长期施肥对棕壤、黑土团聚体组成及其稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过两种不同团聚体分离方法(干筛法与湿筛法)及三种团聚体破碎方法(快速湿润、湿润振荡及慢速湿润)进行室内实验,分别在沈阳农业大学20年长期定位试验地采集的6种不同肥力水平棕壤及海伦22年长期定位实验站的4种不同肥力的黑土,对棕壤和黑土长期定位试验的不同肥力水平土样进行团聚体分级,并对这两种土壤团聚体团聚体碳、团聚体碳储量分布特征、δ~(13)C值和团聚体稳定性进行研究,通过培养实验研究不同施肥处理对团聚体保护碳及团聚体碳库变化的影响。目的是比较在长期不同施肥方式下的黑土和的棕壤团聚体的分布特征、有机碳氮含量、储量的变化。主要研究结果表明:
     1.棕壤、黑土团聚体均以0.25~1mm团聚体为主,有机—无机肥配施能有效地提高棕壤0.05~0.25mm团聚体含量,以及黑土1~2mm团聚体含量。
     2.土壤各处理团聚体有机碳储量最高的均在0.25~1mm粒级团聚体,新增加的碳主要向0.05~0.25mm团聚体富集。黑土有机—无机配施处理有机碳储量增加的最明显,新碳主要向1~2mm、0.05~0.25mm团聚体富集。
     3.无论是棕壤还是黑土,各有机、有机—无机施肥处理均显著增加了耕层土壤全氮的含量。就团聚体而言,有机—无机施肥处理显著增加了0.25~1mm粒径团聚体全氮的含量。黑土各处理C/N比均低于对照,说明总氮的积累速度大于总碳的积累速度,而棕壤与黑土正好相反。
     4.棕壤和黑土中团聚体平均当量直径,各处理均表现出快速湿润明显低于湿润振荡及慢速湿润破碎处理。3种破碎处理平均当量直径棕壤中中量有机肥处理明显大于其他处理,黑土中氮磷钾处理明显大于其他处理。根据相对糊化指数(RSI)和相对机械破碎指数(RMI),棕壤中不施肥与无机肥处理的团聚体稳定性最强,在黑土中最稳定的则是氮磷钾处理。
     5.棕壤与黑土团聚体在不同的破碎机制下均表现出快速湿润处理对团聚体结构的破坏程度最大,湿润时间对团聚体稳定性影响明显。团聚体中有机碳对快速湿润和湿润震荡下团聚体稳定性有明显提高作用。
     6.有机肥、有机—无机配施能够明显增加土壤大团聚体未保护碳和微团聚体未保护碳的含量,大团聚体对于微团聚体碳的保护有积极作用,增加土壤大团聚体的含量有利于土壤碳的保护。
This paper deals with the effects of long-term fertilization on aggregate distribution,δ~(13)C value of aggregate and aggregate stability by aggregate separation methods(wet sieving and dry sieving )and aggregate breakdown methods(fast wetting,wet stirring and slow wetting). Soils samples were collected from two long-term experiment locations in Shenyang Agricultural University and Jilin Academy of Agricultural Sciences.The fertilization treatments in the Brown earth experiment location included control(no fertilizer),chemical fertilizer(inorganic fertilizers),high manure(high-rate organic fertilizers) chemical fertilizer plus high manure(high-rate organic- inorganic fertilizers ),and the fertilization treatment in the Black soil experiment location included control(no fertilizer),chemical fertilizer(NP, NPK) and chemical fertilizer plus manure(high-rate organic- inorganic fertilizers).The effects of different fertilization treatments on aggregate-protected C and change of carbon pool were studied using incubation experiment.The objectives of the study were to compare the changes of aggregate distributions and SOC,total N content and storage between the Brown earth and the Black soil under long-term different fertilization.The main results are as follows:
     1.Aggregate size distributions in Brown earth and Black soil were all dominated by 0.25~1mm.Inorganic fertilizer plus manure application effectively enhanced micro-aggregate 0.05~0.25mm content in Brown earth and micro-aggregate 1~2mm content in Black soil.
     2.The most storage of SOC was in aggregate 0.25~1mm in all treatments..Great amounts of the new SOC were accumulated in the aggregates 0.05~0.25mm.Increase of SOC storage was the most obvious in inorganic fertilizer plus manure(organic- inorganic fertilizers) treatment of Black soil,and the new SOC was greatly accumulated in the aggregates 1~2mm and 0.05~0.25mm.
