缺水条件下沙棘苗木萌芽及抗旱生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国沙棘幼苗为试材,通过盆栽控水实验,进行了不同土壤水分与风速条件下1年生沙棘幼苗萌芽期苗木自身水分平衡与成活率关系研究;完成第一个生长季后冬季休眠期与第二年春季萌芽关键期苗体水分关系、内源激素(ABA与GA1/3)平衡与萌芽成活的相关关系及人工外施GA3的作用的研究;成活后第二个生长季内在土壤干旱胁迫下苗木生长、水分利用及其可能的耐旱机理等连续2个生长周期的系列研究,揭示了影响沙棘幼苗萌芽成活的关键因素,探讨沙棘的需水规律及耐旱特性,为沙棘幼林抚育管理及抗旱造林提供理论依据。
    本实验研究的结果表明:
    1. 不同土壤含水量水平对1年生沙棘苗木含水量、水势及成活率均有明显影响。与较高土壤含水量相比,低土壤含水量(12%)使苗木含水量、水势显著降低,从而使成活率显著降低。风速的作用因土壤含水量不同而有所差异,当土壤含水量较高时,不同风速(3m/s 和6m/s)处理对苗木水分状况及成活率影响不大;土壤含水量低于14.5%时,6m/s风速使苗木含水量占干重比值低于1.2,水势降至-2.6MPa,苗木成活率仅为26%,即使少量成活的苗木幼芽生长缓慢。而较小的风速(3m/s)下苗木水分状况较好,成活率为54%。因此,在干旱多风的条件下沙棘造林宜采取截杆、埋苗等措施以避免苗木因过度失水导致成活率降低及萌芽成活后生长受抑。
    2. 研究了2年生中国沙棘在土壤干旱胁迫下苗木含水量、内源激素水平与萌芽率关系以及萌芽关键期喷施外源GA3的作用。土壤干旱胁迫使冬季休眠与春季萌芽期苗木含水量、内源GA1/3降低,内源ABA明显提高,GA1/3/ABA下降,达到萌动所需的调控阈值的时期延迟,重度干旱下苗木萌芽延迟约25天且萌芽后幼枝生长十分缓慢;中度干旱下苗木萌芽延迟10天,萌芽后生长亦有所抑制。喷施80mg/L外源GA3溶液能有效提高重度干旱下苗木内源GA1/3,降低ABA含量,使GA1/3/ABA升高,促进苗木提早萌芽及萌芽后生长;在适宜水分及中度干旱下,沙棘苗木外施GA3对萌芽及其后生长作用不明显。
    3. 对沙棘水分关系的研究表明,在同样环境条件下,蒸腾速率随干旱胁迫程度加剧而降低,而蒸腾日进程差异不大,均为单峰曲线,峰值出现在11:00;轻、中度干旱胁迫下沙棘叶含水量、水势下降幅度较小,光合速率、侧枝生长速率能维持在较高水平,表现出耐旱植物典型的生理特征;重度干旱胁迫使上述指标下降较显著,且长时间胁迫后33.3%沙棘幼苗死亡。中度干旱下沙棘水分利用率最高。
    4. 研究了沙棘幼苗自由基清除系统活性及渗透调节机制与沙棘耐旱性的关系。结果表明:长期轻度及中度干旱胁迫下保护酶系统SOD、POD、CAT活性高于正常水平或略有降低,重度干旱下三种酶活均能在胁迫初期随时间延长缓慢上升或维持稳定;抗氧化物质AsA在轻度、中度干旱时下降较小,GSH含量在轻度干旱下含量与对照接近,中度及重度干旱下含量降低但胁迫前、中期随时间延长趋于增加;表明干旱下活性氧清除系统活性高,能有效减轻膜脂过氧化伤害。渗透调节物质中可溶性糖在干旱中、后期累积,游离氨基酸、 Pro 的显著增加能有效降低渗透势,使沙棘具备低水势抗旱特性;由于沙棘保护酶体系(SOD、POD、CAT)、抗氧化物质(AsA、GSH)、渗透调节物质(可溶性糖、游离氨基酸、Pro)协调一致作用,使长期轻度、中度干旱下沙棘叶片可溶性蛋白降解少,细胞膜透性、MDA含量增加缓慢,重度干旱下也能在一定时间内保持较小增幅,这些物质及生理过程是构成沙棘强耐旱性的内在基础。
Studies on the germination and drought-resistance physiological mechanism in
    seabuck thorn under water deficit situation
    Postgraduate: Li lixia Tutor: Prof Liang zongsuo; Prof Zhang jishu
    (College of Life Science, Northwest Sci-tech University of Agriculture and Foresty ,Yangling,Shaanxi Province ,712100)
    Various physiological index and mechanism of seabuck thorn in two continuous growth cycle were studied with pot-cultured seedlings, which included effect of soil moisture of and wind speed on nursery stock and survival rate of one-year old seabuck thorn seedlings in sprout period ;the relationship among water content、endogenous hormone and sprout rate of two-year old seabuck thorn in dormancy stage and followed sprout period ; the effect of spraying exogenous GA3 in critical time being researched at the same time ; the growth and water use characteristics and the possible drought tolerance of seabuck thorn seedlings. We expected to discover the critical factor affected sprout of seabuck thorn seedlings and inquire into the water need regularity and drought resistance. These results provided scientific basis for the foster of young growth of seabuck thorn and anti-drought afforestation.
