基于离散元技术的球磨机参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球磨机处理能力和排料粒度决定着粉磨生产线的生产效率和技术经济指标。由于球磨机粉磨机理复杂,难以用解析模型描述,而离散元方法为球磨机粉磨机理的研究提供了手段。论文以提高球磨机单位时间的处理能力为目标,优化磨机参数,使用于矿石粉碎的介质冲击能量达到最大。根据磨机工作的特点,选取相应的因素水平,采用试验优化的方法确定试验点,利用离散元软件EDEM建立各个试验点的仿真模型。将累积破碎的理论用于冲击功的计算中,采用极差法对实验结果进行处理,求出能够造成矿石损伤的冲击破碎能量的大小,得出参数的优水平和最优的参数配合。通过本文的研究工作,初步形成了利用离散元和累计破碎理论的球磨机参数优化的方法,对球磨机冲击破碎机理的研究和工程应用提供了参考。
Along with the energy issue become worse, the requirements that increase the production and develop less energy consumption in comminution devices is greater than before, especially in the high energy consumption industry, for example, cement, mining, electric generation and so on. Ball mill is the best rife and all-purpose comminution devices in these industries, because it has many advances: simple structure, steady-going capability, big comminution ratio, mighty adaptability, easy to achieve automatization, etc. Though there are some less energy consumption mills today, the ball mill which possess important place in mineral comminution and fine comminution will be hard to be replaced. In a long period of time in future, ball mill will bring into play its important function all the same. Many experts and scholars have gone along with the study of ball mill, and obtained some power formularies and mathematical models, made great contributions to grinding technology. But the comminution issue of mill is very complex, and it is not solved very well so far.
     Direct Element Method (DEM), which is based on the contact model, using the Newton’s second law of motion, researching state of the particle system from the single granule, is discrete materiel analysis method. From DEM was brought forward, it develops very fast, and the using field enlarges: pharmacy, chemical medicine, disposal of mineral and material, oil and gas production, extractive industry, architecture industry, technique industry and so on. Along with the visualization of computer, DEM applications upgrade ceaselessly, it makes it possible that use computer to solve problem of a great deal of particles. Twenty years ago, some people studied the charge motion in ball mill with DEM, but the relation of breakage and impact energy was never solved, these large amounts of potentially useful information which DEM produces were not used adequately. So we need to research breakage and impact principle of ball mill, look for good method for DEM data analysis. And we can predict breakage and energy status via predicting charge motion with DEM, find solution for increase the production and develop less energy consumption of ball mill.
     When ball mill is operating, not all kinetic energy which medium have can be used to ore breakage, most of the energy loses in the form of sound energy, light energy, heat energy etc. Under a good mineral grinding status, the impact energy which decides the breakage of ore is more, the disposal quantity of mill in unit time is big. Morrison, Shi and Ryan (2006) reported on various approaches to modeling incremental damage. They found a satisfactory model for the probability of breakage, degree of breakage and likely progeny size distribution. The model could calculate the quantity of the energy which loses and never brings ore breakage. This enables us to research the comminution in ball mill in view of the relation of ore breakage and medium impact. The paper is using the model to guide the optimization of the parameters of ball mill aim at the most energy that could bring ore breakage. This dissertation takes the researches on the following points:
     (1) General conclude the development status of DEM and DEM application, introduce the basic principles of DEM and important contact models. Explain the background that DEM technology is applied to ball mill. Analyze the configuration and direction of the new DEM application—EDEM concisely. Referral the useful data that can gain from DEM, expound how to use the DEM outputs.
     (2) General conclude the structure and operation principles of ball mill, present the breakage theory of the ball mill, and analyze the motion and forces of the medium, design the project of the parameter optimization based on the method of experimentation optimization. Refer to correlation literature of incremental damage, make the most energy that could bring ore breakage as the optimization goal. Use the L_4 (2 ) orthogonal table to optimize.
     (3) Describe the parameters which effect grinding of ball mill, choose appropriate experiment factor level referring to correlation literature and based on prevenient experiences, buildup feasible examination point. Calculate the special data of the experiment factor level by the informed parameter of ball mill 5585. Apply EDEM to simulate the operation of ball mill at each examination point, plot the histogram of“collision-relative velocity”. And simulate the startup process of the ball mill, obtain the torque line graph in startup process.
     (4) Select the 40mm granularity ore of copper mine as archetype, evaluate the least medium energy which could cause ore breakage. Use the theory and calculation methods of ore incremental damage to evaluate the impact energy which bring the ore breakage. Analyze the parameter’s influence about the ore breakage impact energy, the energy is optimization goal. Deal with the experimental data by R-method, attain the best parameter match and PRI of each parameter.
     This paper use cumulate damage theory to impact characteristic analysis, use experimentation optimization method to design experiment process, and contact DEM and experimentation optimization to optimize the parameters of the ball mill. During the progress of the optimization, research how to use the outputs of the EDEM, create the calculation formula of the optimization target- the impact energy which cause the ore damage. Offer a reference to make use of the DEM data for the continuing DEM simulation of ball mill.
