碾压混凝土重力坝抗震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用损伤模型分析重力坝在地震中的破坏机理在近二十年有了突飞猛进的发展。研究表明混凝土是准脆性材料,在破坏过程中表现高度的非线性特性同时伴有塑性,基于应力等效与应变等效原理的损伤模型不能考虑其塑性发展,而基于能量等效原理的损伤演化本构不仅能够考虑混凝土中的塑性反应而且遵循能量守恒定律,因此本文采用这种塑性损伤耦合本构模型对西部某碾压混凝土高坝进行了地震分析,分析了地震中损伤因子的发展规律及截面应力的变化规律。
     混凝土材料发生断裂损伤的过程中,伴随着能量耗散,本文研究了损伤耗散的特点。并对大坝地震中的能量反应作了初步的研究,概括了地震输入能量、大坝弹性势能、动能、大坝阻尼耗散及损伤耗散的地震反应机理。目前使用断裂力学和损伤力学对大坝进行非线性动力响应分析成为热点,但研究如何使用这些结果对大坝进行整体安全评价还比较少,最主要的方法是采用危险截面上裂缝区的相对长度作为主要判断依据,再辅以裂缝的环境(如有水、无水等)进行加权求得最终的安全判定系数。这种方法仅考虑了大坝局部部位的裂缝危害,本文在此基础上,将损伤耗散能引入判定公式,用于考虑大坝的整体破坏情况,得到新的损伤评价指标。
     高烈度地震区高坝的抗震措施倍受关注,通过工程措施减小地震的危害是本文研究的重点。本文主要从优化材料分区和抗震配筋两方面研究了其抗震效果。通过对混凝土重力坝塑性损伤分析得知,不同的材料分区设置对重力坝顶部裂缝的形态影响很大,通过以大坝整体损伤评价指标为优化目标进行对比分析,得到了最有利的抗震材料分区设置。文章还介绍了钢筋混凝土有限元的作用原理,研究了结构中钢筋与混凝土相互作用的机理及大体积少筋混凝土的断裂能特点,使用ABAQUS开发了各向异性的钢筋混凝土有限元本构,并考虑了脆性材料的损伤局部化效应,考虑了非线性刚度阻尼效应,使用这种本构进行了动力分析。最后文章对大坝进行了抗震配筋效果分析,指出了规范中弹性力学配筋方法的不合理处,确立了依照危害程度进行配筋的原则,通过非线性对比分析选出最为合适的配筋设计。
There has been a great improvement in seismic analysis of gravity dam by damage in the last 20 years. It was discovered that there is plastic strain during cracking, however concrete is brittle materials. As the plastic strain can't been considered in stress-based damage model and strain-based damage model, the energy-based damage is adopted in this paper. It studies the seismic response of a high RCC gravity dam in China western by plastic-damage model. It reveals the evolution of damage index and stress in cross section.
     It studies the energy dissipation in the fracture process of concrete. Then the energy response of gravity dam in earthquake is presented. The hysteretic characters, energy dissipation ability, failure mechanism and characteristics are researched, it introduces the responses of input energy、damping energy、elastic energy、kinetic energy、plastic energy dissipation and damage energy dissipation. Though it is popular in seismic analysis by damage mechanics or fracture mechanics, there almost isn't a common criterion for dam safe evaluation using these mechanics. Some people have explored a global dam damage index, which is main formed by the length of crack in the dam cross section and the modifying coefficient, the crack environment (such as upstream、downstream、underwater and so on) determines the value of modifying coefficient. But this global dam damage index just considers the local damage influence, in order to improve degree of accuracy a new global dam damage index is proposed, in this index the damage energy dissipation is considered, using this factor we can get the information of the damage area rate of the whole dam section.
     People have paid attention to the strengthen measures of high gravity dam for high intensity seismic, study of the measures is the main work in this paper. It proposes two measures:optimizing the material assigning design. It has been found that the different material assigning designs can lead very different dam cracking, so though comparing the global dam damage indices we get the optimum design. Then the paper introduces the theory of reinforced concrete finite element and the reaction between rebar and concrete in big volume rare-reinforcement concrete structure, the crack characteristic is very different from brittle plain concrete, so it also studies the fracture energy of reinforced concrete. In ABAQUS it develops a new constitutive model of reinforced concrete. in this constitutive model the local effect of crack is considered, once a crack processes the crack opening displacement takes place rapidly, but the strain of other undamaged zone will decreases, it leads to form just one crack in characteristic length. It studies the damping characteristic in the constitutive model, the nonlinear Rayleigh damp is adopted. Then it studies the seismic crack of dam using this constitutive model. At last it introduces the methods of calculating the reinforcement percentage, it states the disadvantage of the method in hydraulic concrete structure design code by linear finite element, explores a new method by nonlinear finite element according to the damage degree, and finds the appropriate reinforcement percentage.