    The results are as follows:
    1. Different soil water content had obvious effect on water content、water potential and survival rate of one-year old seabuck thorn seedlings . Compared to higher level soil water content, lower soil level (12%) caused seedlings water content and water potential decreased evidently ,thereby the survival rate reduced .The effect of wind speed varied with the soil water content .When the soil water content was high, two kinds of wind speed had not different effect on the seedlings water content and survival rate. If soil water content was lower than 14.5%,wind speed in 6m/s led to the seedlings water content not reaching 1.2(on the basis of dry weight) ,water potential dropping to -2.6MPa and survival rate was only 26%. Even if seedlings can survival ,whose young shoot grew slowly. On the contrary , seabuck thorn seedlings can maintain higher water content and had a higher survival rate in 54% under the smaller wind speed(3m/s). So, the effective method of cutting out a section of stem or covering up the seedlings with earth should be adopted in afforestation ,in case of survival rate being decreased and growth being restrained due to seedlings′ transpiration too much.
    2. The relationship among water content、endogenous hormone and sprout rate of two years old china sea buckthorn under soil water stress. The effect of spraying exogenous GA3 in critical time was also researched. Water content and endogenous GA3 decreased due to water stress , in the meantime endogenous ABA increased evidently during dormancy stage in winter and sprout period in spring, which lead to the ratio of GA1/3/ABA fell and reached threshold value later. Seedlings under serious water deficit sprouted 25 days later compared to that of control and grew slowly after sprout. Sprout date of seedlings under medium water deficit was postponed about 10 days and growth after sprout was limited slightly. Spraying exogenous 80mg/L GA3 solution can increase endogenous GA1/3 and GA1/3/ABA of sea buckthorn with ABA content declining under serious water deficit, so sprout date and growth was promoted effectively. The method is simple and convenient and have an good effect.
    3. The research on water relations of seabuck thorn seedlings showed that: Transpiration rate (Tr) declined with the deepening of soil water stress, while the diurnal change of Tr had little change. They all displayed parabolic shape, which peak value was at 11:00. The decreasing range of water content and water potential was smller, and leaf growth rate of side shoot and photosynthesis rate (Pn) in a higher level under light stress and medium water stress, which showed the typical physiological character belonging to drought-enduring plant. Serious soil water stress made above index fell remarkably and 33.3% seabuck thorn seedlings died after long te
引文
1. 蒋定生等编著. 黄土高原水土流失与治理模式. 北京:中国水利水电出版社,1997
    2. 鄂竟平.加快水保步伐,再造秀美山川.沙棘,1998,11(4):1~2
    3. 吴钦孝.林草植被建设布局、发展条件及提高效益的技术体系.中国科学院水土保持研究所集刊,1999.
