一株破乳菌破乳有效成分分析及其强化培养条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物破乳剂是多种有效成分共存的复杂体系。目前对破乳有效成分缺乏足够的认识,难于人工调控活性物质的产量导致破乳能力不稳定、效率不高是其无法大规模生产应用的根本原因。系统分析生物破乳剂成分可使代谢调控、改善其破乳性能成为可能;同时寻找新的手段和方法提高破乳效率也可为生物破乳剂的发展注入新的活力。以破乳菌的分离、筛选为基础,摸索破乳菌培养条件,明确环境因素对其破乳效能的影响;深入研究生物破乳剂的破乳有效成分,优化提取、纯化手段,分离出破乳活性物质并利用现代化表征技术加以解析;初步探讨破乳菌株混合强化培养对破乳性能的提升。
     结合生物表面活性剂的筛选方法及破乳性能测试,从大庆原油污染土壤中分离出一株高效破乳菌,经16SrDNA鉴定,明确该菌为莫海威芽孢杆菌(Bacillus mojavensis),编号XH-1。通过破乳实验及生物量的测定,对影响破乳菌生长和菌体发酵液破乳能力的培养条件进行考察,使用MMSM培养基,得出最适于培养液破乳的发酵条件为:培养基初始pH6.5,培养温度30℃,摇床转数140rpm,培养时间24h。该菌株培养液表现出优良的破乳性能:室温下,接触时间48h,40%投加量可实现O/W模型乳状液完全破乳;46℃下,接触时间10h,排油率在80%以上;55℃下,接触时间10h,排油率为100%。
     通过对破乳活性成分分布及有效成分耐热性、耐酸碱性的考察,借助红外光谱、紫外可见光谱等分析手段确定蛋白类物质为该生物破乳剂的破乳有效成分之一,同时蛋白在溶液中的构象对其破乳能力至关重要。破乳活性物质存在于细胞外,粘连在菌体周围或游离于发酵液中,菌体本身不具有破乳能力。采用反复冻融手段及蛋白变性剂处理后,除菌上清液仍保持至少30%破乳活性,证明非蛋白类组分在破乳过程中的作用。
     提取破乳有效成分,通过对粗提产物破乳能力、产量的比较,选择最佳粗提方法。结果发现:XH-1上清液中提取出的多糖、脂类、脂肽类物质基本不具有破乳能力;25%~45%硫酸铵分离及有机溶剂沉淀法均可有效地将破乳活性物质提取出来。使用乙醇沉淀法进行粗提,提取产率高,产物破乳效果好,方法可重复性强。改进提取工艺,粗提产率可达91%,室温下48h粗提产物排油率接近100%。通过对粗提产物成分及分子量分布分析发现:粗提物是多种蛋白、多糖等大分子物质和分子量低于1000D的小分子产物共存的复杂体系。
     选用HiTrap Butyl-S FF疏水相互作用层析,结合Superdex75凝胶排阻层析的分离方法,纯化粗提产物,得到破乳活性物质。纯化产物溶液经液相色谱分离得到单峰,通过质谱鉴定确定为具有PEG结构单元的小分子。这些物质分子量分布范围从200~1000D,在溶液中聚结为胶团,在破乳过程承担重要作用。通过聚丙烯酰胺凝胶电泳(SDS-PAGE)比较破乳能力不同组分间差异。酶切差异条带后进行质谱分析,并在数据库中比对,得到四种蛋白,其中一种为疏水蛋白。确认疏水蛋白为破乳有效成分之一,鉴定为Phosphate-binding protein。
     将破乳菌XH-1与枯草芽胞杆菌(Bacillus subtilis)在改进的无机盐液体培养基中强化培养可以有效地提高生物破乳剂的破乳效率。强化培养液在室温下,接触时间48h可使O/W型模型乳状液完全破乳。与单一菌株发酵全培养液相比,缩短了发酵时间(提高6h以上),降低了破乳剂投加量,提升了破乳能力和稳定性。乳状液pH 3~7的条件下,强化培养液可维持较高破乳活性。具有良好耐温性,乳状液温度在20~120℃,破乳剂排油率变化率在15%以内。强化培养后,生物破乳剂仍主要依靠发酵过程中产生代谢产物破乳,上清液排油效果为全培养液的87%。强化培养是提高破乳活性的更为简便、有效的手段。
Microbial de-emulsifier is a complex system containing many kinds of effective ingredients. At the present time, the limit understanding of de-emulsification substances and uncontrolled productivity result in unstable de-emulsifying effectiveness and low de-emulsification activity. For this reason, the use of microbial de-emulsifier is limited. Profound investigation on effective de-emulsification substances would make it possible to adjust and control the performance of the microbial de-emulsifier. At the same time, seeking for new ways and methods to develop de-emulsification performance would also help to make big progress in bio-demulsifier research. Experiments were carried out to optimized fermentation factors for more de-emulsifer production based on superior demulsifying bacteria isolation. Environmental factors effected de-emulsification activity was clarified. More researches focused on analysis of effective de-emulsification substances. These effective ingredients were extracted, purified then characterized by modern analysis techniques. Basic studies using intensified culture were carried out to explore a simple and available way improving de-emulsification activity.
