储层物性非均质性的层次结构,石油与天然气地质,1998,19(2):89~92,98
    [18] 贾随良.地震监测在早期蒸汽驱动管理中的应用,石油物探译从.1998,(3):7~17
    [19] 金佩强,杨克远.国外流动单元描述与划分,大庆石油地质与开发,1998,17(4):49~51
    [20] 焦养泉,李思田.陆相盆地露头储层地质建模研究与概念体系,石油实验地质, 1998,20(4):346~353
    [21] 路艳.流动单元法在储集层描述中的应用,石油地质信息,1997,18(3):179~182
    [22] 焦养泉,李思田.露头储层地质建模的概念体系与完善,第五届全国沉积学及岩相古地理学学术会议论文集,新疆科技卫生出版社,615~618
    [23] 刘吉余,郝景波.流动单元的研究方法及其研究意义,大庆石油学院学报.1998,22(1):5~7
    [24] 姜建伟,李庆明.夹层对厚油层开发效果的影响,西南石油学院学报,1996,18(1):35~38
    [25] 焦养泉,李祯.河道储层砂体中隔挡层的成因与分布规律,石油勘探与开发,1995,22(4):78~81,91
    [26] 邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学,石油与天然气地质,1995,16(2):89~97
    [27] 张兴.储层数据谱分析在段六拨油田的应用,石油与天然气地质,1995,16(2):155~163
    [28] 胡恒,文武.预测岩石物理性质的成因法,国外油气勘探,1995,7(2):183~194
    [29] 马连山,阎火.连续油藏描述的应用:以西堪萨斯州Bindley油田为例,石油勘探开发信息,1995,(1):28~49
    [30] 唐德中.流动单元油藏描述对模拟油田注水动态的影响,青海石油,1994,12(1):60~69
    [31] 陈静惠,章龙江.预测水平管中气体—非牛顿液体段塞流的压降,油气储运,1994,13(2):15~18
    [32] 周庆凡.描述碳酸盐储层流体流动不均一性的方法,含油气系统研究现状和方法,北京:地质出版社
    [33] 刘孟慧.储层特征描述技术:第二届国际储层表征研讨会简介,储层评价研究进展:石油科技专辑(4),北京:中国石油天然气总公司科技发展部
    [34] 刘瑞进.影响油藏动态的地质因素,石油参考资料,1985,(3):26~35
    [35] 崔耀南.影响怀俄明州HartzogDraw油田油层动态的地质因素,美国石油工程师学会,1983年年会论文选译(上),1985
    [36] 胡孝林,郑荣才.高分辨率层序地层学理论探析,中国海上油气(地质),1999,13(2):73~78
    [37] 吴胜和,王仲林.陆相储层流动单元研究的新思路,沉积学报,1999,17(2):252~257
    [38] 许广明,孔祥言.高分辨率层序地层学在油藏数值模拟中的应用,石油与天然气地质,1999,20(2):115~119
    [39] 车树立,管守锐.柴达木盆地北缘西段中生界基准面旋回的地震分析,世界石油工业,1999,6(9):13~15
    [40] 吴胜和,王仲林.温米油田中侏罗统低伽马泥岩的湖泛成因及层序地层学意义,新疆石油地质,1999,20(4):325~328
    [41] 田景春,张煜.三角洲-湖泊沉积高分辨率层序地层学研究——以东辛油田营66-营87区块沙二段、沙一段为例,复式油气田,1999,(3):42~45
    [42] 秦永霞,姜素华.斜坡带油气成藏特征与勘探方法——以济阳坳陷为例,复式油气田,1999,(3):10~14
    [43] 吴胜和,王仲林.温米油田开发阶段高分辨率层序地层学研究,石油学报,1999,20(5):33~38
    [44] 周丽清,邵德艳.板中东油田高分辨率层序地层对比研究,石油大学学报(自然科学版),1999,23(6):9~12
    [45] 吴朝容,郑荣才.辽河油田西部洼陷沙河街组高分辨率层序地层学特征,成都理工学院学报,1999,26(4):375~381
    [46] 陈波,李孝军.油气田开发阶段砂岩储集层横向对比及预测方法,石油勘探与开发,2000,27(1):95~97
    [47] 柳梅青,郑荣才.川西新场气田蓬莱镇组陆相地层高分辨率层序地层学研究,沉积学报,2000,18(1),50~56
    [48] 李东海.渤南油田沙三段高分辨率层序地层学研究,江汉石油学院学报,2000,22(3):30~32
    [49] 杜春彦,郑荣才.陕北长6油层组短期基准面旋回与储层非均质性的关系,成都理工学院学报,1999,26(1):17~22
    [50] 郑荣才.四川盆地下侏罗统大安寨段高分辨率层序地层学,沉积学报,1998
    [51] 陈开远,孙爱霞.成油体系中的层序地层学,石油与天然气地质,1998,19(3):221~226
    [52] 马晓昌,康厚双.八面河地区沙四段低阻砂岩油层识别方法及意义,江汉石油科技1998,8(4):10~13
    [53] 蒲仁海,陈振新.高分辨率层序地层学在桩52块近岸浊积扇前积油层对比中的应用,沉积学报,1998,16(4):21~26
    [54] 邵龙义.高分辨率层序地层学——创新、应用及发展前景,地质科学译丛,1997,14(2):19~22
    [55] 张功成,陈新发.准噶尔盆地非构造油气藏综合勘探,西部油气勘探1997,(1):26~35
    [56] 鲁洪波,姜在兴.高分辨率层序地层学在资源序列评价中的应用,石油大学学报(自然科学版),1997,21(5):9~12
    [57] 蒲仁海,孙卫.基准面旋回高分辨率层序地层学在前积油层对比中的应用及意义,克拉玛依:第五届全国沉积学及岩相古地理学学术会议论文集,1997.7
    [58] 杜宁平.据高分辨率层序地层学认识地层结构、对比概念、体积配分、相分异和储层的间隔单元划分,国外油气勘探,1996,8(3):285~294
    [59] 赵省民,郑浚茂.晋北晚古生代高分辨率含煤层序,沉积学报,1997,15(1):31~36
    [60] 李莉,国外老油田进行深入勘探的方法与技术,世界石油工业,1997,4(2):12~15
    [61] 张振生,杨帆.层序地层学——一种局部成功的全球性理论,国外油气勘探,1995,7(4):411~424
    [62] 薛良清,薛培华.老油(气)田挖潜的概念与方法,国外油气勘探,1995,7(4):406~410
    [63] 邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学,石油与天然气地质,1995,16(2):89~97
    [64] 郭燕华,熊琦华.吐哈盆地中侏罗统储集层岩石物理相研究——以葡北-胜北-连木沁地区为例,新疆石油地质,2000,21(1):50~53
    [65] 戴厚柱,杨克敏.严重非均质油藏岩石物理相研究,断块油气田,1999,6(1):22~25
    [66] 吕晓光,闫伟林.储层岩石物理相划分方法及应用,大庆石油地质与开发,1997,16(3):18~21
    [67] 吴欣松,熊琦华.剩余油分布预测的新方法——岩石物理相分析,油气成藏机理及油气资源评价国际研讨会,北京:石油工业出版社.1997.:
    [68] 闫伟林,吕晓光.岩石物理相研究和神经网络技术在高含水期测井解释中的应用,水驱油田开发测井1996国际学术讨论会论文集.北京:石油工业出版社,199609
    [69] 赵力民,熊琦华.荆丘油田岩石物理相研究,古潜山.1995,(2):10~17
    [70] 姚光庆,赵彦超.新民油田低渗细粒储集砂岩岩石物理相研究,地球科学(中国地质大学学报).1995,20(3):355~360
    [71] 熊琦华 彭仕宓.岩石物理相研究方法初探——以辽河凹陷冷东—雷家地区为例石油学报.1994,15(增):68~75
    [72] 陈明霜.碳酸盐岩岩相分析:俄克拉何马州和得克萨斯州下古生界Hunton群的实例研究,开发地质学(二),石油天然气总公司情报所.北京:石油天然气总公司情报所1990.10
    [73] 冯晓宏,岳清山.厚油层非均质特征描述的新方法:水力(渗流)单元分析,石油学报.1994,15(增):149~158
    [74] 张勇,古安村.加强油藏描述:用岩心和测井资料识别水力单元并在非取心层段/井预测渗透率
    [75] 杨志平.储层的多规模解剖:加拿大艾伯塔中西部彭比纳—卡迪姆油田的地质特征,油气田勘探开发科技情报.1988,(5):1~37
    [76] 刘宗环.地质与油藏管理:全国地球科学会议论文,油气田勘探开发科技情报.1988,(6):28~33
    [77] Flores D. Geostatistical analysis of petrophysical variables influencing reservoir guality in the fractured "O Limestone", Maporal Field, Western Venezuela, SPWLA 39th Ann. Log. Sym, 1~12
    [78] Alfonso QP. Neural network applications to upscale core data and ancient logs to petrophysieal peremeters of flow units, Caro field, Eastern Venezuela, SPWLA 39th Ann. Log. Sym.[会议时间] 1998. 05. 26, FFF 1~8
    [79] Thompson T. W. Integrated reservoir characterization using geostatistics and 3D visualization in the Kern River field, Bakersfield, California, AAPG Bull, 1998, 82(5A):860
    [80] Madden M. P Effective reservoir management with three case studies, 1998 SPE/DOE 11th Symp. IOR: 1998. 04. 19
    [81] Osisanya S. O. Influence of stress on the characteristics of flow units in shaly formations, 49th Ann. Tech. Mtg. Pet. Soc.: 1998. 06. 08, 98-13
    [82] Hamilton D. S. Characterization of reservoirs in the Tertiary section of Black B in the south of Lake Maracaibo, Leading Edge. 1998, 17(12): 1754~1758
    [83] Moon M. S. Application of petrophysically derived "flow facies" for reservoir characterization and simulation: Wara reservoir, Greater Burgan field, 1998 SPE Ann. Tech. Conf
    [84] Waite M. W. Application of seismic monitoring to manage an early-stage steamflood, SPE Res. Engng., 1997, 12(4):277~283
    [85] Kabir C. S. Field characterization by integrating well-test, geologic, and other data, J. Pet. Tech. 1997, (11):1242~1246
    [86] Jimenez Z. Stochastic modeling technique as applied to history matching of Ecocene-Misoa reservoir, Lake Maracaibo, Venezuela, SPE Res. Simul. Conf. 1997. 06. 08
    [87] Davies D. K. Improved prediction of reservoir behavior through integration of quantitative geological and petrophysical data, 1997 SPE Ann. Tech. Conf.:1997. 10. 05, 725~740
    [88] Knight S. Evaluation of capillary entrament within reservoir flow units, 1997 SPE Ann. Tech. Conf. 941~956
    [89] Major R. P. Identifying fracture oriontation in a mature carbonate platform reservoir, AAPG Bull. 1997, 81 (7): 1063~1069
    [90] Martin A. J. Characterization of petrophysical flow units in carbonate reservoirs, AAPG Bull. 1997, 81 (5):734~759
    [91] Walsgrove T. Integration of nuclear magnetic resonance core analysis and nuclear magnetic resonance logs: an example from the North Sea, U. K., SPWLA 38th Ann. Log. Symp. 1~12
    [92] Hinterlong G. D. Characterization of rock types with mixed wettability using log and core data-DOE project Welch field, Dawson County, Texas, SPE Formation Damage Control Symp. 1996. 02. 14
    [93] Baker R.O. Effect of reservoir heterogeneities on flow simulation requirements, 1996 SPE/DOE 10th IOR Symp.1996.04.21,