    4. 王俊峰,梁宗锁等编著.沙棘生物学特性与利用.西安:世界出版社,1999
    5. 魏宇昆,梁宗锁,李丽霞.抗氧化剂对渗透胁迫下沙棘膜脂过氧化的保护作用.西北林学院学报,2001,16(1):5~8
    6. 王占孟.沙棘林改良土壤、保持水土、改善生态环境的效应.沙棘,1994,7(3):15~18
    7. 马玉林,韩金莲. 发展沙棘,综合治理砒砂岩区.沙棘,1998,11(4):28~30
    8. 徐欣,李寅生.伊克昭盟砒砂岩区沙棘工程造林技术设计.沙棘,1992,5(4):4~12
    9. 毕慈芬,乔旺林.沙棘柔性坝在砒砂岩区地区沟道治理中的试验.沙棘,2000,13(1):28~34
    10. 刘欣伟. 再造山川秀美的大西北. 沙棘,1998,11(4):3~4
    11. 赵鸿雁,吴钦孝.黄土高原沙棘林水土保持功能研究.沙棘,1996,9(2):29~33
    12. 郭百平,王子科,阎晋民.天然沙棘林减水减沙效益试验研究.沙棘,1996,9(4):32~36
    13. 胡建中.山杨沙棘混交林生产力及改良土壤作用的评价.沙棘,1994,7(2),16~23
    14. 刘世荣.沙棘对中国亚湿润干旱区的杨树人工林养分分布及生物循环影响.生态学报,1999,19(4),534~542
    15. 何兴元,张成刚,杨思河. 固N树种在混交林中的作用研究I沙棘混交林内根瘤固N与林木生长.应用生态学报,1996,7(4),354~358
    16. 刘世荣.沙棘对中国亚湿润干旱区杨树人工林生长与生产力的影响.植物生态学报,2000,24(2):169~174
    17. 李丽霞,梁宗锁,王俊峰.土壤水分和风速对沙棘苗木水分状况和成活率影响的实验研究.沙棘,1999,12(4),18~21
    18. 王俊峰,梁宗锁.沙棘抗旱造林现状与改进意见.沙棘,1996,9(4),26~28
    19. 孔明旭.青海海东浅山沙棘造林技术.沙棘,1995,8(3),22~24
    20. 邹厚远等.黄土丘陵区造林技术研究.水土保持研究,1994,1(3):48~5
    21. 胡芳名,何业华.枣树落花落果机理及其控制技术的研究.林业科技开发,2000,14(15):13~17
    22. 刘永庆,罗泽民.内源脱落酸和赤霉素对番茄果实发育和种子水分关系的研究.植物生理学报,1996,22(1):19~26
    23. 潘根生,吴伯千,沈河荣等.水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系.中国农业科学,1996,29(5):9~15
    24. 蒙美莲,刘梦芸,门福义.马铃薯块茎生长过程中内源赤霉素和脱落酸含量的变化.马铃薯杂志,1996,10(1):8~12
    25. 李丽霞,梁宗锁.土壤干旱对沙棘休眠、萌芽期内源激素与萌芽特性的影响.林业科学(待刊)
    26. 李洪建,柴宝峰,王孟东.北京杨水分生理生态特性研究.生态学报,2000,20(3),417~422
    27. 王世绩,闵曾琪,刘雅荣等.十种杨树苗木水分关系的研究.林业科学,1982,18(1):6~14
    28. 土小宁,何振祥,曹峰.沙棘几个抗旱生理指标的测定与分析.沙棘,1991,(3):36~38
    29. 韩蕊莲,梁宗锁,邹厚远.在不同土壤条件下沙棘耗水特性研究.沙棘,1991,(4):33~38
    30. 傅左,周泽生,王晗生等.黄土高原主要能源植物水分生理指标及抗旱力的研究.中国科学院水利部水土保持研究所集刊,1992,15:83~90
    31. 吴林,李亚东,刘洪章.水分逆境对沙棘生长和叶片光合作用的影响.吉林农业大学学报,1996,18(4):45~49
    32 .阮成江,李代琼.半干旱黄土丘陵区沙棘光合特性及其影响因子.植物资源与环境学报,2000,9(1):16~2148.