     Referring to methods of isolation bio-surfactant producing bacteria combining with de-emulsifying test, a superior strain was isolated. The strain was identified by 16SrDNA as Bacillus mojavensis, named as XH-1. The fermentation conditions which affected its growth characteristics and de-emulsification ability of cell culture were investigated by testing biomass and oil drain rate of the culture. The experimental results indicated that the optimal cultivation conditions using MMSM medium were: medium pH 6.5, cultivation temperature 30℃, rotary speed 140 rpm/min, and cultivation time 24h. Under this fermentation condition, the cell culture exhibited best de-emulsifying ability, with 40 %( v/v) input amount, the oil drain rate on O/W model emulsions was: 100% under room temperature in 48h; 80% at 46℃in 10h and 100% at 55℃in 10h.
     Distribution of de-emulsification activity in the culture and the stability of the active substances against high temperature and pH were studied with the help of UV, IR spectrum. The results revealed that protein was one of the active ingredients of the de-emulsifier. The active substances which were attached around the bacterial surface or suspended in the culture existed outside of bacterial cells. The bacterial cells itself did not have de-emulsification capability. Repeated freezing and thawing method and denaturant treating were used to evaluate the de-emulsification activity of the supernatant. At least 30% of its activity remained which indicated the existence of non-protein ingredients.
     De-emulsification substances were extracted from the supernatant. Optimized method was chosen by comparing the de-emulsification activity and productivity of the extracted products. The results showed that polysaccharides, lipoid, lipopeptide extracted from XH-1 supernatant could not break any O/W model emulsion. Effective substances could be precipitated by 25%~45% (NH4)2SO4 and organic solvents. Extracted products settled by ethanol showed high productivity and high de-emulsification activity. The extracted method using ethanol also showed good repeatability. With the optimizing extraction techniques, extracted productivity would reach the maximum point of 91%. The oil drain rate of the crude products solution to model emulsions was 100% under room temperature in 48h. The results of ingredients measuring and molecular weight distribution analysis showed that the extracted product was a complex system containing macromolecule substances as protein, polysaccharides and micromolecule substances which molecular weight was under 1000D.
     HIC and SEC purifying methods were conducted to separate and purify the activity ingredients. Only one elution peak was detected when eluted the purifying product solution through HLPC. Mass spectrograpHic analysis showed micromolecule substances with PEG structure played important role in de-emulsifying process. The molecular weight of these substances which existed as micelle in solution varied from 200-1000D. SDS-PAGE revealed the differences between fractions with varied de-emulsification activity. The differential band was digested by enzyme and characterized by mass spectrogram. Comparing the results with data base, four reliable proteins were identified. Only one of them was hydropHobic protein which was confirmed as activity ingredient, identified as pHospHate-binding protein.