     3.Whether Brown earth or Black soil,manure and chemical fertilizer plus manure application increased total N content in soil.Chemical fertilizer plus manure application significantly increased total N content associated with 0.25~1mm aggregate.C/N in fertilizers treatments of Black soil was lower than those in no fertilizer,which indicated that the accumulation rate of total N was larger than the accumulation rate of total C in Black soil.
     4.Mean weight diameter(MWD) of aggregates in fast wetting treatment in Brown earth and Black soil was lower than that in wet stirring and slow wetting treatments.MWD of aggregates in M2 treatment of Brown earth was significantly higher than other treatments. MWD of aggregates in medium-rate organic fertilizers treatment of Black soil was significantly higher than other treatments.According to relative slaking index(RSI) and relative mechanical breakdown index(RMI) of aggregates,aggregate stability in Brown earth and Black soil was the most stable in no fertilizer,inorganic fertilizers and NPK treatment, respectively.
     5.The fast wetting caused the most severe disruption to aggregates under different wetting treatments in aggregates of Brown earth and Black soil.The wetting time had obvious effect on aggregate stability.The effect that SOC improved aggregate stability was more evidence under fast wetting and wet stirring.
     6.Manure and inorganic fertilizer plus manure application could increased the contents of unprotected macro-aggregate C and unprotected micro-aggregate C.Macro-aggregate had positive effect on microaggregate-protected C.Increasing of macro-aggregate content could contribute to protection of soil C.
引文
1.鲍士旦.2000.士壤农化分析(第三版).北京:中国农业出版社,76-79.
    2.陈恩凤,关连珠,汪景宽等.2001.土壤特征微团聚体的组成比例与肥力评价,土壤学报,38(1):49-53.
    3..陈恩凤,周礼凯,邱凤琼.1985.土壤肥力实质的研究Ⅱ.棕壤.土壤学报,22(2):113-119.
    4.陈利军,周礼凯.1999.土壤保肥供肥机理及其调节Ⅱ.棕壤型菜园土的腐殖质结合形态及其肥力学意义.应用生态学报,10(4):427-429.
    5.陈利军,张帕岚,周礼凯.1998.土壤保肥供肥机理及其调节I.棕壤型菜园上的P素保养与供应.应用生态学报,9(3):254-256.
    6.陈晓蕾,张忠泽.1999.微生物的ARDRA检测.微生物学杂志,9(4):40-43.
    7.陈欣,史奕等.2003.有机物料及无机氮对耕地黑土团聚体水稳性的影响.植物营养与肥料学报,9(3):284-287.
    8.陈庆强,沈承德,彭少麟等.2002.华南亚热带山地土壤有机质更新特征及其影响因子.生态学报,22(9):1446-1454.
    9.窦森,Lichtfouse E,Mariotti A.1995.土壤有机质的6 ~(13)C研究.见:张继宏,颜丽,窦森主编.农业持续发展的土壤培肥研究.沈阳:东北大学出版社,116-119.
    10.窦森,Lichtfouse E,MafioSi A.1995.C_3和C_4植物条件下土壤HA的水解、热解和GC2MS、δ~(13)C、δ~(15)N研究.土壤通报,26(6):271-273.
    11.窦森,张晋京,曹亚澄,等.2003.用δ~(13)C方法研究玉米秸秆分解期间土壤有机质数量动态变化.土壤学报,40(3):328-334.
    12.方华军,杨学明,张晓平等.2005.坡耕地黑土剖面有机碳的分布和δ~(13)C值研究.土壤学报.42(6):957-964.
    13.格拉西莫夫.干旱土地开发及抗荒漠化的综合途径.王广颖,潘科炎译.1991.中国环境科学出版社,北京,1-16.
    14.郭胜利,党廷辉,郝明德.2000.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J]干旱地区农业研究,(01).22-27,37.
    15.何云峰,徐建民,侯惠珍,袁可能.1998.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响.浙江农业学报,10(4):197-200.
    16.卢金伟,李占斌.2002.土壤团聚体研究进展.水土保持研究,9(1):81-85.