引文
[1]林皋.混凝土大坝抗震技术的发展现状与展望(1)[J].水科学与工程技术,2004,6:1-3
    [2]林皋.混凝土大坝抗震技术的发展现状与展望(2)[J].水科学与工程技术,2005,1:1-3
    [3]Chopra A K, Chakvabauti P. The Koyna Earthquake and the Damage to the Koyna Dam [J]. Bulletin of Seismological Society of America,1973,63(2).
    [4]Gao Lin. Some problems on seismic design of large concrete dams [C]. Proc. 13WCEE,2004, Paper No.1085
    [5]Zhang Chuhan, Wang Guanglun, Wang Shaomin. Experimental tests concrete and nonlinear fracture analysis of rolled compacted concrete dams [J]. Civil Engineering,2002,14(2).
    [6]范书立,陈健云,周晶等.龙开口水电站溢流坝段动力模型破坏试验研究[J].水利学报,2007(增).
    [7]王海波,李德玉,陈厚群.拱坝振动台动力破坏试验研究[J].土木工程学报,2006,39(7):109-118.
    [8]Skrikerud P E, Bachmann H. Discrete crack modeling for dynamically loaded, unreinforced concrete structure [J], Earthquake Engineering Structural Dyn,1986, 142(2):297-315.
    [9]Saouma V, Morris D. Applicayion of fracture mechanics to concrete dams:a detailed case study [J]. Dam Engineering.1998,9(4):321-344
    [10]Cevera M, Oliver J, Faria R. Seismic evalution of concrete dams via continuum damage models [J]. Earthquake Engineering Structural Dyn.,1998,24,1225-1245
    [11]Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dams-a continuum damage mechanics approach [J]. International Journal of Numer Meth Eng. 1999,45,1695-1724
    [12]刘君,陈健云,孔宪京,林皋.基于DDA和FEM耦合方法的碾压混凝土抗震安全性分析[J]。大连理工大学学报,2003,4,40-46
    [13]栾茂田,黎勇,杨庆.非连续变形计算力学模型基本原理及在边坡岩体稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):289~294
    [14]Yazdchi M, Khalili N, Valliappan S. Non-linear seismic behavior of concrete gravity dams using coupled finite-boundary element technique [J]. Int J Numer Meth Engng, 1999,44,101-130
    [15]金峰,张楚汉,王光纶.结构地基动力相互作用的有限元-边界元-无限边界元耦合模型[J].清华大学学报,199333(2):17-24
    [16]李建波,陈健云,林皋.求解非均匀无限地基相互作用力的有限元时域阻尼抽取法[J].岩土工程学报.2004,26(2):263-267
    [17]Ghaemian M, Ghobarah A. Nonlinear seismic response of concrete gravity dams with dam-reservior interaction [J]. Eng Struct,1999,21:306-315
    [18]陈健云,李静,林皋.基于率性损伤模型的混凝土重力坝地震响应分析[J].哈尔滨工业大学学报,2005,37(6):786-789
    [19]肖诗云.混凝土率性本构模型及其在拱坝分析中的应用[D].大连理工大学博士学位论文,2002.
    [20]Loland K E. Concrete damage model for load-response estimation of Concrete[J]. Cement and Concrete Research,1980(10):392 - 492
    [21]Krajcinovic D. Constitutive equations for damaging materials [J]. J Appl Mech, 1983,50:355-360
    [22]G Z Voyiadjis, Z N Taqieddin, P I Kattan. Anisotropic damage-plasticity model for concrete[J], International Journal of Plasticity,2008,24:1946-1965
    [23]张盛东,樊承谋.混凝土正交各向异性损伤模型的研究[J].哈尔滨建筑大学学报,1998,31(2):38-44
    [24]Bazant Z P, and Oh B H. Crack Band Theory for Fracture of Concrete [J]. Mater. & Const.1983, (16):155-177.