    33. 梁宗锁,李敏,王俊峰. 沙棘抗旱生理机制研究进展. 沙棘,1998,11(3):8~13
    34. 韩蕊莲,梁宗锁.黄土高原适宜树种苗木的耗水特性.应用生态学报,1994,5(2):210~213
    35. 卢宗恩,卜宗武等.沙棘的水分利用效率与抗逆性.山西水土保持科技,1986,4:10~11
    36. 阮成江.沙棘水分生理生态特性研究.中国科学院水利部水土保持研究所硕士学位研究生学位论文.1999
    37. 王万里.压力室在植物水分状况研究中的应用.植物生理学通讯,1984,(3):52~57
    38. 王孟本,李洪建,柴金峰.柠条(Garagana Korshin skii)的水分生理生态学特性.植物生态学报,1996,20(6):486~501
    39. 李庆梅,徐化成.油松P-V曲线主要水分参数随季节和种源的变化.植物生态学与地植物学学报,1992,17(2):132~142
    40. 李吉跃.PV技术在油松侧柏苗木抗旱特性研究中的应用.北京林业大学学报,1989,11(1):3~11
    41. 俞新妥,卢建煌,王锦上.不同种源马尾松水分生理生态的比较研究.植物生态学与地植物学学报,1991,15(4):355~365
    42. 顾振瑜,文建雷,胡景江.应用P-V技术对元宝枫水分生理特点的研究.西北林学院学报,1999,14(4):17~22
    43. 吴钦孝,杨文怡主编.黄土高原植被建设与持续发展.科学出版社,1998,37~70
    44. 王韶唐.植物抗旱的生理机理.植物生理生化进展,1983,2:120~133
    45. AII.布克特诺夫等著,张哲民等译.沙棘.陕西省沙棘开发利用研究中心,1987
    46. 张吉科,张小民,张国伟.中国沙棘表皮毛的形态分布和类群研究.林业科学,1995,31(5):409~
    47. 张志翔.中国沙棘叶片表皮盾状毛观察.沙棘,1989,(2):20~22
    48. 刘怀德.沙棘叶片表皮毛的观察研究.林业科技通讯,1988,(12):26~27
    49. 宋秀杰.沙棘抗旱机制的研究.河北林业科技,1990,(3):22~24
    50. 郑希伟. 辽西地区主要造林树种叶片早生结构的研究.辽宁林业科技, 1990, (4):12-14
    51. 胡新生,王世绩. 树木水分胁迫机理与耐旱性研究进展及展望. 林业科学, 1998,34(2):77-78
    52. 陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展, 植物学通报,1999,16(5):555-580
    53. 汤章城. 植物对渗透和淹水胁迫的适应机理.植物生理生化进展, 科学出版社:1986(4):51-59
    54. 李德全, 邹琦, 程炳嵩. 土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质. 植物生理学报, 1992, 18(1):37-44
    55. 刘友良. 植物水分逆境生理. 北京:农业出版社,1992:56-118
    56. 刘丹. 水分胁迫下小麦幼苗呼吸及渗透调节物质积累的变化. 云南农业大学学报,1990,51(1):30-37
    57. 王邦锡,黄久常,王辉. 不同植物在水分胁迫条件下脯氨酸积累与抗旱性的关系. 植物生理学报, 1989,15(1):46-51
    58. 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯,1984,(1):15-21
    59. 于同泉,秦岭,王有年. 渗透胁迫板栗苗可溶性糖的累积及组分变化的研究. 北京农学院学报,1996,11(6):43-47
    60. 武玉叶,李德全,赵世杰. 土壤水分胁迫下小麦渗透调节与光合作用. 作物学报,1999,25(6):752-758
    60. 顾振瑜,胡景江,文建雷等. 元宝枫对干旱适应性的研究. 西北林学院学报, 1999,14(2):1-6
    61. 石大伟. 作物抗旱指标研究的探讨. 干旱地区农业研究, 1984, 2:54-63
    62. 王爱国,罗广华. 羟自由基启动下的脱氧核糖降解及其产物的TBA反应. 生物化学与生物物理进展,1993, 20:150-152
    63. 蒋明义, 郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用. 植物生理学通讯, 1996, 32(2):144-150
    64. 余叔文, 汤章程主编. 植物生理与分子生物学(第二版). 科学出版社,1999,376-377
    65. 王爱国,罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990(6):55
