聚合物驱降压增注技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在国内外有关聚合物驱、表面活性剂降压增注等基础理论文献的基础上,对聚合物粘弹性、渗流力学和高浓聚合物驱提高采收率、表面活性剂降压增注机理等方面内容进行了系统的研究。同时,结合这些理论进行了高质量浓度聚合物驱油方法、表面活性剂降低高浓聚合物注入压力实验研究、高浓聚合物矿场低压注入方案研究及效果评价等具体工作。本文的研究成果对提高高浓聚合物注入能力、拓展聚合物工程实践和丰富高浓聚合物驱油理论研究,具有重要的学术理论意义和工程实际应用意义。全文的研究共分四个部分,下面分别作简要叙述:
     1、聚合物溶液的粘弹特性
     本部分进行了聚丙烯酰胺和黄原胶溶液的粘弹性的实验测试研究,并且对影响粘弹性因素(溶液质量浓度、配制水矿化度及分子量)进行了实验测试。本节的主要目的是根据稳态剪切实验和动态力学实验,揭示出HAPM与黄原胶溶液粘弹特性的差异及各影响因素对溶液粘弹性的影响规律。研究表明:HPAM的第一法向应力差的大小与HPAM溶液的质量浓度、分子量和矿化度有关;HPAM的法向应力差N1随着溶液质量浓度、分子量的增加或矿化度的减小而增加;黄原胶溶液的法向应力差N1随着随剪切速率的增加,呈波动下降趋势。通过对比,黄原胶溶液是具有储存模量和低法向应力差的粘弹性流体。HPAM溶液弹性粘度/剪切粘度与剪切速率之间具有较好的线性关系;在油层流速条件下,聚合物溶液出现拉抻流动。
     2、高质量浓度聚合物驱油方法的室内实验和矿场试验研究
     室内岩心驱油实验结果表明,高质量浓度聚合物驱转注时机越早;或质量浓度越高、或分子量越高,都能够使采收率比水驱提高20%OOIP左右,增加采收率的幅度与三元复合驱相当,但其费用比三元复合驱低。2002年8月,在大庆油田6口注聚井(3口高渗井,3口低渗井)进行高质量浓度聚合物注入能力试验,其油层有效渗透率范围0.354~1.06μm2。试验结果表明:高渗透率油层(K≥0.890μm2 )可以实现高质量浓度(2000mg/L ~2500mg/L,粘度200 ~ 250 mPa.S)聚合物的连续有效注入。2003年9月,6口分散注聚井周围油井平均单井日产液94.2吨,平均单井日产油23.7吨,平均含水率为74.9%,与注入浓度为1000mg/L聚合物溶液相对比,平均单井日产液稳定,平均单井日产油上升6.2吨,增幅为35.4%,平均含水率下降6.6%。结果表明,高质量浓度聚合物溶液的注入是有效的。
     3、表面活性剂降低高浓度聚合物注入压力室内实验以及作用机理的研究
     室内降压结果表明:在注入氧化剂和注入1.0倍孔隙体积NOS表面活性剂体系后,使后续高浓度聚合物溶液驱替压力下降了47.86%~67.01%,连续注入90.0倍孔隙体积左右后,注入压力不回升;NOS体系的界面张力越低,高浓度聚合物溶液的注入压力越低。
     表面活性剂降低高浓聚合物注入压力的原理是:(1)先注入氧化剂溶液将砂岩孔道上吸附的聚合物膜脱除;(2)表面活性剂洗掉油层中的部分残余油以提高了油层的渗透率,实验证明:可动油饱和度明显增加,残余油饱和度降低,油、水等渗点发生右移,扩大了油、水两相共渗区;(3)注入的表面活性剂可在砂岩孔道表面形成一个吸附层,相对于聚合物吸附层厚度很小,因此对渗透率的影响很小,并且表面活性剂分子可以防止聚合物分子再次形成新的厚聚合物膜,从而保持渗透率不再下降。
     4、降低高浓度聚合物注入压力矿场试验研究和效果评价
     6口单井试验结果证明:采用表面活性剂降压和树脂砂压裂技术,可以降低高浓聚合物注入压力,增注后的降压幅度和增注量可以满足注入量和将注入压力降到破裂压力以下的要求。对于渗透率较高的地层,表面活性剂降压效果更好。采用表活剂的增注有效期是常规压裂的2倍以上。对隔层比较好、并且需要单层增注的井,应该选用树脂砂压裂工艺;对隔层不好、或者需要多层增注的井,应该选用活性剂降压工艺。
     现场区块试验结果表明,高浓度、高分子量聚合物驱可以突破采收率增加值是12%左右的界限而达到18~24%左右,而且聚合物浓度越高,采收率进一步提高的幅度越大,说明了注高浓度聚合物溶液可以进一步提高采收率。
According to the investigation actuality of the basic theory study on polymer flooding,surfactant solution decrease pressure of injection and increase ability of injection, this paper study systemically on viscoelasticity of polymer, permeability mechanics and enhance oli recovery, surfactant solution decrease pressure of injection and increase ability of injection. Base on result studied, high-concentration polymer flooding and surfactant solution decrease pressure of injection and increase ability of injection was studied at the same time. The results of the study are significant to enrich the basic theory study of relative fields and accelerate development of these subjects.
     The research results of the paper can be divided into four special topic, which will be briefly introduced separately as follows:
     1. The viscoelasticity of polymer solution