    [25]王忠昶,栾茂田,杨庆.关于非线性非局部应变梯度模型的探讨[J].大连理工大学学报,2007,47(1):68-72
    [26]严更,丁方明.非局部应变软化破坏模型中的权函数[J].重庆建筑工程学报,1995,17(1):56-61
    [27]赵启林,孙宝俊,江克斌.非局部损伤模型的客观性研究[J].工程力学,2003,20(5):158-162
    [28]赵纪生,陶夏新,欧进萍,师黎静.非局部本构的一种改造形式及内尺度分析[J].岩土力学,2007,28(10):2036-2040
    [29]沈新普,鲍文博,沈国晓.混凝土断裂与损伤[M],冶金工业出版社,2004.
    [30]陈健云,林皋,李静.高拱坝的非线性开裂静动力响应分析[J].世界地震工程,2001,17(3):85-90
    [31]Bayo E, Wilson E L. Numerical techniques for the evaluation of soil-structure interaction effects in the time domain. UCB/EERC-83/04
    [32]Kevin K F Wong, Yumei Wang. Energy-Based Damage Assessment On Structures During Earthquakes [J], Struct. Design Tall Build.,2001,10:135-154
    [33]Bhattacharjee S S and leger P. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics.1993,22: 991-1007.
    [34]陈健云,郑毅. 关于强震下拱坝损伤整体判别指标的初步探讨[J].水利学报,已录用。
    [35]周维垣,杨若琼,剡公瑞.高拱坝稳定性评价的方法和准则[J].水电站设计,1997,13(2):1-7
    [36]李同春,王仁坤,游启升,周秋景.高拱坝安全度评价方法研究[J].水利学报,2007,10(增刊):78-105
    [37]沈怀至.基于性能的混凝土坝—地基系统地震破损分析与风险评价[D].清华大学博士学位论文,2007
    [38]潘坚文,龙渝川,张楚汉.高拱坝强震开裂与配筋效果研究[J],水利学报,2007,38(8):926-932
    [39]涂劲,郭永刚,陈厚群.高拱坝抗震钢筋配置方案研究[J],水利水电技术,2003,34(7):36-38
    [40]朱伯芳.强地震区高拱坝抗震配筋问题[J].水力发电,2000,7:18-22
    [41]Yuchuan Long, Chuhan Zhang, Feng Jin. Numerical simulation of reinforcement strengthening for high-arch dams to resist strong earthquakes [J]. Earthquake Engng Struct. Dyn.2008; 37:1739-1761
    [42]Long Yuchuan, Zhang Chuhan, Xu Yanjie. Nonlinear seismic analyses of a high gravity dam with and without the presence of reinforcement [J]. Engineering Structures, 2009,06:1-9
    [43]Dougil J W. On stable progressively fracturing solids[J]. J. Appl. Math. Phy. 1976(27):423-437
    [44]Swoboda G, Yang Q. An energy-based damage model of goematerials-I. Formulation and numerical results [J]. Internatinal Journal of Solids and Structure,1999, 36:1719-1734.
    [45]Kawamoto T, Ichikawa Y and Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory [J]. International Journal For Numerical And Analytical Methods in Geomechanics,1988,12:1-30.
    [46]Chaboche J L. Anisotropic creep damage in the framework of continuum damage mechanics [J]. Nuclear Engineering and Design,1984,73(3):309-319.
    [47]杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
    [48]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D].大连理工大学博士学位论文,2008.
    [49]Krajcinovic D. Damage mechanics [M]. Amsterdam:Elsevier,1997.
    [50]Bazant Z P. Microplane model for progressive fracture of concrete and rock.[J]. Journal of engineering mechanics,1985,111(4):559-582.
    [51]Ju J W, Lee X. Micromechanical damage models for brittle solids(1):tensile loading[J]. Journal of engineering mechanics,1991,117(10):1495-1514.
    [52]Lee X, Ju J. Micromechanical damage models for brittle sol ids(2):compresive loading[J]. Journal of engineering mechanics,1991,117(10):1515-1536.
    [53]陈明阳,范书立,陈健云等.官地碾压混凝土重力坝抗震措施研究[J]。水力发电,2010,36(4):40-42
    [54]Bazant Z, Chen E P. Scaling of structural failure[J]. Appl Mech Rev, 1997,50(10):593-627
    [55]Hillerborg A. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976,6:773-782.
    [56]Ghrib F, Tinawi R. Nonlinear behavior of concrete dams using damage mechanics [J]. Eng. Mech.,1995,121:513-527.
    [57]Ghrib, F., Tinawi R. An Application of Damage Mechanics for Seismic Analysis of Concrete Gravity Dams[J]. Earthquake Engineering and Structural Dynamics,1995, 24:157-173.