     To intensify the de-emulsification activity of the microbial de-emulsifier, two superior strains (Bacillus mojavensis, Bacillus subtilis) were cultured in a mineral salt medium to obtain a microbial compound de-emulsifier with high capability of de-emulsification. The cell culture could demulsify the O/W model emulsion completely in 48 hours under room temperature. Comparing with that of the single strain culture, the fermentation process of the mixed culture was shortened more than 6 hours. With less addition volume, the mixed culture showed higher de-emulsification activity and stability. The mixed culture kept high de-emulsification activity in the emulsion with different pH value ranged from 3~7. Thermo stability was detected. When the emulsion temperature varied from 20~120℃, changing rate of the oil drain rate was under 15%. After the strains were mixed cultured, the metabolites produced during the fermentation process still took the main function of de-emulsification. The supernatant remained 87% de-emulsification ability of the cell culture while the bacterial cells could hardly break the emulsion. Intensified and mixed culturing is an effective way to enhance their de-emulsification abilities.
引文
1. C. Jan, M. Kevin. On the stabilization mechanism of water-in-oil emulsions in petroleum systems. Energy & Fuels. 2005, 19(5):2074~2079
    2. A. P. Alejadro, J. H. George, A. Clarence. Miller Chemically induced destablization of water-in-oil emulsion Ind. Eng. Chem. Res. 2005, 44(5):1139~1149
    3. D. D. DelpHine, P. Isabelle, C. Dalmazzone, et al. Elastic properties of crude oil/water interface in presence of polymeric emulsion breakers. Colloids and Surfaces A: PHysicochem. Eng. Aspects 2005, 270-271:257~262
    4. R. F. Lee, Agents which promote and stabilize water-in-oil emulsions. Spill Science and Technology Bulletin. 1999, 5(2):117~126
    5. N. Kosaric, Biosurfactant in industry. Pure&Appl. Chem. 1992, 64(11): 1731~1737
    6. Q. X. Li, C. B. Kang, C. K . Zhang. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochemistry 2005, 40(2) :873~877
    7. N. Catgerube, Mulligan Enviromental applications for biosurfactants. Enviromental pollution. 2005, 133:183~198
    8.马放,冯波,李淑更等.复合型生物絮凝剂的絮凝作用.黑龙江科技学院学报. 2004, 14(3): 140~144
    9. F. Ma, B. Wang. Security evaluation of componded microbial flocculant. Journal of Harbin Institute of Technology, 2004, 11(1) :38-42
    10.方云,夏咏梅.生物表面活性剂.中国轻工业出版社. 1992 :210~265
    11.陈翔,破乳剂在汽轮机油中的应用.上海化工. 2000,7 :17~19
    12.王晓红,赵丹平.破乳剂用于柴油碱洗过程.石油炼制与化工. 2004 , 35(3) :41~44
    13.孙炳寅,徐志伟.微生物产生的生物表面活性剂.生物技术. 1994, 4(4):1-6.