     The viscoelasticity of HPAM and xanthan gum(XA) was study by experimental testing in this part, the factors affect on viscoelasticity was analyzed too.Through steady shear flow experiments and dynamic mechanics experiment, the purpose are disclosing difference of viscoelasticity between HPAM and xanthan gum, effect of viscoelasticity rule on various factors.
     It is shown that first normal force difference and apparent viscosity of HPAM solution increase with the increase of shear rate or molecular weight or concentration or the decrease of salinities, and that the viscoelasticities of XA solutions also increase with the increase of concentrations as HPAM solutions. No obvious difference exists between the energy-storage moduli and the loss moduli of both types of polymer solutions. There was a good linear relation between elastic viscosity/shear viscosity and shear rate. Under seepage flow of oil reservoirs, It can occur a elongation flow of HPAM solutions.
     2. The pilot test and laboratory test of high-concentration polymer flooding
     The results on artificial cores with a Dykstra-Parson Coefficient of 0.72 show that an incremental recovery over water flooding of more than 20% OOIP can be obtained by early time injection of the high molecular weight, high concentration polymer solution, the earlier the better. The incremental recovery is comparable to alkali/surfactant/polymer flooding but at a lower cost.
     In Daqing Oil Field, a pilot test of high concentration polymer injectivity was conducted on 6 injection wells in August 2002. Three wells are injecting in high permeable pay zones and the other 3 wells in low permeable pay zones. The range of effective permeability (Keff) of the pay zones is 0.354 ~1.06 um2. The results show that high permeable formations (Keff>0.890 um2) are suitable for continuous injection of high concentration polymer solutions (concentration 2,000 ppm ~ 2,500 ppm, molecular weight 17 million Daltons, viscosity 200 ~ 250 mPa.S). In September 2003, the average fluid production of each well was 94.2 tons per day, the average daily oil production of each well was 23.7 tons and average water cut was 74.9%. Compared to low concentration (1,000 ppm) solution flooding, the average fluid production per day of each well remained steady, the daily oil production of each well increased 6.2 tons (an increase of 35.4%) and the average water cut decreased by 6.6%. The results show that the injection of high concentration polymer fluid is very effective and the pilot area will be further expanded.
     3. The experiments and mechanism of surfactant solution decrease pressure of injection and increase ability of injection
     It is shown that: high-concentration polymer’s inject pressure decrease 47.86%~67.01% after NOS inject into core 1.0 PV; the inject pressure was not up after inject into core 90 PV polymer solution; the lower of NOS interfacial tension(IFT), the lower high-concentration inject pressure.