    66. 蒋明义,杨文英,徐江等. 渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用. 植物学报, 1994,36:289
    67. 蒋明义,荆家海. 植物体内羟自由基的产生及其膜脂过氧化作用启动的关系. 植物生理学通讯,1993,29(4):300-305
    68. 蒋明义, 水分胁迫下植物体内.OH的产生与细胞的氧化损伤. 植物学报, 1999, 41(3):229-234
    69. 吕庆,郑荣梁. 干旱及活性氧引起小麦膜脂过氧化及脱氧化. 中国科学(C辑),1996,26(1);26-30
    70. 夏新莉, 郑彩霞, 尹伟伦. 土壤干旱对樟子松针叶膜指过氧化膜脂成分和乙烯释放的影响. 林业科学, 2000, 36(3):8-12
    71. 蒋明义, 荆家海, 王韶唐. 渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响. 植物生理学报,1991, 17(2):80-84
    72. 王建华, 刘鸿先, 徐同. 超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用. 植物生理学通讯, 1989,(1):1-5
    73. 武宝轩, 格林托德. 小麦幼苗中超氧化物歧化酶活性与幼苗脱水耐受力相关性研究. 植物学报, 1985, 27: 152-160
    74. 许长城, 樊继莲, 邹琦. 水稻对白草枯和一些环境胁迫的交叉抗性. 作物学报,1996, 22:358-361
    75. 胡景江,顾振瑜,文建雷.水分胁迫对元宝枫膜脂过氧化作用的影响. 西北林学院学报, 1999,14(2):7-11
    76. 姚允聪. 不同浇水处理过程中柿幼树SOD、CAT和膜脂过氧化作用的变化. 北京农学院学报,
    1994, 9(1):22-27
    77. 陈立松, 刘景辉. 水分胁迫对荔枝叶片活性氧代谢的影响. 园艺学报, 1998, 25(3):241-246
    78. 孙昌祖. 渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响. 林业科学,1993,29(3): 104~109
    79. 王宝山, 赵思齐. 干旱对小麦幼苗膜脂过氧化及保护酶的影响. 山东师范大学学报(自然科学版), 1987, 2(11):29-39
    80. 刘飞虎, 张寿文, 梁雪妮. 干旱胁迫下苎麻生理生化指标研究简报. 江西农业大学报, 1998, 20(2):195-196
    81. 孙彩霞, 沈秀瑛. 玉米果穗性状和生理生化指标与抗旱性相关分析. 沈阳农业大学学报, 1998, 29(4): 291-296
    82. 蒋明义, 荆家海, 王韶唐. 水分协迫与植物的膜脂过氧化. 西北农业大学学报, 1991, 19(2):88-94
    83. 陈大清, 王健. 高温胁迫下谷胱甘肽对离体玉米叶片的保护效应. 湖北农学院学报, 1997, 17(4):254-256
    84. 赵会杰, 李兰真. 羟自由基对小麦叶片的氧化损伤及外源抗氧化剂的防护效应. 作物学报, 1999, 25(2):174-180
    86. 蒋明义. 植物内源维生素E的抗氧化作用. 生物学通报, 1993, 28(9): 9-10
    87. 汪德清, 沈文梅. 黄芪有效成分对氧自由基清除作用的ERS研究. 生物化学与生物物理进展, 1996, 23(3): 260-262
    88. 贾之慎, 唐孟成. 桑树黄酮类化合物清除超氧阴酶子自由基O2-的研究. 浙江农业大学学报, 1996, 22(5): 519-523
    89. 李德全,邹琦,程炳嵩. 植物在逆境下的渗透调节. 山东农业大学学报,1989(2):75~80
    90. 刘德立,禹邦超,余世明.超氧物歧化酶(SOD)与植物抗逆性的关系.华中师范大学学报,1993,27(1):83~85
    91. 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯,1988(2):12~16
    92. 李丽霞 ,梁宗锁,王俊峰. 土壤干旱胁迫下沙棘休眠、萌芽期内源激素变化及外源GA3的调节.西北林学院学报,2001,(2)
    93 高俊凤.植物生理学实验技术.世界出版社,1999
    94. 曹锡清.脂质过氧化对细胞和机体的作用. 生物化学与生物物理进展,1986,(2):17~23
    95. 高爱丽,赵秀梅,秦鑫. 水分胁迫下小麦叶片渗透调节与抗旱性的关系.西北植物学报,1991,11(1):58~63
    96. 王保莉,杨春,曲东. 环境因素对小麦苗期SOD、MDA及可溶性蛋白的影响. 西北农业大学学报,2000,28(6):72~77
    97. 任东涛,赵松岭. 水分胁迫对半干旱区春小麦旗叶蛋白质代谢的影响. 作物学报,1997,23(4):468-473.