    14.陆丽君.破乳菌、破乳有效成分鉴定及对油田采出液水处理系统影响研究.同济大学硕士毕业论文. 2007:1~16
    15.李丽艳,朱肖晶,唐娜等.破乳剂对原油乳状液界面膜作用机理研究进展.天津化工. 2008, 22 (1):6~9
    16.任卓琳,牟英华,崔付义.原油破乳剂机理与发展趋势.油田地面工业. 2005, 24 (7):16~17
    17.刘慧彬,许松林.破乳趋势:高效低污染.中国石油石化. 2006, 22:59~60
    18.檀国荣,王金本.注聚驱原油破乳剂TKQ-2的研制.石油与天然气化工. 2008, 37 (1):56~58
    19.崔昌峰,杨永军,朱成君等.新型原油生物复合破乳剂的研究与应用.石油化工腐蚀与防护. 2005, 22 (4):5~8
    20.张天胜等.生物表面活性剂及其应用.化学工业出版社. 2005:294~317
    21.葛涌涛.原油乳化机理研究及对现场破乳工作的指导作用.辽宁化工. 2008, 37(7):464~450
    22.何志龙,卢细来.可动凝胶调驱对高一联原油处理的影响及破乳剂的筛选.内蒙古石油化工. 2008, 12(13):21~33
    23.赵敏,李庆梅,康强利等.哈萨克斯坦原油加工中破乳剂的筛选与评定.石油炼制与化工. 2008, 39(6):60~62
    24.朱长键,曲东江,韩岩君等.奥里油专用破乳剂BS-231的研制与应用.山东化工. 2008, 37(4):14~15
    25.罗斌,王平全,朱好华等.改性原油破乳剂YT-100的研制及其在延长油矿的应用.内蒙古石油化工. 2008, (20):77~78
    26.张景华,魏学福,韩岩君等.破乳剂BSA-701的研制及应用.山东化工. 2008, 37(5):38~40
    27.魏国晟,张宗愚.原油破乳剂的研究与应用.油气田地面工程. 1995, 14 (6):24 ~26
    28.杜新媛,胡冬妮,蓝利生.多元复合原油破乳剂的研究和应用.化学研究与应用. 1996, 8(3):469 ~471
    29.刘启瑞,张谋真,郭立民等.原油破乳剂—破乳剂复配的筛选.化学研究与应用. 2004, 16(2):270 ~271
    30.金学文,朱勤勇,张广连等.破乳剂在氨水焦油分离中的应用研究.燃料与化工. 2008, 39(6):35~36
    31.孙正贵.纳米Al2O3溶胶改性聚醚破乳剂TA1031的应用研究.石油化工高等学校学报. 2008, 21(3):9~12
    32.付美龙,刘杰,余璐等.高分子型阳离子破乳剂对文明寨油田调驱原油的破乳性能研究.内蒙古石油化工. 2008, (7):102~104
    33.陈炎辉.鄯善卸油台破乳剂SH-3的研制与应用.新疆石油科技. 2008, 18(2):233~235
    34.张谋真,郭立民,李继忠.聚醚型原油破乳剂对陕北原油的破乳脱水性能研究.化学与生物工程. 2009, 26(1):61~65
    35.徐志伟,尤勤,孙炳寅.生物表面活性剂的工业应用.生物技术. 1995, 5 (3):6~8
    36. D. Dseai Jitendra, M.Banat Ibrahim. Microbial Production of Surfactants and Their Commercial Potential. Microbiology and Molecular Biology Reviews, 1997, 3:47~64
    37.陈和平,徐家业,张群正.破乳剂发展的新方向.石油与天然气化工2001, 30(2):92~95
    38. I. M. Banat. Biosurgactants production and possible uses in microbial enhanced recovery and oil pollution remediation: a review. Bio-resource Technol. 1995,51(1):1~12
    39. G. Geogiou, S. C. Lin, M. M. Sharma. Surface active compounds from microorganisms. Biotechnol. 1992, 10:60~64
    40. W. L. Cairns, D. G.. Cooper, J. E. Zajic, et al. Characteriation of Nocardia amarae as a potent biological coalescing agent of water in oil emulsions. Appl. Evioron. Microbiol. 1982,43(2):362~366
    41.马挺,梁凤来,奚艳伟等.红球菌PR-1菌株破乳性能研究.环境科学. 2006, 27(6):1192~1196
    42. N. Nadarajah, A. Singh, O. P. Ward. De-emulsification of petroleum oil emulsion by a mixed bacterial culture. Process Biochem. 2002, 37:1135~1141
    43. Nishimaki, Fukumi, Takahashi, et al. Microorganisms demulsifiers and processes for breaking an emulsion. 1999, US5989892
    44.冯志强,杨永军,朱成军等.原油生物破乳剂的研究与应用.石油大学学报. 2004, 28(3):93~99
    45. N. Nadarajah, A. Singh, O. P. Ward. Evaluation of a mixed bacteria culture for deemulsification of water-in-oil petroleum oil emulsions. World. J. Microbial. Biotechnol. 2002, 18(5):435~440