    17.李辉信,袁颖红等.2006.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报,43(3):422-429.
    18.李恋卿,潘根兴,张旭辉.2000.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化.土壤通报,31(5):193-195.
    19.李恋卿,潘根兴,张旭辉.2000.太湖地区几种水稻土的有机碳储存及其分布特性.科技通报,11(6):421-426.
    20.李恋卿,张旭辉,潘根兴.2000.退化土壤植被恢复中表层土壤微团聚体及其有机碳的储备变化,土壤通报.10:193-195.
    21.李志鹏.潘根兴,张旭辉.2007.改种玉米连续3年后稻田土壤有机碳分布和~(13)C自然丰度变化.土壤学报,44(2):244-251.
    22.李小刚.2000.甘肃景电灌区土壤团聚体特征研究.土壤学报,37(2):263-270.
    23.李江涛,张斌,彭新华等.2004.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响.土壤学报,41(6):912-917.
    24.李阳冰,杨霞,宋晓利等.2006.岩溶生态系统土壤非保护有机碳含量研究.农业环境科学学报,25(2):402-406.
    25.梁爱珍,张晓平,杨学明,C.F.Drury.2006.耕作方式对耕层黑土有机碳库储量的短期影响.中国农业科学,39(6):1287-1293.
    26.刘梦云,常庆瑞,齐雁冰.2006.不同土地利用方式的土壤团粒及微团粒的分形特征.中国水土保持科学,4(4):47-51.
    27.刘广深,许中坚,徐冬梅.2001.酸沉降对土壤团聚体及土壤可蚀性的影响.水土保持通报,21(4):70-74.
    28.刘连友,王建华,李小雁,刘玉璋,拓万权,彭海梅.1998.耕作土壤可蚀性颗粒的风洞模拟测定.科学通报,43(15):1663-1666.
    29.刘启明,王世杰,朴河春,等.2002.稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化.环境科学,23(3):75-78.
    30.刘启明,王世杰,朴河春,等.2002.稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律.环境科学,23(4):89-92.
    31.刘卫国,宁有丰,安芷生,等.2002.黄土高原现代土壤和古土壤有机碳同位素对植被的响应.中国科学(D辑),32(10):830-836.
    32.鲁如坤,1999.土壤农业化学分析方法.中国农业科技出版社,13-169.
    33.潘根兴,李恋卿,张旭辉.2002.土壤有机碳库与全球变化研究的若干前沿问题-兼开展中国水稻土有机碳固定研究的建议.南京农业大学学报,25(3):100-109.
    34.潘根兴.1999.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义.南京农业大学学报。22(1):51-57.
    35.彭少麟,李越林,任海,等.2002.全球变化条件下的土壤呼吸效应,地球科学进展,17(5):705-713.
    36.彭新华,张斌,赵其国.2003.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,23(10):2177-2183.
    37.彭新华,张斌,赵其国.2004.土壤有机碳库与土攘结构稳定性关系的研究进展,土壤学报,41(4):618-623.
    38.朴河春,刘启明,余登利,等.2001.用天然~(13)C丰度法评估贵州茂兰喀斯特森林区玉米地土壤中有机碳的来源.生态学报,21(3):434-439.
    39.朴河春,余登利,刘启明,等.2000.林地变为玉米地后土壤轻质部分有机碳的~(13)C/~(12)C比值的变化.土 壤与环境,9(3):218-222.
    40.任顺荣,邵玉翠等.2006.不同施肥处理对土壤团聚体和硝态氮含量的影响.天津农业科学,12(2):50-52.
    41.沈承德,易惟熙,孙彦敏,等.2000.鼎湖山森林土壤~(14)C表观年龄及δ~(13)C分布特征.第四纪研究,20(4):335-344.
    42.史奕,陈欣,沈善敏.2002.土壤团聚体的稳定机制及人类活动的影响.应用生态学报,13(11):1491-1494.
    43.史奕,陈欣,沈善敏.2002.有机胶结形成土壤团聚体的机理及理论模型.应用生态学报,13(11):1495-1498.
    44.史奕,张璐,陈欣等.2005.不同经营方式对黑土水稳性团聚体组成及微粒有机质积累分布的影响.中国生态农业学报.13(2):122-124.
    45.史奕,张璐,闻大中.2005.东北黑土团聚体水稳定性研究进展.中国生态农业学报.13(4):95-98.