    [94] North C.P. Ephemeral-fluvial deposits: integrated outcrop and simulation studies reveal complexity, AAPG Bull.l996,80(6):811-830
    [95] Abbaszadeh M. Permeability prediction by hydraulic flow unit-theory and applications, SPE Forma. Eval.l996,ll(4):263~271
    [96] Danielli H.M.C. Flow units vs depositional Cycles in field development, Reeves San Andres field, Yoakum county, TX, Permian Basin Oil Gas Rec. Conf.l996.03.27:Midland
    [97] Kane T.V. Sequence stratigraphic model and geologyl reservoir "flow unit" study improve profitability and recover additional reserves at the Sharon Ridge Canyon Unit, Permian Basin Oil Gas Rec. Conf,1996.03.27
    [98] Davies D.K. Identification and distribution of hydraulic flow units in heterogeneous carbonate reservoir: north Robertson unit, West Texas, Permian Basin Oil Gas Rec. Conf. 1996.03.27
    [99] Wehner S.C. CO_2_ huff-n-puff: initial results from a waterflooded SSC reservoir, 1996.03.27:45-54
    [100] Davies D.K. Flow unit characterization of a shallow shelf carbonate reservoir: North Roberston unit, West Texas, 1996 SPE/DOE 10th IOR Symp.1996.04.21: 295-304
    [101] Sweet M.L. Modeling heterogeneity in a low-permeability gas reservoir using geostatistical techniques, Hyde field, Southern North Sea, AAPG Bull.l996,80(ll):1719~1735
    [102] Jongkittinarukorn K. Identification of flow units in shaly sand reservoirs, J. Pet. Sci. Engng. 1997,17(3/4):237~246
    [103] Boult P.J. Probe permeability studies for better reservoir unit evaluation with examples from the Tirrawarra Sandstone, Cooper basin and the Murta and Mckinlay Members, Eromanga basin, APEAJ.期] 1995,35(1): 132-142
    [104] Clerke E . The DAK formation evaluation model for the Permian basin C learfork, Log Anal.l995,36(1):10~27
    [105] Kramers J.W. Integrated reservoir characterization:from the well to the numerical model, 14th World Petro.Cong.1994.5.2
    [106] Grant C.W. Outcrop analog for cyclic-shelf reservoir san andres formation of Permian Basin:stratigraphic framwork,permeability distribution,geostatistics,and fluid-flow modeling, AAPG Bull.l994,78(1):23~54
    [107] Philip Lowry. Reservoir scale sandbody architecture of pliocene turbidite sequences,Long Beach unit,Wilmington oil field,California, SPE 68th Ann.Tech.Conf Exhib,1993,10:251~260
    [108] Amaefule J.O. Enhanced reservoir description:using core and Log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, SPE 68th Ann.Tech.Conf.Exhib.1993,10.:205-220
    [109] Watt N.R. Application of reservior geology to enhanced oil recovery from Upper Devonian Nisku reefs,Alberta,Canada, AAPG Bull.1994,78(1):78~101
    [110] Burns D.R. Elastic wave scaling studies at the Gypsy project in integrated reservoir characterization, SPWLA 34th Ann.Log.Symp.1993.6.1: DD1~23
    [111] Jian F.X . A genetic approach to the prediction of petrophysical properties, J.Pet.Geol.l994,17(1):71~88
    [112] Cline S. B. Quantification of the relative importance of fracture and matrix flow unit s to reservoir storage capacity and transmissibility, SPE Permian Basin Oil & Gas Rec. Conf,1994.3.1
    [113] Wang F. P. Crtical scales,upscaling,and modeling of shallow-water carbonate reservoirs, SPE Permian Basin Oil Gas Rec. Conf,1994.3.1