    98. Abrams MD, Kubiske ME, Steiner KC. Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh:photosynthesis, water relations and leaf morphology. Tree physiol, 1990, 6(3):305~315
    99. Addicott ET, Cans HR. History and introduction. In: Addicott FT(ed). Abscisic Acid. New York: Praeger Sci, 1983, 1~21
    100. Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol plant, 1997, 100: 224-233
    101. Badger MR. Photosynthetic oxygen exchanges. Ann Rev plant physiol, 1985, 36: 27-53
    102. Becana M, Klucas RV. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proc Natl Acad Sci USA, 1992, 89:8958-8962
    103. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. In pacher L(ed). Oxygen Radicals in Biological system. Orlando, Academic Press, 1984,429
    104. Borowitzka LJ. In L.G. Palrg and D.Aspinall(eds). The physiology and Biochemistry of Drought Resistance in plants. Academic press, sydney, 1981,97-130
    105. Bowler C.Van Montagu, Inze D. Superoxide dismutase and strss tolerance. Ann Rer plant Physiol plant mol Biol, 1992 (43):83-
    106. Boyer.I.S. Plant productivity andenvironment. Science,1982,218
    107. Buckland SM, Price AH, Hendry GAF. The role of ascorbate in drought-treated cochlearia atlantica Pobed and Armema maritima (Mill) willd. New phytol, 1991,119: 155-160
    108. Burke JJ. Gamble PE, Hatfield JL et al. Plant morphological and biochemical responses to filed water deficits: I Responses of glutathione reductase activity and paraquet sensitivity. Plant physiol, 1985, 79: 415-419
    109. Chakraborty N, Tripathy BC. Involvement of singlet oxygen in δ-aminolevulinic acid-induced photodynamic damage of cucumber (cucumis stativus L) chloroplasts. Plant physiol, 1992, 98:7
    110. Cutler JM. et al. Influence of water deficits and osmotic adjustment on leaf elongation in rice. Crop Sci, 1980, 20:314-318
    111. Davies WJ, Zhang J. Root to shoot sighals and regulation of growth and development of plants in drying siol. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:55~76
    112. Delauney AJ. Hu CA. Kishor PBK et al. Cloning of ornithine-s-aminotransferace cDNA from vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol chem. 1993, 268:18673-18678
    113. Dhindsa AS. Mutowe W. Drought tolerance in two mosses: Correlated with anzymatic defense against lipid peroxidation. J Eep Bot, 1981, 32:79-91
    114. Dhindsa RS. Drought stress enzymes of glutathione metabolism, oxidation injury and protein synthesis in Tortula ruralis. Plant physiol, 1991, 95:648
    115. Dong JG, Olson D, silverstone A, Yang SF. Sequence of a cDNA coding for a 1-aminocyclo pro pan-1-carboxylate oxidate homolog from apple fruit. Plant physiol, 1982, 98:1530-1531
    116. Downton WJS. Plant Sci .lett., 1983, 30:137-143
    117. Evans PJ. Halliwell B. Measurement of iron and copper in biological systems: bleomycin and copper-phenanthroline assays. Methods Enzymol, 1994, 223:82-92
    118. Foyer CH, Halliwell B. The presence of glutathion and glutathion reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 133:21-25
    119. Foyer CH, Lelandais M, Kunert KJ. Photo oxidative stress in plants. Physiol plant, 1994, 92: 696-717
    120. Gamble PE, Burke JJ. Effect of water stress on the chloroplast antioxidant system. I Alterations in glutathione reductase activity. Plant physiol, 1984, 76: 615-621
    121. Gerald A. Berkowitz and Martin Gibbs .Effect of osmotic stress on photosynthesis studied with isolated spinach chloroplast. Plant physiol, 1982, 70:1143-1148
    122. Giraudat J, Parey F, Bertauche N et al. Current advances in abscisic acid action and signalling. Plant Mol Biol, 1994, 26:1557~1577
    123. Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant physiol, 1995, 108:753-759
    124. Gowing DJG, Jones HG, Davies WJ. Xylem ranported abscisic acid: the relative importance of its mass and its concerntration in the control of stomatal of stomatal aperture. Plant cell Environ, 1993, 16:453~459
    125. Groot SPC, Karssen CM. Dormancy and germination of abscisic acid-deficient tomato seed. Studies with the sitiens mutant. PLant physiol, 1992, 99:952~958