    46.隋跃宇,张兴义,焦晓光等.2005.长期不同施肥制度对农田黑土有机质和氮素的影响.水土保持学报.19(6):190-192,200.
    47.孙天聪,李世清,邵明安.2005.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学,38(9):1841-1848.
    48.吴建国,张小全,王彦辉,徐德应.2002.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学.38(4):19-29.
    49.吴承祯,洪伟.1999.不同经营模式土壤团粒结构的分开特征研究.土壤学报,36(2):162-167.
    50.王维敏主编.1994.中国北方早地农业技术.中国农业出版社,北京.
    51.王琳,欧阳华,周才平.2004.贡嘎山东坡土壤有机质及氮素分布特征[J],地理学报,59(6):1012-1019.
    52.王清奎,汪思龙.2005.土壤团聚体形成与稳定机制及影响因素.土壤通报,36(3):415-421.
    53.王晶,张旭东,解宏图等.2003.现代土壤有机质研究中新的量化指标概述应用生态学报。14(10):1809-1812.
    54,魏朝富,高明,谢得体.1995.有机肥对紫色水稻土水稳性团聚体的影响.土壤通报,26(3):114-116.
    55.文倩,赵小蓉等.2004.半干旱地区不同土壤团聚体中微生物量碳的分布特征.中国农业科学.37(10):1504-1509.
    56.文倩,赵小蓉等.2005.半干旱地区不同土壤团聚体中微生物量氮的分布特征.中国农业科学,38(1):91-95.
    57.徐尚平,陶澎,曹军.2001.内蒙古十壤pH值、粘粒和有机质含量的空间结构特征.土壤通报,32(4):145-148.
    58.徐阳春,沈其荣.2000.长期施用不同有机肥对土壤各粒级复合体中C,N,P含量与分配的影响.中国农业科学,33(5):1-7.
    59.徐阳春,沈其荣,茆泽圣.2003.长期施用有机物料对土壤及不同粒级中有机磷含量与分配的影响土壤学报,40(4):593-598.
    60.徐阳春,沈其荣.2000.长期施用不同有机肥料对土壤各粒级复合体中C.N,P含量与分配的影响.中国农业科学,33(5):65-71.
    61.熊毅.1975.土壤农化参考资料,1:1-15.
    62.袁颖红,李辉信等.2004.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响.生态学报,24(12):2961-2966.
    63.姚贤良,许绣云,于德芬.1990.不同利用方式下红壤结构的形成.土壤学报,27(1):25-33.
    64.尹瑞龄,束中立,乔凤珍.1983.中国土壤学会第五次代表大会暨学术年会论文集(下册):63-64.
    65.章明奎,何振立.1997.成土母质对土壤微团聚体形成的影响.热带亚热带土壤科学.6(3):198-202.
    66.张旭辉,李恋卿,潘根兴.2001.不同轮作制度对淮北自浆土团聚体及其有机碳的积累与分布的影响,生态学杂志,20(2):16-19.
    67.张俊清,朱平,张夫道.2004.有机肥和化肥配施对黑土有机氮形态组成及分布的影响.植物营养与肥料学报.10(3):245-249.
    68.周礼凯,严昶升,武冠云等.1986.土壤肥力实质的研究Ⅲ.土壤学报,23(3):193-203.
    69.赵世伟,苏静,杨永辉,刘娜娜.2005.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响.水土保持研究,12(3):27-28,69.
    70.赵京考,刘作新,韩永俊.2003.土壤团聚体的形成与分散及其在农业生产上的应用.水土保持学报,17(6):163-166.
    71.章明奎,1997.利用方式对红壤水稳性团聚体形成的影响.土壤学报,34(4):359-366.
    72.郑乐平.1999.黔中岩溶地区土壤CO_2的稳定碳同位素组成研究.中国科学(D辑),29(6):514-519.
    73.Aceves,M.B.,Grace,C.,Anderson,J.,Dendooven,L.,Brookes,P.C.1999.Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip.Soil Biology&Biochemistry,31:867-876.
    74.Acton,C.J.,Rennie,D.A.,Paul,E.A.1963.The relationship of polysaccharides to soil aggregation Canada Journal of Soil Science,43:201-209.