    46.郭继香,李明远,刘娜等.生物破乳剂处理油田采出水的实验研究.精细化工. 2005, 22(z1): 97~99
    47.彭伟,陈永立. W/O型乳化液生物破乳菌的筛选及性能研究.新疆石油科学. 2006, 16(1):39~40
    48. K. Leppchen. Thomas Daussmann, Simon Curves Martin Bertau, Microbial de-emulsification: a highly efficient procedure for the extractive workup of whole-cell biotransformations. Organic process research &development. 2006, 10(6):1119~1125
    49. D. Van H. Jonathan, S. Ajay, et al. Recent Advaces in Petroleum Microbiology. Microbiology and Molecular Biology Reviews. 2003, 67(4):503~549
    50.黄翔峰,闻岳,杨葆华等.破乳菌种TR-1的筛选与破乳性能试验研究.油田化学. 2006, 23(2):136~139
    51. A. L. Stewart, N. C. C. Gray, W. L. Cairns, N. Kosaric. Bacteria-induced de- emulsification of water-in-oil petroleum emulsions. Biotechnol. Lett. 1983, 26(5):725~730
    52. Z. Duvnjak, N. Kosaric. De-emulsification of petroleum water in oil emulsions by selected bacterial and yeast cells. Biotechnol. Lett. 1987, 9(5):39~42
    53. K. L. Jauniyani, H. J. purohit, R. Shanker, et al. de-emulsification of oil-in-water emulsions by Bacillus subtilis, World Journal of Microbiology &Biotechnilogy, 1994, 10: 452~456
    54. M. Das. Characterization capabilities of a Micrococcus sp. Biores. Technol. 2001,79:15~22
    55. N. Kosaric, Z. Duvnjak, W. L. Cairns. De-emulsification of complex petroleum emulsions by use of microbial biomass. Environ. Prog. 1987, 6(3):33~38
    56. B. A. Ramsay, D. G. Cooper, A. Margaritis, J. E. Zajic. Rhodochorous bacteria:biosurfactant production and demulsifying ability, Microbial enhanced oil recovery. Pennwell, Tulsa, Okla. 1983, 61~65.
    57. M. A. Wilkinson, D. G. Cooper, Testing of microbial demulsifiers with heavy crude emulsions. Biotechnol. Lett. 1985,7:406~408
    58. N. Kosaric, W. L. Cairns, N. C. C. Gray. Microbial deemulsifiers, Biosurfactant and biotechnology, Marcel Dekker, New York, N. Y. 1987, 247~320
    59. Z. Duvnjak, N. Kosaric. De-emulsification of petroleum water in oil emulsions by selected bacterial and yeast cells. Biotechnol. Lett. 1987, 9: 39~42
    60. J.E. Zajic, D.G. Cooper, T.R. Jack, N. Kosaric. Pennwell Publishing Tulsa, Oklahoma, 1983, 106-113
    61. N. C. C. Gray, A. L. Stewart, W. L. Cairns, N. Kosaric. Bacteria-induced deemulsification of oil-in-water petroleum emulsions. Biotechnology Letters. 1984, 6:419~424
    62.杨志生,孙宇,梁宝臣.生物优势菌破乳剂的制备及性能研究.化学工业与工程. 2004, 21(1): 8-11
    63.曾里.生物破乳剂的分离、筛选及破乳特性研究.四川大学硕士学位论文. 2003
    64.周劲.破乳优势菌株的筛选及其活性研究.华东大学硕士学位论文, 2006
    65. D. A. Davis, H. C. Lynch, J. Varley. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditoins of nitrogen metabolism. Enzyme Microb Technol. 1999, 25: 322~329
    66.娄世松,范洪波,赵德智.高效微生物复合破乳剂及其制备方法.中国, 200610107039.9[P], 2007-2-28.
