废钢破碎机的转子动力学分析及配锤优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废钢破碎机的破碎性能直接决定了废钢破碎产线的生产效率。论文结合企业合作项目“锤式废钢破碎机的动平衡研究”,对废钢破碎机的转子进行了动力学分析与动平衡设计。根据废钢破碎机的结构特点,对转子系统进行了动力学分析,得到了转子起动过程中的运动规律,并讨论了破碎机的功率、锤头质量、摩擦系数、锤头结构和安装位置等参数对运动规律的影响。根据转子动平衡设计原理,对转子的锤头和防护板的排列问题,以不平衡力最小为目标,建立了优化数学模型,选择蚁群算法对数学模型进行了优化计算,并对蚁群算法进行了改进。通过优化计算,得出了合理的锤头和防护板的布置方式,显著降低了转子两支承面所受的不平衡力。论文的研究结果,为某锤式废钢破碎机的锤头排列布置提供了合理的方案,为锤式废钢破碎机的转子结构设计提供了参考。
The scrap steel processing production line is essential to the processing of scrap steel or other metallic material in steel production industries and the scrap metal shredder is the most important link of the production line. The characteristics including crushing ability, working efficiency and service life of the shredder can directly influence the utilization rate of scrap steel. It’s important to study the reliability of shredder to ensure the shredder is safe and efficient. The rotor is the most important component of the hammer crusher. The lopsided parts on the rotor will cause vibration, noise when the crushers running, even cause the life of the crusher shorter. The structural design and the dynamic balance design are two critical problems of the rotor.
     In this paper, the author completed the dynamic analysis of a simplified model of the PFY2026 scrap steel crusher’s rotor and wrote out the differential equations of equilibrium about the hammer’s motion. The author carried out the angle curve and angle velocity curve of the runout of the hammer by MATLAB. With the curves, we can get a intuitionist knowledge about how the mass, barycenter position, coefficient of friction of the hammer and the power of the crusher will influence the motion of the model. The simulation can also provide reference for the design of the rotor.
     Not only because of their initial production but also the wear and tear during the operation the mass of the hammers may cause large difference. Hammers’difference of mass is the critical reason of the dynamic unbalance of the rotor. For the dynamic balance design of the rotor, it’s not simply to increase two balancing mass blocks, we have to minish the mass of the blocks to minish the mass of the whole machine. For the PFY2026 scrap steel hammer crusher, the author set up optimized math model of the dynamic balance design. The optimizing goal is getting an arrangement of the hammers and protection plates to minimize the unbalanced force. This optimized math model is an NP-hard combinatorial optimization problem.
     Ant Colony Optimization Algorithms (ACOA) is a popular combinatorial optimization algorithm in recent years. Inspired by the action of ant colonies–foraging, the Italian researchers M.Dorigo initially proposed Ant Colony Optimization Algorithms in 1991. There are a lot of researchers studied this algorithms with which they had solved several problems, such as Traveling Salesman Problems, quadratic programming, 0-1 knapsack problems, etc. Until now, researchers continuously study to improve the ACOA and the ACOA show the better and better performance.
     Because of its advantages in resolving combinatorial optimization problem, the author chose the ACOA to solve the optimized math model of the dynamic balance design of the PFY2026 scrap steel hammer crusher. The theory and development was introduced first, and then the author presented some improvement for this math model, including establishing a multi-dimensional matrix to store the pheromones released by the ants, separating the first cycle from others, altering the pseudorandom number q_0 according to the convergence. The author finally got a reasonable arrangement of the hammers and protection plates on rotor by the ACOA; the unbalanced force was reduced remarkably. That means the ACOA can be used on the arrangement of hammers of PFY2026 scrap steel hammer crusher and is of significant reference to design the dynamic balance of the rotor.
引文
[1]中国投资咨询网.2009-2012年中国废钢市场投资分析及前景预测报告[EB/OL].(2008-05-05)[2009—03—05].http2/www.ocn.ccm.cn/reports/2008505feigang.htm.
    [2]慧聪建材网.探析石材矿山机械的发展趋势[EB/OL].(2009—02—30)[2009-493-10].http://info.Bm.hc360.ccm/2009/03/30091087927-6.shtml.
    [3]闫启平.中国废钢铁行业2008年运行情况及2009年展望[J].冶金管理,2009(1):35—37.
    [4]冶金技术.废钢破碎加工技术的推广应用及发展前景[EB/OL].(2009—2—25) [2009—03—21].http://club.cqvip.com/html/36/463288.shtml.