    [58]Jeeho Lee, Gregory L Fenves. A Plastic-Damage Concrete Model for Earthquake Analysis of Dams[J]. Earthquake Engineering and Structural Dynamics,1998,27: 937-956.
    [59]邵长江,钱永久.Koyna混凝土重力坝的塑性地震损伤响应分析[J].振动与冲击,2006,25(4):129-182.
    [60]徐道远,符晓陵,朱为玄,王向东.坝体混凝土损伤-断裂模型[J].大连理工大学学报,1997,37(S1):1-6.
    [61]刘华,蔡正敏,杨菊生,王铁军.混凝土结构三维损伤开裂破坏全过程非线性有限元分析[J].工程力学,1999,16(2):45-51.
    [62]杜成斌,苏擎柱.混凝土坝地震动力损伤分析[J].工程力学,2003,20(5):170-173
    [63]张我华,邱战洪,余功栓.地震作用下坝及其岩基的脆性动力损伤分析[J].岩石力学与工程学报,2004,23(8):1311-1317.
    [64]邱战洪,张我华,任廷鸿.地震作用下大坝系统的非线性动力损伤分析[J].水利学报,36(5):629-636
    [65]龙渝川,张楚汉,迟福东,周元德.混凝土重力坝抗震配筋加固措施的效果研究[J].水力发电学报,2008,27(4):77-82
    [66]杜荣强.混凝土静动弹塑性损伤模型及在大坝分析中的应用[D].大连理工大学博士学位论文,2006.
    [67]Lee J, and Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures [J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [68]GB50010-2002,混凝土结构设计规范[S]。
    [69]Lubliner J, Oliver J, Oller S, and Onate E. A Plastic-Damage Model for Concrete [J]. International Journal of Solids and Structures,1989,25(3):229-326.
    [70]DL5073-2000,水工建筑物抗震设计规范[S],2000.
    [71]Housner G W, Behavior of Structures during Earthquake, J. of the Engrg. Mech. Div. ASCE[J],1959,85(4)
    [72]肖明葵.基于性能的抗震结构位移和能量反应分析方法研究[D],重庆大学博士学位论文,2004
    [73]Akiyama H. Earthquake Limit-State Design for Buildings [M], University of Tokyo Press,1985
    [74]Kato B, Akiyama H. Seismic design of steel buildings [J]. Journal of Structural Division, ASCE,1982,108 (8):1709-1721
    [75]程光煜,叶列平.弹塑性SDOF系统的地震输入能量谱[J].工程力学,2008,25(2):28-39
    [76]叶列平,伍文杰.基于能量准则的SDOF阻尼减震结构最大地震位移[J].清华大学学报(自然科学版),2001,41(12):71-74
    [77]蒋立志,林荫琦,朱镜清.阻尼耗能在结构弹塑性地震反应中的作用[J].地震工程与工程振动,1996,16(3):30-38
    [78]杨晓明,史庆轩,丰定国.抗震结构能量设计方法中阻尼耗能的研究[J].西安建筑科技大学学报(自然科学版),2006,38(2):189-198
    [79]Bertero V V, Uang C M, Issues and Future Directions in the Use of an Energy Approach for Seismic-Resistant Design of Structures, Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Ed. by P fajfar and H Krawinkler, Elsevier Applied Science[M],1992
    [80]瞿岳前,梁兴文,田野.基于能量分析的地震损伤性能评估[J].世界地震工程.2006,22(1):109-114
    [81]Park Y J, Ang A H-S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, ASCE,1985,111(4):722-739
    [82]Park Y J, Ang A H-S. Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering, ASCE,1985,111(4):740-756.
    [83]杨伟,欧进萍.结构地震弹塑性反应谱——损伤谱[J].地震工程和工程振动,2008,12(6):44-53
    [84]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3033-3010.
    [85]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [86]DL50181999,混凝土重力坝设计规范[S],1999
    [87]杜荣强,林皋,胡志强.混凝土重力坝动力弹塑性损伤安全评价[J].水利学报,2006,37(9):1056-1062
    [88]郑毅.拱坝抗震性能设计及模型试验影响因素研究[D].大连理工大学硕士学位论文,2009.
    [89]沈怀至,张楚汉,金峰.基于性能的重力坝坝基交界面地震抗滑稳定评价[J].水力发电学报,2009,28(1):137-142.