     The mechanism of surfactant solution decrease pressure of injection and increase ability of injection are: (1) Get rid of polymer film on the wall of sandstone by inject one of oxidant solution. (2) Surfactant washes out part of residual oil and largen permeability. It is shown that, the amount of moving oil increased, the amount of residual oil decreased, the oil and water’s equal permeability move to right; the area which water and oil are both exist is wider. (3) There is an adsorptive film formed by injecting surfactant on the wall of sandstone, the film is thiner than that of polymer, so it affect little on permeability. Otherwise, the surfactant film can prevent polymer thick film rebuilding, so permeability is not down more.
     4. The pilot test of decrease high-concentration injecting pressure
     The data that six well pilot test shown that: it did decrease high-concentration injecting pressure after the surfactant decreased pressure technic or resin sand fracture technic were employed. The result after using technic above accord with demand that pressure is lower than cracking pressure. It is much better that surfactant decreased pressure if permeability is higher. The period of increasing injection which use surfactant is 2 times more than common fracture. If interlayer is better, and it is necessary that monolayer increase injection, resin sand fracture is predominant, otherwise, the surfactant is better.
     It is shown that polymer with high-concentration and high- molecular weight solution flooding recovery is 18~24%, and it break through the limit that polymer flooding recovery is 12%. The higher concentration, the higher recovery enhanced. So high-concentration polymer solution can enhance oil recovery further more.
引文
[1]王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(上)[J].大庆石油地质与开发,2001,29(3):1~5
    [2]胡博仲等,聚合物驱采油工程[M]。第1版。北京:石油工业出版社,1997
    [3]杨承志,化学驱提高石油采收率[M]。第1版.北京:石油工业出版社,1999
    [4]夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60~65
    [5]王德民,王刚,吴文祥等,黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,01:45~51
    [6]郭尚平,黄延章等.物理化学渗流微观机理[M].北京:科学出版社,1990:100~102
    [7]刘风歧,汤心颐.高分子物理[M].北京:高等教育出版社,1995
    [8]许元泽.高分子结构流变学[M].北京:科学出版社,1988
    [9]何平笙.高聚物的力学性能[M].合肥:中国科技大学出版社,1997
    [10]岳湘安.非牛顿流体力学原理与应用[M].北京:石油工业出版社,1996
    [11]王德辰,周辉,刘津桂等.玉门石油沟油田M油藏生物聚合物驱油技术研究[J].油田化学,1996,13(2):238~242
    [12]赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1996,13(2):238~242
    [13]李卫东,郭雄华,陈跃章,张国荣,陈近增.孤东油田黄原胶驱先导试验粘度变化及影响因素[J].石油钻采工艺,1998,20(5):75~78
    [14]张伯英,孙景民,康恒.孤东油田七区油井黄原胶驱应用效果分析[J].石油与天然气化工,1999,28(1):49~52
    [15]张伯英,孙景民,康恒.黄原胶驱现场应用效果分析[J].钻采工艺,1999,22(2):70~71