    126. Groot SPC, Karssen CM. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-dificient mutants Planta, 1987, 111:525~530
    127. Groot SPC. Hormonal regulation of seed development and germination in tomato. Studies on abscisic acid-and gibbere-deficient mutants. PhD Thesis. Agricultural University, Wageningen, The Netherlands, 1-7
    128. Hellebust JA. Osmoregulation. Ann Rev plant physiol, 1976,27:485-505
    129. Hanson AD and Nelsen CE. Bataine accumulation and [14c] Formate metabolism in water stressed Barley leaves Plant phjsiol, 1978, 62:305-312
    130. Hanson AD, Rathinasabapathi B, Rivoal J et al. Osmoprotective compounds in the plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 1994, 91:306-310
    131. Hanson, AD. et al. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Sci. 1979,19:489-493
    132. Hsiao TC, Silk WK, Jing JH. Leaf growth and water deficits biophysical effects. In Baker NR, Davies WJ, ong CK(eds), Control of leaf Growth. SEB Seminar 27, Cambridge University Press ,1985,239-266
    133. Hsiao TC. et al.Phil Trans. R. Sol. Lond. B. 1976, 273:479-500
    134. Hsiao, T.C. Plant responses to water stress. Ann Rer Plant Physiol, 1973,24:519-570
    135. Hu CA, Delauney AJ, Verma DPS. A bifunctional enzyme catalyzes the first two steps in proline biosynthesis in plants. Pro Natl Acd sci USA. 1992, 89:9354-9358
    136. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annu Rev plant Physiol plant Mol Biol, 1996, 47:377-403
    137. Jablonskip P, Auderson JW. Light dependent reduction of dehydro as corbate by reptured pea chloroplasts. Plant physiol,1981,67:1219~1224
    138. Jackson MB. Are plant hormones involved in the root to shoot communication? Adv Bot Res, 1993,19:103~187
    139. Jones MM, Rawson HM, plant physiol, 1979, 45:103-111
    140. Kaiser WM. Effects of water deficit on photosynthetic capacity. Plant physiol, 1987, 71:142-145
    141. Karssen CM, Lack E. A revision of the hormone balance theory of seed dormancy: studies on gibberellin and or abscisic acid-deficient mutants of Aradi dopsis thaliana. In M Bopp. ed, Plant Growth Substances Springer-verlag, Berlin, Germany,1985,pp315~323
    142. Kiyosue T, Yoshiba Y, Yamaguchi-shinozaki k et al. A nueller gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up regulated by proline but downregulated by dehydration in Arabidopsis plant cell, 1996,8:1323-1325
    143. Koster KL. Glass formation and desiccation tolerance in seeds[J]. Plant Physiol, 1996, 96:302-304
    144. Kramer, P.J, water Relations of plant, Academic press, 1983, INC.(Lond), 404-405
    145. Kraus TE, Fletcher RA. Paclobutrazol protects wheat seedings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant cell physiol, 1994,35:45-52
    146. Lentheric.I.Pinto.E,etal. Harvest date affects the antioxidative systems in pear fruits. Journal of Horticultural & Biotechnology,1999,74(6):791~795
    147. Levitt, J. Responses of plants to Environmental stresses, Academic Pross, New York, 1980,2
    148. Liang,J., Zhang,J., Wong, MH.,Stomatal conductance in relation to xylem sap ABA conceratrations in two tropical trees. Plant cell and Enviroment, 1996, 19:93~100
    149. LM, Hall AE. stomatal closure with soil water depletion not associated with changes in bulk leof water status. Oecologia(Berlin), 1981, 50:62~65
    150. Ludlow MM. Chu, A.C.P., Clement, R.J., et al. Adaptation of species of centrosema to water stress. Aust. J. Plant physiol, 1983,10:119-130
    151. Manlan C, Greyling MM, Gressd J. Correlation-between Gu and Zn super oxide is mutate and glutathione reductase and xenobiotic stress tolerance in maize inbreds. Plant Sci,1990,69:157-166
    152. Molisch. H, Hofler K. Anatomie Der pflomxe, Veb Gustar Fischer Veriag, Jena, 1954:68~76
    153. Moran JF, Becana M, Iturbe-Ormaetxe I, Frchilla S, Klucos RV, Aparicio-Pejop. Drought induces oxidative stress in pea plants. Planta, 1994, 194:346-352
    154. Morgan JM. Osmoregulation and water stress in higher plants. Ann. Rev. Plant physiol, 1984, 35:299-319
    155. Morgan, J.M. Differences in osmoregulation between wheat genotypes. Nature, 1977, 270:234-235