    [114] Canas J.A. Characterization of flow units in sandstone reservoirs: La Cira field, Colombia, South America, SPE Permian Basin Oil Gas Rec. Conf. 1994.3.16
    [115] Jordan D. W. Hierachical levels of heterogeneity in a Mississippi river meander belt and application to reservoir systems, AAPG Bull.l992,76(12):1601~1624
    [116] Silseth J.K. Impact of flow unit reservoir description on simulated waterflood performance, SPE Res.Engng,1993,8(1):27~33
    [117] Hindi R. CO2 miscible flood simulation study,Robert unit,Wasson field,Yoakum county Texas, SPE/DOE 8th Symp. EOR,19920422
    [118] Elsayed S.A. Multidisciplinary reservoir characterization and simulation study of the weyburn unit, J. Pet. Tech.l993,45(10):930~934,973
    [119] Henderson S. The role of diagenetic studies in flow-unit modeling: San Andres formation,Yoakum county,Texas, AAPG Bull,1994,78(3):494
    [120] Holtz M. H. Effects of depositional facies and diagenesis on calculating petrophysical properties from wireline logs in permian carbonate reservoirs of west Texas, AAPG Bull,1994,78(3):494~495
    [121] Kramers J. W. Integrated reservoir characterization:from the well to the numercal model, 14th World Pet. Cong. 1994.5.28
    [122] Stevenson V. M. Evolution of a successful steamdrive in a geologically complex steeply dipping reservoir at south Casper Creek field Wyoming, nter Thermal Oper Symp, 1991
    [123] Hasan A R. Modeling changing storage during a shut-in test, 67th Ann. Tech. Conf. & Exhib. SPE, 1992
    [124] Major R.P.沉积和成岩控制Jordan油田储集层的非均质性,J.Pet.Tech.1990,42(10):1304~1309
    [125] Van Batenburg D.W.毛细管力在非均质“流动单元”中的作用:流线法,SPE Annu.Tech.Cone Exhib.1988
    [126] Slatt R.M.改变油藏地质描述比例以满足工程需要,J.Pet.Tech,1990,42(2):202~210
    [127] Dreyer T.使用微型测渗仪研究河道砂体的渗透趋势,AAPG Bull,1990,74(4):359~374
    [128] Warren T.M.金刚石钻头水力模型,SPE Drilling Engng,1989,4(3):208~214
    [129] Bruhn C. H. L. High-resolution sequence stratigraphy and reservoir characterization of Oligocene-Miocene sand-rich channel complexes from deep-water Campos basin, Brazil, AAPG Bull. 1998, 82(10): 1897
    [130] Amorosi A. High-resolution sequence stratigraphy from piezocone tests: an example from the Late Quaternary deposits of the southern Po plain, Sedimentary Geology, 1999, 128 (10):67~81
    [131] Lansigu C. High resolution sequence stratigraphy of a turbiditic system: synesedimentary deformation and reservoir implications-Annot Sandstone, AAPG Bull, 1999, 83(8): 1324
    [132] Flint S. Application of high-resolution sequence stratigraphy to northwest Hutton field, northern North Sea: implications for management of a mature Brent Group field, AAPG Bull., 1998, 82(7): 1416~1436
    [133] MacEachern J. A. High-resolution sequence stratigraphy of early transgressive deposits, Viking formation, Joffre field, Alberta, Canada, AAPG Bull, 1998, 82(5A): 729~756
    [134] Benl R. J. Ultra-high-resolution stratigraphic methods for paleoclimatic and paleoceanographic studies, AAPG Bull, 1997, 81 (4): 679
    [135] Smith L. B. High-resolution sequence stratigraphy of late Mississippian(Chesterian) carbonate and mixed carbonate-elastic reservoir facies in the Illinois basin: an outcrop and core study, AAPG Bull, 1997, 81 (9): 1564~1565