    [16]孙景民,王喜臣,张成玉,徐风山.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000,27(5):90~92
    [17]G. Chauveteau, N. Kohler. Influence of Microgels in Xanthan Polysaccharide Solutions on Their Flow Through Various Porous Media[R].SPE9295, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 2-5 September ,1980
    [18]E.J. Kolodziej. Mechanisms of Microgels Formation in Xanthan Biopolymer Solutions[R]. SPE16730, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 27-30 September, 1987
    [19]E.J. Kolodziej. Transport Mechanisms of Xanthan Biopolymer Solutions in Porous Media[R]. SPE18090, SPE Annual Technical Conference and Exhibition held in Houston, Texas, 2-5 October, 1988
    [20]S. Hejri,G.P. Willjite,D. W.Green.Development of Correlations to Predict Flocon 4800 Biopolymer Mobility in Porous Media[R]. SPE/DOE17396, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, Oklahoma, 17-20 April, 1988
    [21]W.J.Cannella, C huh,R.S.Seright.Prediction of Xanthan in Porous Media[R].SPE18089, SPE Annual Technical Conference and Exhibition held in Houston, Texas, 2-5 October ,1988
    [22]M.Bagassi, G. Chauveteau, J. Lecourtier, J. Englert, M. Tirrell. Behavior of Adsorbed Polymer Layer in Shear and Elongational Flows[J]. Macromolecules, 1989, 22(1):262~266
    [23]L. I. Berge, J. Feder, T. Jossang. Rheology of Particles in Xanthan Solutions Flowing Through a Single Pore[J]. Journal of Colloid and Interface Science, 1990,133(1):295~297
    [24]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及提高驱油效率的机理[J].大庆石油地质与开发,2002,26(1):48~51
    [25]张宏方,王德民,王立军.不同类型聚合物溶液在多孔介质中的渗流规律研究[J].新疆石油地质,2002,23(5):72~75
    [26] R. J. Marshall, A. B. Metzner. Flow of Viscoelastic Fluids Through Porous Media[J].I&EC Fundamentals, 1967, 6(3):393~400
    [27]刘振宇,翟云芳等.非牛顿流体在多孔介质中的非稳态流动[J].大庆石油学院学报,1995,19(4):18~21
    [28]刘慈群.幂律非牛顿流体渗流[J].大庆石油地质与开发,1990,9(3):52~56
    [29]王新海.聚合物驱数值模拟主要参数的确定[J].石油勘探与开发,1990,9(3):69~75
    [30]宋考平,王雷等.非牛顿—牛顿复合油藏渗流试井解释方法[J].石油学报,1996,17(1):82~85
    [31]邢义良,郎兆新,张丽华.幂律流体不稳定径向流的数值解法[J].石油大学学报(自然科学版),1997,21(2):36~39
    [32]汪崎生.水平井拟塑性流体流变参数和压降对产量的影响[J].江汉石油学院学报,1992,14(2):36~43
    [33]D.L.Dauben,D.E.Menzie.Flow of Polymer Solutions Through Porous Media[J]. JPT,1967,1065~1073
    [34]D. F. James, D. R. Mclaren. Non-Newtonian Flow in Porous Media---a Laboratory Study of Polymer Solutions[M]. J. Fluid Mech., 1975,70,733~745
    [35]David J.Pye.Improved Secondary Recovery by Control of Water Mobility[J]. JPT,1964, 911~916
    [36]N. Mungan, FW. Smith, J.L. Thompson. Some Aspects of Polymer Floods[J]. JPT,1996,1143~1150
    [37] W.B. Gogarty. Mobility Control with Polymer Solutions[J]. SPE. J,1967,161~173