    [5]中国设备网.出售废钢破碎机[EB/OL].(2008—11-11)[2009—03-05].http.//www.cnsb.cn/product/main.asp?info id=832143.
    [6]富宝金属网.中国废旧金属处理设备的应用现状及展望[EB/OL].(2009—02—04)[2009—03—10].http://www.fl39.com/LookThisInfo.do?info_id=7362.
    [7]全球机械网.浅谈我国塑料破碎机技术引进及发展概况[EB/OL].(2007-10—30) [2009—02—05].http://info.machine.hc360.com/2007/10/30092146047 shtml.
    [8]中国矿山机械网.我国破碎机的技术引进及发展[EB/OL].(2006-12-16) [2009-03-06].hlttp://www.cnparts. corn/news/5496. html.
    [9] S. SANDER, G. SCHUBERT. The fundamentals of the comminution of setals in shredders of the swing-hammer type[J]. International Journal of Mineral Processing, 2004, 74(1): S385-S393.
    [10] L. ABOUSSOUAN. Steel scrap fragmentation by shredders [J]. Powder Technology, 1999, 1 (105): 288-294.
    [11]汤俊平.重型废钢粉碎机在中国的市场前景[J].钢铁技术,2006(1):22—32.
    [12]宋协春,王东.废钢破碎机发展情况综述[J].中国重型装备,2009(1):41—43.
    [13]刘剑雄.基于虚拟制造技术的报废汽车回收金属破碎过程研究[D].昆明:昆明理工大学,2006.
    [14]刘美珍.基于计算机仿真技术的报废汽车回收钢板破碎机理研究[D].昆明:昆明理工大学,2005.
    [15]李海桂.报废汽车回收金属破碎机理及设备的研究[D].昆明:昆明理工大学,2008.
    [16]刘美珍,刘剑雄,刘自莲.报废汽车回收钢板破碎实验与仿真[J].机电产品开发与创新,2008,21(4):100-102.
    [17]谭青,陈欠根,张芙蓉等.锤式破碎机运转中的自动平衡现象研究[J].矿冶工程,1998,18(1):31—33.
    [18]杨益梅.锤式破碎机自动平衡现象研究[J].常德师范学院学报,2001,13(1):27-28.
    [19]冯克信.复摆鄂式破碎机平衡重的优化设计[J].昆明工学院学报,1990,15(1):56-63.
    [20]曹学民,王保良等.立式反击式破碎机主轴动平衡计算[J].矿山机械,2003(7):15-16.
    [21]王俊领.用数学幻方方法对锤式破碎机配锤[J].水泥,2005(3):61-62.
    [22]陈昌伟.粉碎机锤头排列的优化[J].燃料与化工,2003,34(2):80-82.
    [23]许荣杰,田俊.锤式破碎机配锤图表的编制与应用[J].水泥,2003(4):45-47.
    [24]何兵.刚性转子动平衡技术现状与展望[J].泸州职业技术学院学报,2007(2):59-62.
    [25]胡延瑞.转子动平衡的几个优化算法[J].重型机械科技,2003(3):22-26.
    [26]胡进,谷德桥.转子现场动平衡解的稳定性讨论[J].振动与冲击,1997,16(2):67-72.
    [27]匡胤.组合优化问题求解的计算模型研究[J].乐山师范学院学报,2006,21(12):118-119.
    [28]越民义.组合优化介绍[J].运筹学杂志,1988,7(1):36-40.
    [29]余道衡,亢玉荣.人工神经网络与组合优化[J].自然杂志,1992,14(7):507-511.
    [30]马力肖,王江晴.遗传算法在组合优化问题中的应用[J].计算机工程与科学,2005,27(7):72-7-4.
    [31]熊焰,陈欢欢等.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858.
    [32]杨维,李岐强.粒子群优化算法综述[J].科学工程,2004,6(5):87—94.
    [33]石连栓,柴山.离散变量结构优化设计序列定界组合算法研究[J].大连理工大学学报,1999,39(5):591—596.
    [34] KAKEYAH, OKABEY. Fast combinatorial optiamization with parrallel digital computer[J]. IEEETrans, Neural Networks, 2000, 11 (6): 1323-1331.
    [35] DORIGO. M, V.MANIEZZO. The ant system: Optimization by a colony of cooperatingagents [J]. IEEE Transactons on Systems, Man and Cybernetics—PartB, 1996, 26(1):29-41.