    Adu,J.k.,Lades,J.M.1978.Utilization of organic materials in soil aggregation by bacteria and fungi.Soil Biology & Biochemistry,10:117-122.
    75.Andersen,T-H.,Joergensen,R.G.1997.Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at diferent pH.Soil Biology & Biochemistry,29(7):1033-1042.
    76.Anderson,J.P.E.,Domsch K.H.1973.Quantification of bacterial and fungal contribution to soil respiration.Archieves of Microbiolology,93:113-127
    77.Anderson,J.P.E.,Domsch,K.H.1975.Measurement of bacterial and fungal contribution to respiration of selected agricultural and forest soils.Canadian Joumal Microbiology,21:314-332.
    Anderson,J.P.E.,Doms K.H.1978b.Mineralization of bacteria and fungi in chloroform-fumigated soils.Soil Biology & Biochemistry,10:207-213.
    78.Anderson,J.P.E.,Domsch,K.H.1978a.A physiological method for the quantitative measurement of microbial biomass in soils.Soil Biology & Biochemstry, 10: 215-221.
    79.Anderson, T.H., Domsch, K.H.1993.The metabolic quotient for CO_2 (qCO_2) as a pH, on the microbial biomass of forest soils.Soil Biology & Biochemistry, 25: 393-395.
    80.Angers, D.A., Giroux, M.1996.Recently deposited organic mater in soil water-stable aggregates.Soil Science Society of America Journal, 60: 1547-1551.
    81.Approach, A.Q.1996.Functional diversity of microbial communities: a quantitative approach.Soil Biology & Biochemistry, 26(9): 1101 — 1108.
    82.Arduino, E., Barberis E., Boem, V.1989.Iron oxides and particle aggregation in B horizons of some soil.Geoderma,45:319-329.
    83.Bailey, V .L., Peakcock, A.D., Smith, J.L.,Bolton, H.2002.Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis.Soil Biology & Biochemistry, 34: 1385-1389.
    84.Baldock, J.A., Oades, J.M., Waters, A.G., Peng, X., Vassallo, A.M., and Wilson, M.A., 1992.Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy.Biogeochemistry, 15: 1-42.
    85.Balesdent J , Mariotti A , Guillet B.1987 .Natural 13C abundance as a tracer for studies of soil organic matter dynamics.Soil Biology and Biochemistry, 19 : 25-30
    86.Balesdent J , Wagner GH , Mariotti A.1988.Soil organic mattre turnover in long-termfield experiments as revealed by carbon natural abundance.Soil Science Society of American Journal, 52 :118-124
    87.Balesdent J, Balabane M.1996 .Major contribution of roots to soil carbon storage inferred from maize cultivated soils.Soil Biology and Biochemistry, 28 : 1261-1263
    88.Ballentine D C , Macko S A , Turekian V C.1996.Chemical and isotopic characterization of aerosols collected during sugar cane burning in South Africa.In : Joel Levine eds.Biomass Burning and Global Change, Vollume I.Cambridge, MA : MIT Press, 460-465
    89.Ballentine D C , Macko S A , Turekian V C.1998.Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C_4 and C_3plants : implications for biomass burning.Chemical Geology, 152: 151-161
    90.Balesdent J , Girardin C , Mariotti A.1993.Site related 6 ~(13)C of tree leaves and soil organic matter in a temperate forest.Ecology , 74 :1713-1721
    91.Bartoli, F., Burtin, G., and Guerif, J., 1992.1nfluence of organic mater on aggregation in Oxisols rich in gibbsite or in goethite.Ⅱ.Clay dispersion, aggregate strength and water-stability.Geoderma.54:259-274.
    92.Bayer, C, Martin-Neto, L., Mielniczuk, J., Pillon, C.N., and Sangoi, L., 2001.Changes in soil organic mater fractions under subtripical no-till cropping systems.Soil Science Society of America Journal, 65:1473-1478.
    93.Barea, J.M.1991.Vesicular-arbuscular myccorrhizae as modify of soil fertility.Advance Soil Science,15: 1-10.
    94.Batey, T.1974.Soil structure: its effect on crop yield.In: Forage on the arable farm.Occasional Symposium No.7, British Grassland Society, pp: 5-11.