    [38] R. D. Hester, L. M. Flesher, C. L.McCormick. Polymer Solution Extension Viscosity Effects During Reservoir Flooding[R]. SPE/DOE27823,1994
    [39]J. Heemskerk, R. Janssen-van Rosmalen,R. J. Holtslag, D. Teeuw. Quantification of Viscoelastic Effects of Polyacry Lamide Solution[R]. SPE/DOE 12652,1984
    [40]Mohammad Ranjbar, Juergen Rupp, Guenter Pusch, Ruediger Meyn. Quantification and Optimization of Viscoelastic Effects of Polymer Solutions for Enhanced Oil Recovery[R]. SPE/DOE24154,1992
    [41]韩显卿,汪伟英.聚合物在孔隙介质中的粘弹效应及其应用前景[J].第四届全国多相流、非牛顿流、物理化学流学术会议,1993,550~558
    [42]汪伟英.孔隙介质中聚合物溶液的粘弹性及流变性[J].江汉石油学院学报,1994,16(4):54~63
    [43]刘振宇,许元泽.聚丙烯酰胺溶液微观流变特性的研究[J].油田化学,1996,13(2):145~148
    [44]F. G. de Gennes. Coil-Stretch Transition of Dilute Flexible Polymers Under Ultrahigh Velicity Gradients[M]. J. Chem. Phys. ,1974,60:5030~5037
    [45]R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids[M], Vol. 1, Fluid Mechanics, 2nd edn, J. Wiley, New York, 1987
    [46]S. Rodriguez, C. Romero, M. L. Sargenti, et al. Flow of Polymer Solutions through Porous Media[J]. Journal of Non-Newtonian Fluid Mechanics, 1993, 49:63~85
    [47]宋新旺.多孔介质中聚丙烯酰胺溶液流变性研究[J].油气地质与采收率,2002,9(3):13~15
    [48]马广彦.聚丙烯酰胺驱替中的粘弹效应和油藏压力分布[J].油田化学,1996,13(4):353~356
    [49] L. I. Berge, J. Feder, T. Jossang. Rheology of Particles in Xanthan Solutions Flowing Through a Single Pore[J]. Journal of Colloid and Interface Science, 1990,133(1):295~297
    [50]R. Hass, F Durst. Viscoelastic Flow of Dilute Polymer Solutions in Regularly Packed Beds[J]. Rheol Acta, 1982,21(4/5):566~571
    [51] Lehrstuhl fur strmungsme chanik. Porous Medium Flow of The Fluid A1: Effects of Shear and Elongation[J]. Jounnal of Non-Newtonian Fluid Mechanics, 1994, 50:119~131
    [52]D. M. Jones and K. Walters. The Behavior of Polymer Solution in Extension-Dominated Flows, with Applications to Enhanced Oil Recovery[J]. Rheol Acta,1989,28(6):482~298
    [53]韩显卿.孔隙介质中滞留聚合物分子的粘弹效应系数[J].西南石油学院学报,1988,10(4):59~63
    [54]韩显卿,高有瑞.孔隙介质中滞留聚合物粘弹性的测定方法研究[J].西南石油学院学报,1992,14(1):8~17
    [55]韩显卿,蒲万芬.多孔介质中滞留聚合物分子的粘弹效应模型[J].西南石油学院学报,1989,11(2):50~56
    [56]佟曼丽.聚合物稀溶液在多孔介质中的粘弹效应[J].天然气工业,1987,7(1):64~71
    [57]佟曼丽,郭小莉.聚合物稀溶液流经多孔介质时的粘弹效应及其表征[J].油田化学,1992,9(2):145~150
    [58]汪伟英.聚合物驱最佳驱油速度的选择[J].石油钻采工艺,1996,18(1):66~75
    [59]韩显卿.利用聚合物粘弹效应调整吸水剖面的研究[J].石油学报,1993,14(4):76~82
    [60]黄延章,于大森,张桂芳.聚合物驱油微观机理研究[J].油田化学,1990,7(1):57~60
    [61]周望,谢朝阳.大庆油田水力压裂技术的发展[J].大庆石油地质与开发,1998,17( 2 ): 34-40
    [62] Ferrell,et al. Polymer Flood Filtration Improvement[M]. US4,212,748.
    [63] Miller,et al. Surfactant Enhanced Injectivity of Xanthan Mobility Control Solutions for Tertiary Oil Recovery[M]. US4,406,798.