    67.侯宁,马放,李旭等.一种复合型生物破乳剂.中国, 200910071562.4[P], 2009-09-16.
    68. X. F. Huang, J. Liu, L. J. Lu. et al. Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by alcaligenes sp. Bio-resource Technology. 2009, 100(3):1358~1365.
    69. D·波塞尔特, W·施密特, M·古茨曼等.蛋白质作为破乳剂的用途. [P]. CN101 151081, 2008
    70.吴涓,李请彪,邓旭等.重金属生物吸附的研究进展.离子交换与吸附. 1998, 14(2):180 ~187
    71. M. J. Rosen. Surfactants and Interfacial PHenomena (2ed). New York: Wiley, 1989, 234~246
    72.徐燕莉.表面活性剂的功能.化学工业出版社. 2000, 98~102
    73. E. Ristau, F. Wangner. Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol. Lett. 1993,5: 95 ~100
    74. J. L. Parra, J. Guinea, M. A. Manresa, M. Robert, M. E. Mercade, F. Comelles, M. P. Bosch, Chemical characterization and pHysicochemical behaviour of biosurfactants. J Am. Oil Chem. Soc.1989, 37:141~145
    75. F. Peypoux, J. M. Bonmatin, J. Wallach. Recent trends in the biochemistry of Surfactin. Appl Microbial Biotechnol. 1999, 51(5): 553~563
    76. M. Robert, M. E. Mercade, M. P. Bosch, J. L. Parra, M. J. Espuny, M. A. Mantesa, J. Guinea. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol. Lett. 1989, 11:871~874
    77.张翠竹,梁风来,张心平等.一种脂肽类生物表面活性剂的理化性质及其对原油的作用.油田化学. 2000, 17(2): 172~174
    78. C. N. Mulligan, R. N. Yong, F. B. Gibbs. Surfactant-enhanced remedation ofcontaminated soil: a review. Engineming Geology. 2001, 60(1-4):371~380
    79. I. Yoshikazu, D. Kitamoto, H. Naohide, et al. Biosurfactant MEL-A dramatically invreases gene transfection via membrane fusion. Journal of controlled release. 2004, 94(2-3):423~431
    80. C. N. Mulligan, R. N. Yong, B. F. Gibbs. Heavy metal removal from sediments by biosurfactants. Journal of hazardous materials. 2001, 85(1):111~125
    81. R. ShepHord, J. Rockey, I. W. Motherland, et al. Novel bioemulsifier from microorganisms for use in foods. J Siotechnol. 1995, 40: 207~217
    82. S. A. Monteiro, G. L. Sassaki, et al. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPe 614. Chemistry and pHysics of Lipids. 2007, 147(1):1~13
    83. J. C. Mata-Sandoval, J. Karns, A. Torrents. High-performance liquid chromatograpHy method for characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A. 1999, 864: 211~220
    84. H. L. Chen, R. D. Juang. Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers; Significance of membrane adsorption. Journal of Membrane Science. 2008, 325(2):599~604
    85. L. Montanstrue, T. Liu, F. Gancel, et al. Integrate process for production of surfactin. Part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochemical Engineering Journal. 2008, 38(3):349~345
    86. H. L. Chen, R. S. Juang. Recovery and separation of surfactin from pretreated fermentation broths by pHysical and chemical extraction. Biochemical Engineering Journal. 2008, 38(1):39~46