    [90]寇立夯,金峰,张楚汉等.重力坝地震整体损伤指数的初步探索[J].中国水利,2008,(11):28-30.
    [91]Nakayama J. Direct measurement of fracture and its measurement of brittle heterogeneous materials [J]. Journal of American Ceramics Society,1965,48(2): 583-587.
    [92]赵燕华.混凝土断裂过程中的能量分析研究[D].大连理工大学博士学位论文,2002
    [93]Bazant Z P, Cedolin L. Blunt crack band propagation in finite element analysis [J]. Journal of Engineering Mechanics Division,1979,105(2):297-315
    [94]Rice J R. Mathematical analysis in the mechanics of fracture [J]. Fracture and advanced treatise, New York, Academic Press,1968,191-308.
    [95]Wittmann F H. Size effect of fracture energy of concrete [J]. Engineering France Mechanics,1990,35:107-115
    [96]Giang D. Nguyen, Guy T Houlsby. A coupled damage-plasticity model for concrete based on thermodynamic principles:Part I:model formulation and parameter identification[J]. Int. J. Numer. Anal. Meth. Geomech.2008; 32:353-389
    [97]Giang D. Nguyen, Guy T Houlsby. A coupled damage-plasticity model for concrete based on thermodynamic principles:Part II:non-local regularization and numerical implementation[J].Int. J. Numer. Anal. Meth. Geomech.2008; 32:391-413
    [98]Uang C M, Bertero V V. Evaluation of seismic energy in structures [J]. Earthquake Engineering and Structure Dynamics,1990,19(2):77-90.
    [99]Chapman M C. On the use of elastic input energy for seismic hazard analysis [J]. Earthquake Spectra,1999,15(4):607-635.
    [100]沈怀至,张楚汉,寇立夯.基于功能的混凝土重力坝地震破坏评价模型[J].清华大学学报(自然科学版),2007,47(12):2114-2118
    [101]江见鲸,陆新征,叶列平。混凝土结构有限元分析[M],清华大学出版社,2005
    [102]Orangun C 0, Jirsa J 0, Breen J E. A reevaluation of test data on development length and splices [J].ACI,1977,74(3):114-122.
    [103]Anil K.Chopra,结构动力学理论及其在地震工程中的应用[M],高等教育出版社,2005年
    [104]Hilber, H. M., T. J. R. Hughes, and R. L. Taylor. Collocation, Dissipation and Overshoot' for Time Integration Schemes in Structural Dynamics [J], Earthquake Engineering and Structural Dynamics, vol.6, pp.99-117,1978.
    [105]Feves G L, Mojtahedi S, Reimer R B. ADAP-88:A Computer Program for Nonlinear Earthquake Analysis of Concrete Arch Dams [R]. Report No. UCB/EERC-89/02, Earthquake Engineering Research Center, University of California at Berkeley, 1989.
    [106]郭永刚,涂劲,陈厚群.抗震钢筋对高拱坝抗震性能的影响[J].水利学报,2004,3:1-6
    [107]陈观福,张楚汉,徐艳杰.小湾拱坝跨横缝抗震钢筋的影响因素分析[J].水电能源科学,2005,23(1):70-73
    [108]徐艳杰,张楚汉,王光纶,金峰.小湾拱坝横缝配筋的非线性地震反应分析[J].水力发电,2001,5,26-39
    [109]龙渝川,周元德,张楚汉.钢筋混凝土相互作用效应的钢筋刚化模拟[J].清华大学学报(自然科学版),2007,47(6)793-796
    [110]沈怀至,潘坚文,金峰等。混凝土坝坝体配筋抗震措施研究[J].水利学报,2007,38(1):39-46
    [111]艾亿谋,杜成斌,洪永文,孙立国.混凝土坝抗震加固中钢筋混凝土的动力本构模型[J].水利学报,2009,43(3):289-295
    [112]赵瑞东.碾压混凝土重力坝配筋抗震措施的试验及数值研究[D].大连理工大学硕士学位论文,2007
    [113]张斌.碾压混凝土重力坝抗震措施模型实验研究[D].大连理工大学硕士学位论文,2010
    [114]王显治.混凝土重力坝抗震配筋及抗震设防标准研究[D].河海大学硕士学位论文,2007.
    [115]Xuehui An, Maekawa K, Okamura H. Numerical simulation of size effect in shear strength of RC beams [J]. Concrete Library of JSCE,1998,31:323-34
    [116]SL/T191-96,水工混凝土结构设计规范[S],1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700