引文
[1] AUBREY N.MAINZA,MALCOLM S.POWELL.Rom ball mills-a comparison with AG/SAG milling[J].SAG,2006(Ⅱ):314-325.
    [2]盖国胜,陈炳辰.粉磨过程数学模型及过程优化研究评述[J].金属矿山,1995(1):28-32.
    [3]徐泳,黄文彬.颗粒离散元法建模和仿真的若干进展[N].过程工程学报,2002-11-2(增刊).
    [4]美国Itasca咨询公司.PFC3D v3.0用户手册[M/OL],2003.
    [5]英国DEM-solution咨询公司.EDEM指导手册[M/OL],2008.
    [6]刘波.基于三维离散单元法的衬板提升条研究[D].昆明:昆明理工大学机电工程学院,2008.
    [7] CUNDALL P.A.A computer model for simulating progressive large scale movements in blocky systems in:proceedings of the symposium of the international society of rock mechanics[J]. Nancy,France,1971.
    [8] CUNDALL P.A. The measurement and analysis of acceleration in rock slopes :[PH.D.Thesis].London:University of London,Imperial College of Science and Technology,1971.
    [9] L.VU-QUOC,X.ZHANG,O.R.WALTON. A 3-D discrete-element method for dry granular flows of ellipsoidal particles[J].Comput.Methods Appl.Mech.Engrg,2000(7):483-528.
    [10] C.WELLMENN,C.LILLIE,P.WRIGGERS.Homogenization of granular material modeled by a three-dimensional discrete element method[J].Computers and Geotechnics,2008(5):394-405.
    [11] CUNDALL P . A ., STRACK O D L . A discrete numerical model for granular assembles[J].Geotechnique,1979,29(1):47-65.
    [12] CUNDALL P.A.Formulation of a three-dimensional discrete element model-partⅠ:a scheme to detect and represent contacts in a system composed of many polyhedral blocks[J].Int.J.Rock Mech.Min.Sic.& Geomech.Abstr,1988,25(3):107-116.
    [13] CUNDALL P.A.Formulation of a three-dimensional distinct element model-part II:mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J].Polyhedral Blocks.Int.J.Rock Mech.Min.Sic.& Geomech.Abstr,1988,25(3):117-125.
    [14]焦玉勇,葛修润,谷先荣.三维离散元法中的数据结构[J].岩土力学,1998,19(2):74-79.
    [15] PETER CUNDALL .工程科学部学术报告-离散元方法研究及应用进展[EB/OL].2005-10-17 [2005-10-14]http://www.imech.ac.cn/info_www/news/detailnewsb.asp?infono=5831
    [16]罗海宁,焦玉勇.对三维离散单元法中块体接触判断算法的改进[J].岩土力学,1999(20):2.
    [17]焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法[N].岩石力学与工程学报,2000-7-19(4).
    [18]李志勇.基于椭球颗粒模型的离散元法基本理论及算法研究[D].吉林:吉林大学计算机学院,2008.
    [19]郑文刚.离散元工程计算软件前后处理系统[D].辽宁:大连理工大学,2002.
    [20]段希祥.碎矿与磨矿[M].北京:冶金工业出版社,2006.
    [21]母福生.破碎粉磨技术进展[J].矿山机械,2003(4):6-8.
    [22] S·莫莱尔.精确预测磨机功耗的方法[J].国外金属矿选矿,2004(5):12-16.
    [23] CUNDALL P.A.,STRACK O.D.L.The distinct element meted as a tool for research in granular media-partⅡ:department of civil and mineral engineering[J].University of Minnesota,National Science Foundation,l979.
    [24] M.S.POWELL,G.N.NURICK.A study of charge motion in rotary mills part 1-extension of the theory[J].Minerals Engineering,1996,9(2):259-268.
    [25] M.S.POWELL,G.N.NURICK.A study of charge motion in rotary mills part 2- experimental work[J].Minerals Engineering,1996,9(3):343-350.
    [26] M.S.POWELL,G.N.NURICK.A study of charge motion in rotary mills part 3-analysis of results[J].Minerals Engineering,1996,9(4):399-418.
    [27] M.S.POWELL,A.T.MCBRIDE.A three-dimensional analysis of media motion and grinding regions in mills[J].Minerals Engineering,2007(17):1099-1109.
    [28] GOVENDER,M.S.POWELL and G.N.NURICK.3D particle tracking in a mill:A rigorous technique for verifying DEM predictions[J].Internal Engineering,2001(14):1329-1340.
    [29] ANDREW MCBRIDE,MALCOLM POWELL. A structured approach to modeling SAG mill liner wear–numerical modeling of liner evolution[J].SAG,2006(Ⅲ):120-132.