    87.刘伊强,王雅平,潘乃穟,陈章良.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特征.植物学报. 1994, 36(3):197~203
    88.童有仁,马志超,陈卫良,李德葆.枯草芽孢杆菌B034拮抗蛋白的分离纯化机特性分析.微生物学报. 1999, 39(4): 339~343
    89. R. Sen, T. Swaminathan. Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochemistry. 2005, 40(9):2953~2958
    90. C. N. Mulligan, B. F. Gibbs. Recovery of biosurfactants by ultrafiltration. Journal of Chemical Technology and Biotechnology. 1990, 47(1):23~29
    91. H. L. Chen, Y. S. Chen, R. S. Juang. Separation of surfactin from fermentationbroths by acid precipitation and two-stage dead-end ultrafiltration processes. Journal of Membrane Science. 2007, 299(1-2):114~121
    92. M. S. Yeh, Y. H. Wei, J. S. Chang. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry. 2006, 41(8):1799~1805
    93.薛燕芬,王修垣.用两步展开薄层层析定性鉴定糖脂.微生物学报. 1989, 29(1):75~77
    94.吕应年,杨世忠,牟伯中.脂肽的分离纯化与结构研究.微生物学通报. 2005, 32(1):67~73
    95.杨道理.蛋白质纯化方法的选择.实用医药杂志. 2004, 21(12):1121~1123
    96.张翠竹,张心平,梁风来,贾莹,刘如林.一株地衣芽孢杆菌产生的生物表面活性剂.南开大学学报(自然科学). 2000, 33(4): 41~52
    97.王文波,刘玉芬,申书昌.表面活性剂实用仪器分析.化学工业出版社. 2003, 108~109
    98.黄文.白果活性蛋白的分离、纯化、结构及其生物活性研究.华中农业大学. 2002,
    99.任仁.化学与环境.化学工业出版社. 2002, 56~78
    100.周瑞明.蛋白质二级结构的红外光谱.华东理工大学学报. 1997, 23(4):422~425
    101.卢雁,张玮玮,王公轲. FTIR用于变性蛋白质二级结构的研究进展.光谱学与光谱分析. 2008, 28(1):88~93
    102.王建华,卫亚丽,文宗河,何建川.蛋白质结构的FT-IR研究进展.化学通报. 2004, 7:482~486
    103.韦进宝,钱沙华.环境分析化学.化学工业出版社. 2002, 156~167
    104. M. Karas, F. Hillenkamp. Laser desorption ionization of proteins with molecular massed exceeding 1000 daltons. Anal. Chem. 1988, 60(20):2299-2301.
    105. B. J. Fenn, M. Mann, C. K. Meng, et al. Electrospray Ionization for mass spectrometry of large bio-molecules. Science. 1989, 246(4926):64~71
    106. A. N. Krutchinsky, M. Kalkum, B. T. Chait. Automatic Identification of proteins with a MALDI-Quadrupole ion trap mass spectrometer. Anal. Chem. 2001, 73(21): 5066~5077
    107. K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, et al. The characteristics of peptide collision induced dissociation using a high-performance MALDI-TOF/TOF tandern mass spectrometer. Anal. Chem. 2000, 72(3):552~558
    108. A. V. Loboda, A. N. Krutchinsky, M. Bromirski, et al. Tandem Quadrupole/time of flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 2000, 14:1047~1057
    109. E. Krause, H. Wenschuh, P. R. Jungblut. The Dominace of arginine containing peptides in MADI-derived tryptic mass fingerprint of protein. Anal. Chem. 1999, 71(19):4160~4165
    110. A. W. Purcell, J. J. Gorman. The use of post-source decay in matrix-assisted laser desorption/ ionization mass spectrometry to delineate T cell determinants. J Immunol Methods. 2001, 249(1-2):17~31