    [64] Yang. Process for Reducing Polymer Plugging during Polymer Injectio into Oil Reservoir[M]. US4,662,444
    [65]方晓红.表面活性剂性能及降压实验研究[J].大庆石油地质与开发,2002,21( 2 ):62-63
    [66]韩冬,韩大匡,杨普华,一种提高油藏聚合物注入能力的方法[J].CN 1144256A
    [67]F.E.Debons, R. W. Braun著,李群译.聚合物驱—仍然是一项有效的IOR技术[J].国外油田工程,1996,(4):1~5
    [68]Wang Demin, Zhang Zhenhua, Li Qun, et al. A Pilot Polymer Flooding of Saertu Formation SⅡ10-16 in the North of Daqing Oil Field[R]. SPE37009, SPE Asia Pacific Oil and Gas Conference held in Adolaide Australia,28-31 October, 1996
    [69] Eric Delamaide, Philippe Corlay. Polymer Flooding Increases Production in Giant Oil Field[J]. Word Oil , Dec. 1994,161~166
    [70] Wang Demin, Liu Heng, et al. Understanding of Several Problems During the Large Scale Application of Polymer Flooding in Daqing Oil Field[R]. SPE50928
    [71]姜言里等.聚合物驱油最佳技术条件优选[M].北京:石油工业出版社,1994,51~60
    [72]姜言里等.聚合物驱油经济最佳用量的优选[J].大庆石油地质与开发,1995,14(3),47~51
    [73]韩培慧,董志林,张庆茹.聚合物驱油合理用量的选择[J].大庆石油地质与开发,1999,18(1),40~41
    [74]隋军,廖广志,牛金刚.大庆油田聚合物驱油动态特征及驱油效果影响因素分析[J].大庆石油地质与开发,1999,18(5),17~20
    [75]程杰成,王德民,吴军政,李群等.驱油用聚合物的分子量优选[J].石油学报,2000,21(1),102~106
    [76] R.S.Seright. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutins[R]. SPE,June 1983.
    [77] Dunleavy,et al. Process for Restoring the Permeability of a Subterranean Formation[R]. US5,038,864.
    [78]卢祥国,高振环,赵小京,闫文华,王为民.聚合物驱油之后剩余油分布规律研究[J].石油学报,1996,17(4):55~61
    [79]田根林,孙立群,孙永达等.聚合物驱油粘性流体渗流的分形研究[J].石油学报,1998,19(4):73~76
    [80]增田昌敬著,刘倩,孟凡印译.包括聚合物溶液粘弹效应的聚合物驱性能分析[J].采油工艺情报,1989,65~80
    [81]增田昌敬,田中彰一著,刘倩译.论聚丙烯酰胺溶液对驱油粘弹性的影响—利用毛细管模型的方法[J].采油工艺情报,1989,119~130
    [82]K. S. Sorbie, L J. Roberts. A Model for Calculating Polymer Injectivity Including The Effects of Shear Degration[R]. SPE/DOE12654, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, Oklahoma, 15-18 April, 1984
    [83]M. J. Blunt, M. A. Christie. Exact Solution for Viscous Fingering in Tow-Phase, Three-Component Flow[R]. SPE22613, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 6-9 Octoer ,1991
    [84] E. Allen, D. V. Boger. The Influence of Rheological Properties on Mobility Control in Polymer Augmented Water Flooding[R]. SPE18097, 63rd Annual Technical Conference and Exhibition of Society of Petroleum Engineering held in Houston, Texas, 2-5 October, 1988
    [85] J. E. Mahfoudhi, R. M. Enick. Extemsion of The Generalized Dykstra-Parsons Technique to Polymer Flooding Instratified Porous Media[R]. SPE RE, 1990, (3):339~345
    [86] N. Saad, A. S. Cullick, M. M. Honarpour. Immiscible Displacement Mechanisms and Scale-up in The Presence of Small-scale Heterogeneities[R]. SPE30779, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 22-25 October ,1995
    [87] K. E. Thompson, O. Kwon. Selective Conformance Control in Heterogeneous Reservoirs Using Unstable, Reactive Displacements[R].SPE39672, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, Oklahoma, 19-22 April,1998