    [36] DORIGO M, V.MANIEZZO. Positive feedback as a search strategy [J]. Technical Report,1991(5): 91-96.
    [37]司马义买买提.蚁群算法在组合优化问题中的若干应用及其收敛性研究[D].上海:上海交通大学,2008.
    [38]黄翰,郝志峰.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344—1353.
    [39]杨亚南.蚁群算法参数优化及其应用[D].南京:南京理工大学,2008.
    [40] DORIGO M, GAMBARDELLA L M. Ant colony system: A cooperative learning approachto the traveling salesman problem [J]. 1997 (1): 26-28.
    [41] TSTUTZLE, H.HOOS. Improving the ant-system: A detailed report on the Max-Min antsystem [J]. Technical Report, 1996 (8): 96-112.
    [42]范红梅.蚁群算法的改进[D].秦皇岛:燕山大学,2007.
    [43] WALTER J. GUTJAHR. Generalized convergence result for the graph-based ant system meta heuristic [ J]. Probability in the Engineering and Informational Sciences, 2003, 17 (4): 99-109.
    [44] WALTER J. GUTJAHR. ACO algorithms with guaranteed convergence to the optimal solution [J]. Info. Processing Lett, 2002, 82 (3): 145-153.
    [45]李卓君.混合蚁群算法求解物流配送路径问题[J].武汉理工大学学报,2006,30(2):306—309.
    [46]赵慧怡.基于蚁群算法的排课问题的研究[D].大连:大连海事大学,2007.
    [47]刘向勇.计算机辅助选择装配的算法研究[D].长春:吉林大学,2005.
    [48]高澜庆,王文霞,马飞.破碎机的发展现状与趋势[J].冶金装备,2001,8(4):13—16.
    [49]绕绮麟,郎平振.破碎设备的类型及市场需求[J].金属矿山,2004,增刊:255—259.
    [50] SUSAN A. THORNELOE, JEUTGWEUTZ. Aplication of the US decision support tool for materials and waste management [J]. Waste Management, 2007 (27): 1006-1020.
    [51] LEONARD G.AUSTIN. A preliminary simulation model for fine grinding in high speed hammer mills [J]. Powder Technology, 2004, 143 (44): 240-252.
    [52] J.LIU, W.X.GOU, W.LIU, Z.F.YUE. Effect of hammer peenmg on fatigue life of aluminum alloy 2A12-T4 [J]. Materials and Design, 2009 (30): 1944-1949.
    [53]周恩浦.锤式破碎机锤头的动力学及锤头运动的稳定性[J].中国矿冶学院学报,1983 (1):22—29.
    [54]刘宝.锤销摩擦对锤片式粉碎机转子振动影响的研究[D].武汉:华中农业大学,2006.
    [55]谭青,张芙蓉.锤式破碎机锤头偏摆的相似性原理及应用[J].矿山机械,1999(4):30-33.
    [56]陈晓勇.破碎机锤头偏转的必要条件[J].机械研究与应用,2008,18(2):18.
    [57]陆樟献,李晓鸣,顾邦明.基于Matlab软件的双杆摆系统混沌研究[J].江西科学,2005,23(4):752-755.
    [58]任小中,陈新建,苏建新.锤式破碎机转子主要技术参数的确定[J].煤矿机械,2008,29(2):26—28.
    [59]李正峰.锤式破碎机锤头销孔碰撞反力的定量计算[J].煤矿机械,2006,27(4):185-186。
    [60] EVERT MULDER, TAKO P.R. DE JONG. Closed cycle construction: An integrated process for the separation and reuse of construction and demolition waste [J]. Waste Management, 2007(27): 1408-1415. [61 ] KUI HUANG, JIE GUO. Recycling of waste printed circuit boards: A review of current technologies and treatment status in china [J]. Journal of Hazardous Mterials, 2000(164): 399-408.
    [62]王东.基于虚拟样机的废钢破碎机性能分析[J].矿山机械,2009,37(5):79—82.
    [63]刘巧伶,李洪.理论力学[M].北京:科学出版社,2005.
    [64]刘会英.机械原理[M].北京:机械工业出版社,2003.
    [65]永登水泥厂.锤式破碎机[M].北京:中国建筑工业出版社,1976.
    [66]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2004.
    [67]王华,李有军.MATLAB电子仿真与应用教程[M].北京:国防工业出版社,2007.
    [68]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].北京:航空航天大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700