    [136] Bourquin S. High resolution sequence stratigraphy in the Keuper of the Paris basin: morphostmctural evolution and comparison with other Peritethyan basins, AAPG Bull, 1995, 79(8): 1199
    [137] Tyler K. Faster history matching and uncertainty in predicted production profiles with stochastic modeling, 64th Ann. Int. SEG Mtg, 1994. 10. 23
    [138] Grammer G. M. Understanding the distribution and architecture of algal mound reservoirs through outcrop-based high-resdution sequence stratigraphy: an example from the Paradox basin, USA, AAPG Bull, 1995, 79(8): 1217
    [139] Houel P. High resolution sequence stratigraphy in the Upper Jurassic carbonate platform of the Paris basin, AAPG Bull.,1995,79(8):1222
    [140] Didier B. High r esolution s equence s tratigraphy o f a wave-and t ide-dominated deltaic reservoir system in a tectonically active setting: Example of the Brent Group on Dunbar, Grant and Ellen field, North Sea, United Kingdom, AAPG Bull, 1995,79(8):1208
    [141] Howell J. Applications of high resolution sequence stratigraphy in North Sea synrift reservoir correlation and development, AAPG Bull,1995,79(8):1212
    [142] Mancini E.A. High resolution sequence stratigraphy of Santonian-Maastrichtian strata in surface exposures of the eastern Gulf of Mexico area, USAAAPG Bull,1995,79(8):1234
    [143] Berggren W.A. Late Neogene chronology: New perspectives in high resolution stratigraphy, Geol. Soc.Amer. Bull.l995,107(11):1272~1287
    [144] Friedenberg R. High resolution sequence stratigraphy of Scythian-early Anisian continental deposits of East of Paris Basin: applications to gas storage, AAPG Bull,1995,79(8):1213
    [145] King PR. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand, AAPG Bull. 1995,79(8):1227
    [146] Aitken J.F. The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Carboniferous Breathitt group, eastern Kentucky, USA, Sedimentology,1995,42(1):3~30
    [147] Surlyk F. High-resolution sequence stratigraphy of a Hettangian-Sinemurian paralic succession, Bornhorlm, Denmark, Sedimentology,1995,42(2):323~354
    [148] Cayley G.T. North sea studies:A natural laboratory for technical developments, 14th World Pet.Cong,1994.5.2
    [149] Hern ndez-Molina F.J. Late Pleistocene-Holocene sediments on the Spanish continental shelves: model for very high resolution sequence stratigraphy, Mar. Geology,1994,120(3/4):129~174
    [150] Minsaas O. Integration of exploration and reservoir approaches through geophysical and geological technologies in mature areas, 14th World Pet. Cong, 1994.5.29
    [151] Dosamentier H. W. High resolution sequence stratigraphy-the east coulee delta, Alberta, J. Sedim. Petrology, 1992,62(2):310-317
    [152] Zhang Y. Evaluation of permeability from geophysical logs in the Barrow field, western Australia, First Break,1998,16(7):243~250
    [153] Ohen H.A. Laboratory evaluation of acid effectiveness for well stimulation in the Niger Dalta, Nigeria, J. Pet. Sci. Engng.l997,17(1/2):157~180
    [154] Amaefule J.O. Enhanced reservoir description:using core and Log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, SPE 68th Ann.Tech.Conf.Exhib,1993,10:205-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700