    [88]Patton T C.Paint Flow and Pigment Dispersion: A Rheological Approach to Coating and Ink Technology[J] ,2nd Edn .New York: Wiley-interscience,1979:112
    [89]王立军.聚合物溶液粘弹性对提高驱油效率的作用[D].博士学位论文.大庆:大庆石油学院,2003
    [90]J. C. Savins. Non-Newtonian Flow through Porous Media[M]. Industrial and Engineer Chemistry,1969,(10):18~47
    [91]R. R. Jennings, J. H. Rogers, T. J. West. Factors Influencing Mobility Control by Polymer Solution[J], JPT, 1971, (3):391~401
    [92] A. Zaition, N. Kohler. Two-phase Flow through Porous Media: Effect of an Adsorbed Polymer Layer[R]. SPE18085
    [93] W. B. Gogarty, G. L. Levy, V. G. Fox.. Viscoelastic Effects in Polymer Flow through Porous Media[R]. SPE4025
    [94] D. Camilleri, S. Engelsen, L. W. Lake, et al. Description of an Improved Composition Micellar/Polymer Simulator[R]. SPE RE, 1987, 2(4):427~432
    [95] G. H. Hirasaki , G. A. Pope. Analysis of Factors Influencing the Mobility and Adsorption in the Flow of Polymer Solution through Porous Media[R]. SPE4026
    [96]张宏方.衰竭层效应和粘弹性效应对聚合物波及系数的作用研究[D].博士学位论文.大庆:大庆石油学院,2002
    [97]王玉忠,郑长义编著.高聚物流变学导论[M].成都:四川大学出版社,1993
    [98]王德民.对大庆油田持续发展有影响的四项工艺技术与方法的探讨[J].大庆石油地质与开发,2002,21(1):10~19
    [99]杨继萍,李惠生,黄鹏程部分水解聚丙烯酰胺在多孔介质中的静态吸附研究—水解度对吸附量的影响[J].高分子学报,1997.5:601~604
    [100]何光中,王研,张兴福,等.长井段水泥封窜技术研究[J].大庆石油地质与开发,2002.21(3):52~54
    [101]赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1996,13(2):238~242
    [102] W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991,2~3
    [103]王新海,韩大匡,郭尚平.聚合物驱油机理及应用[J].石油学报,1994,11(1):83~91
    [104]胡博仲主编.聚合物驱采油工程[M].北京:石油工业出版社,1997,70~72
    [105]高树棠,苏树林,张景纯等编译.聚合物驱提高石油采收率[M].北京:石油工业出版社,1996,150~151
    [106] F.G.波特曼.二次和三次采油[M].北京:石油工业出版社,1984,84~86
    [107]郭大立,陈汉滨,赵金洲.压裂后压力递减分析新方法[J].石油钻采工艺,1997, 19(4): 70-71
    [108]阂家华.浅论油田压裂技术和压裂液的优化选择[J].断块油气田,1998, 5 (3): 1-5
    [109]曹学军,李晖,郭淑芬.加砂压裂压力分析及应用[J].油气井测试,2001, l0 (1): 89-93
    [110] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯著.流变学导引[M].北京:中国石化出版社1992,93-95
    [111]佟斯琴;刘春梅;刘秀明等,考虑粘弹效应的聚合物溶液地下流动压力动态[J]。大庆石油地质与开发,2000,4:63-68
    [112]李福军,曹广胜,夏惠芬等,聚合物溶液流变特性试验研究[J],石油钻采工艺.1997,02:72-75
    [113]A.J.P.Fletcher,S.R.G..Flew.S.P.Lamb. etal. Measurements of polysaccharide polymer properties in porous media[R]. SPE21018, SPE International Symposium on Oilfield Chemistry held in Anaheim, California, February 20-22,1991
    [114] R. D. Hester,L. M. Flesher, C. L. McCormick. Polymer Solution Extension Viscosity Effects During Reservoir Flooding[R]. SPE/DOE27823.1994
    [115].张玉亮,张云祥,李俊刚,李宜强,胡靖帮.平面模型铬交联聚合物调剂物理模拟[J].油气采收率技术,1995, 2 (4):21-25
    [116]黄延章,张慧敏,王为民等.核磁共振成象技术在石油勘探开发中的应用[J].大庆石油地质与开发,1993,04:35-37
    [117]蒲万芬,彭彩珍,扬清彦等.聚合物溶液在孔隙介质中的蠕变回复和驱油效率[J].西南石油学院学报,2000,22(2):62-66
    [118]卢祥国,高振环,闫文华等.聚合物驱油效果及其影响因素的实验研究[J].油气采收率技术,1995,2(4):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700