    156. Munns+, P., Brady, C.J., Barlow, E.W.R. Solute auumulation in the apex and leaves of wheat during water stress, Aust.J.Plant physiol, 1979,6:379-289
    157. Mukerjee SP,Choudhuri MA. Implication of hydrogen peroxide --ascorbate system on membrane permeability of water stressed vigna ceedlings. New phytol,1985,99:355~360
    158. Neumann PM, Crop science, 1995, 35: 1258-1266
    159. Pauk,K.P and J.E.Thompson. Invitro simulation of senescence -related membrane damage by ozone induced lipid proxidation. Nature,1980,283:504~506
    160. Philip. J. R. Annu. Rev. Plant Physicl, 1966, 17:245~268
    161. Price AH, Hendry GAF. Iron catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ. 1991, 14: 477-481
    162. Price AH, Hendry GAF. Iron-catalyzed oxypen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plane Cell Environ, 1991, 14:477
    163. Rubinsteinn B, Luster DG. Plasma membrane redox activity: components and role in plant processes. Ann Rev plant physiol plant Mol Biol, 1993, 44:131
    164. Scandalios JG. Oxygen stress and superoxide dismutasea. Plant physiol, 1993, 101:7-11
    165. Seel WE, Hendry GAF, Atherton NR et al. Radical formation andaccumulation in vivo, in desic cation-tolerant and intolerant mosses. Free Rad Res comm,1991, 15:133
    166. Seel WE, Hendy GAF, Lee JA. Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J Exp Bot, 1992, 43:1031-1035
    167. Senaratna et al. Simulation of dehydration injury to membranes from soybean axes by free radicals. plant physiol, 1984, 77:472-474
    168. Shen GX, Asadak. Inactivation of ascorbate peroxidase by thiols requires hydrogen perxide. Plant cell physiol, 1992, 33:117-122
    169. Singh, T,N. et al. Nature, 1972,236,188-190
    170. Siwecki R. kozlowski T. T., Leaf anatomy and water relation of excised leaves of six Populus Clones, Arboretum Kornickie, 1973, 18, 83~105
    171. Smirnoff N, Colombe SV. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot, 1988, 39: 1097
    172. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New phytol, 1993, 125:27-58
    173. Stewart C. R and Beggess. SF. Metabolism of [5-3H] Proline by barely leaves and its use in measuring the effects of water stress on Proline oxidation. Plant physiol, 1969,44:1023-1026
    174. Stewart CK and Hanson AD.In N.C. Tuner, P.J.Kramer(eds) Adaptation of plants to water and high temperature stress, John Wilery Sons Press. 1980, 173-189
    175. Stewart,C. R. Role of Carbohydrates in proline accumulation in wilted barley leaves. Plant physiol,1978, 61:775-778
    176. Stocker, Otto. Transpiration and water relations in different climatic zones:IV Investigations on sand plants of the Baltic coast. Flora Morphol Geobot Oekophy Soil. 1970, 159(4):367~409
    177. Storey R and Wyn Jones RG. 1975 Plant Sci. Lett 4:161-168
    178. Storey R and Wyn Jones RG. Quaternary ammonium compounds in plants in relation to salt resistance. Phytochomistry, 1977,16:447-453
    179. Tuner Nc. Concurrent Comparisons of stomatal behavior, water status, and evaporation of maize in soil at high or low water potential. Plant physiol. 1975, 55:932-936
    180. Tyree MT, Hammel H. T. The measurement of the turgor pressure and the water relation of plant by the pressure-bomb technique. JEXP Bot, 1972,(23):267~282
    181. Vehiba K.Selective oxidation of tyrptoha and histidine residues in protein through the coppy-catalyzed autoxidation of 1-ascorbic acid. Biol. Chem, 1988, 52:1529-1533
    182. Wang-M. The role of abscisic acid in the regulation of barley grain germination. Seed science and Technology 1997, 25(1):67~74
    183. Wise RB, Natlor AW. Chilling-enhanced photoxidcation evidence for the rele of singlet oxygen and superoxide in the breakdown of pigments and endogenoas antioxidants. Plant physiol, 1987, 83:278
    184. Yancy PH, clark ME, Hand SC, et al. Living with water stress: Evolution of osmolyte systems[J], Science,1982,217:1214-1222
    185. Yoshiji okazaki. Turgor regulation in a brackish charophyte plant cell physiol. 1984,25:572-581
    186. Zhang J, Davies WJ, Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant cell Environ, 1989, 12:73~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700