    111. I. A. Papayannopoulos. The interpretation of collision-induced dissociation tandem mass spectra pf peptides. Mass spectrum Rev. 1995, 14(1):49~73
    112. B. Samyn, G. Debyser, K. Sergeant, et al. A case study of de novo sequence analysis of N-sulfonated peptides by MADI-TOF/TOF mass spectrometry. J Am Soc. Mass Spectrom. 2004, 15:1838~1852
    113. C. Jan, M. Kevin. On the stabilization mechanism of water-in-oil emulsions in petroleum systems. Energy & Fuels. 2005, 19(5):2074~2079
    114.马放,任南琪,杨基先.污染控制微生物学,哈尔滨工业大学出版社, 2002, 126~127
    115.钱晓勇,一株脂肽生物表面活性剂产生菌筛选机及脂肽性质研究,合肥工业大学硕士学位论文,2009,4
    116.魏晓芳,刘会洲.热变性对蛋白质结构及泡沫行为的影响.化工冶金,2000, 21(4):379~383
    117.魏晓芳,丁西明,刘会洲. pH诱导牛血清白蛋白芳香氨基酸残基微环境变化的光谱分析光谱学与光谱分析, 2000, 20(4):556~559
    118.罗平. RL-2生物絮凝剂的研制及絮凝机理研究,重庆:重庆大学,2005
    119.李群,袁勤生,李永丰.海藻糖对酶热稳定性保护作用的研究.药物生物技术,1997,4(1):28~31
    120.李群,袁勤生,李永丰.海藻糖对酶热稳定性保护作用的研究. 1997,4(1):28~31
    121.Y. BAR-OR, M. SHILO. Characterization of macromolecular flocculants produced by PHormidium sp strain J-1 and by anabaenopsis circularis PCC6720. Applied and Environmental Microbiology, 1987, 53(9): 2226~2230
    122.高学文,姚仕义, HUONG PHam JOACHIM Vater,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报. 2003, 43(5):647-652
    123.H. L. CHEN,R. S. JUANG. Recovery and separation of surfactin from pretreated fermentation broths by pHysical and chemical extraction[J]. Biochemical Engineering Journal. 2008, 38(1):39~46
    124.刘伊强王雅平,潘乃穟,陈章良.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特征.植物学报,1994,36(3):197~203
    125.童有仁,马志超,陈卫良,李德葆.枯草芽孢杆菌B034拮抗蛋白的分离纯化机特性分析. 1999, 39(4):339~343
    126.曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用.光谱学与光谱分析. 2004, 24(10):1197~1201
    127.李旭,生物破乳剂的开发及破乳效能的研究.哈尔滨工业大学. 2007,135~145
    128.李树文,刘晓兰,杜连祥.色谱法在蛋白质分离纯化中的应用.齐齐哈尔大学学报, 2003,19(3 ):21~24
    129.H. J. Yang, W. G. Cho, S. N. Park. Stability of oil-in-water nano-emulsions prepared using the pHase inversion composition method. J. Industrial and Engineering Chemistry. 2003, 15:331~335
    130.W. H. Lim, K. Anuar, K. Dzulkefly, et al. Influence of Poly(ethylene Glycol) on the PHase Behavior of Sodium Dodecyl Sulfate/1-Pentanol/Water Systems. J. Dispersion Science and Technology. 2009, 30: 20~26
    131.A. Azeem, M. Rizwan, F. J. Ahmad, et al. Components Screening and Influence of Surfactant and Cosurfactant on Nanoemulsion Formation. Current Nanoscience. 2009,5(2): 220~226.
    132.肖稳发,刘锡见,饶品华等.生物破乳剂的应用研究进展. 2008 ,16(10):17~19
    133.侯宁,生物破乳剂产生菌的特性及破乳效能研究.哈尔滨工业大学.2009,
    134.李旭,杨基先,马放等.一株芽胞杆菌破乳特性实验.哈尔滨工业大学学报,2009,41(8):74~78.
    135.X. F. Huang, W. Guan, J. Liu, et al. Characterization and pHylogenetic analysis of biodemulsifier -producing bacteria. Bio-resource Technology. 2010,101( 1):317~323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700