    [30] R.D.MORRISON,F.SHI,R.WHYTE.Modeling of incremental rock breakage by impact– For use in DEM models[J].Minerals Engineering,2007(20):303-309.
    [31] R MORRISON,B LOVEDAY,M POWELL,N DJORDJEVIC,P CLEARY.Applying discrete element modeling to different modes of breakage in AG and SAG mills[J].SAG,2006(Ⅲ):407-420.
    [32] M.S.POWELL,A.T.MCBRIDE.What is required from DEM simulations to model breakage in mills? [J].Minerals Engineering 2006(19):1013-1021.
    [33] M.S.POWELL,I.GOVENDER,A.T.MCBRIDE.Applying DEM outputs to the unifiedcomminution model[J].Minerals Engineering,2008(21):744-750.
    [34]任露泉.试验优化技术[M].北京:机械工业出版社,1987.
    [35]张欣,王文庆,武锦涛,王靖岱,阳永荣颗粒流动模型研究进展[J].中国粉体技术.2007(6):36-39.
    [36] BERNHARD PETERS,ALGISD ZIUGYS. Numerical simulation of the motion of granular material using object-oriented techniques[J]. Computer Methods in Applied Mechanics and Engineering,2002(191):17-18.
    [37] FAYEDME,OTTENL.粉体工程手册[M].北京:化学工业出版社,1992.
    [38]李志勇.基于椭球颗粒模型的离散元法基本理论及算法研究[D].吉林:吉林大学计算机学院,2008.
    [39]袁哲.球磨机磨矿介质运动分析与参数优化[D].辽宁:辽宁科技大学,2008.
    [40]段希祥,曹亦俊.球磨机介质工作理论与实践[M].北京:冶金工业出版社,1999.
    [41]《破碎粉磨机械》编写组.破碎粉磨机械[M].北京:机械工业出版社,1978.
    [42]李文亮.大型球磨机回转体参数化有限元分析研究[D].长春:吉林大学机械学院,2007.
    [43]朱黎江,张乃新,李跃武.球磨机衬板的结构改进[J].建材发展导向,2007(2):51-53.
    [44]何根生.球磨机衬板表面形状与转速关系的研究[J].矿山机械,2000(7):31.
    [45]张永昌.球磨机衬板的改进[J].矿山机械.1992(4):33-35.
    [46]欧阳习科.金属矿山磨球和衬板的优化设计研究[D].昆明:昆明理工大学机电工程学院,2005.
    [47]何亮.超临速球磨机介质运动三维离散元数值模拟[D].昆明:昆明理工大学机电工程学院,2007.
    [48]张彩霞,刘维平.球磨过程中钢球运动规律的研究[N].南方冶金学院学报,2000-4-21(2).
    [49]蔡祖光.球磨机功率消耗设计计算的探讨[J].科研与应用,2005(3):14-17.
    [50]张建华.球磨机中磨球的工作状况及受力分析[N].淮南矿业学院报,1998-6-18(2).
    [51]梁广炽.球磨机工作理论及其参数选择的研究与探讨[J].矿山机械,1986(11):25-33.
    [52]肖庆飞,石贵明,段希祥.磨矿介质制度的进展及优化[J].矿山机械,2007(1):29-32.
    [53] MCBRIDE,A.,GOVENDER,I.,POWELL,M.S.,CLOETE,T.,2004.Contributions to the experimental validation of the discrete element method applied to tumbling mills[J].Engineering Computations:International Journal for Computer-Aided Engineering 21 (2),119–136.
    [54]阂玉兵,李红燕.试验优化技术——现代科研必不可少的数理统计处理方法[J].辽宁建材,2002(4):15-17.
    [55]朱祥,王国强,邵明亮,金秀浩,于廷伟.球磨机梯形衬板设计[J].矿山机械,1993(5):5-7.
    [56]黄鹏.基于三维离散元方法的球磨机介质运动研究[D].昆明:昆明理工大学机电工程学院,2007.
    [57]陈炳辰.磨矿原理[M].北京:冶金工业出版社,1989.
    [58]王泽红,陈炳辰.球磨机有用功率与其工作参数关系的研究[J].矿物工程,2001(4):54-57.
    [59] M.MEIER,E.JOHN,D.WIECKHUSEN,W.WIRTH,W.PEUKERT.Influence of mechanical properties on impact fracture:prediction of the milling behavior of pharmaceutical powders by nanoindentation[J].Powder Technology,2009(118):301-313.
    [60]王宏勋.破碎与磨碎试验技术[M].北京:冶金部有色金属选矿情报网,1982.
    [61]曾洪茂,周恩浦.冲击破碎机冲击速度、冲击时间和破碎力的确定[J].矿山机械,1994(1):2-6.
    [62]戴少生.磨机最佳理论适宜转速的再探讨——瀑布冲击的力学行为与转速的关系[J].矿山机械,1987(5):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700