    95.BearM H,CabreraM L.HendrlxP Fet.1994.Aggregate—protected and unprotected organic matter pools in conventional and notillage soil[J].Soil Science Society of American Journal.58:787-795.
    96.Bending, GD., Timer, M.K., Jones, J.E.2002.Interactions between crop residue and soil organic mater quality and the functional diversity of soil microbial communities.Soil Biology & Biochemistry, 34:1073-1082.
    97.Bernoux M, Cerri C C , Neill C.1998.The use of stable carbon isotopes for estimating soil organic matter turnover rates.Geoderma, 82:43-58
    98.Blanco-Canqui H, Lai R.2004.Mechanism of C sequestration in soil aggregates.Critical Review in Plant Science, 23(6):481-504.
    99.Bossio, D.A., Scow, K.M., Gunapala, N., Graham, K.J.1998.Determinants of soil microbial com unities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles.Microbioal, Ecology, 36:1-12.
    100.Boutton TW, Yamasaki S 1.1996.Mass Spectrometry of Soils.New York :Marcel Dekker, 47-81
    101.Bowan, R.A., Cole, C.V 1978.An exploratory method for fractionation of organic phosphorus from grassland soils.Soil Science, 125: 95-101
    102.Boutton T W, Archer S R , Midwood AJ .1998.δ ~(13)C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem.Geoderma, 82 : 5-41
    103.Briones MJ I, Ineson P, Sleep D.1999.Use of delta 13C to determinefood selection in collembolan species.Soil Biology and Biochemistry ,31:937-940
    104.Bruneau P M C, Ostle N, Davidson D A, et al.2002.Determination of rhizosphere ~(13)Cpulse signals in soil thin sections by laser ablation isotope ratio mass spectrometry.Rapid Communications in Mass Spectrometry , 16 : 2190-2194
    105.Brookes, P.C, Andrea, L., Pruden, G, Jenkinsion, D.S.1985.Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil.Soil Biology & Biochemistry, 12,6: 837-842.
    106.Bruce J P, Frome M, Haites E, et al.1999.Carbon sequestration in soils [J].Soil Water conservation, 54:382-389.
    107.Burch, GJ., Marson, I.B., Fischer, R.A., Moore, I.D.1986.TilIage effects on soils: Physical and hydraulic response direct drilling at Lockhart, N.S.W.Australia Journal of Soil Research, 24: 377-391.
    108.Buyanovsky, GA, Aslam, M., Wanger, C.H.1994.Carbon turnover in soil physical fraction.Soil Science Society of America Journal, 58:1167-1173.
    109.Buyer, J.S., Drinkwater, L.E.I 997 .Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities.Journal of Microbiological Methods, 30: 3-11.
    110.Capriel, P., Beck, T and Harter, P., 1990.Relationship between soil aliphatic fraction extracted with supercritical hexane, soil microbial biomass and soil aggregate stability.Soil Science Society of America Journal, 54: 415-420.
    111.Capriel, P., Beck, T., Borchert, H., Grohnolz, J.,and Zachmann, G., 1995.Hydrophobicity of the organic mater in arable soils.Soil Biology & Biochemistry, 27: 1453-1458.
    112.Capriel, P., 1997.Hydrophobicity of organic mater in arable soils: influence of management European Journal of Soil Science, 48: 457-462.
    113.Cambardella, C.A., Elliott, E.T.1993.Carbon and nitrogen distribution in aggregates from cultivation and native grassland soils.Soil Science Society of America Journal, 57: 1071-1076.
    114.Caron, J.,Espindola, C .R., and Angers, D.A, 1996.Soil structural stability during rapid wetting:Influence of land use on some aggregate peoperties.Soil Science Society of America Journal,60: 901-908.
    115.Carter, M.R., 1996.Analysis of soil organic matter storage in agroecosystems.Structure and Or ganic Mater Storage in Agricultural Soils In: Advances in Soil Science.CRC Press, Lewis, 3-11pp.
    116.Cater, MR., 1992.Influence of reduced tillage systems on organic matter, microbial biomass, macro-aggregate distribution and structural stability of the surface soil in a humid climate.Soil & Tillage Research, 23:361-372.
    117.Chan, K.Y., Heenan, D.P.1999.Microbial-induced soil aggregate stability under diferent crop rotations.Biology and Fertility of Soils.30(1-2): 29-32.
    118.Chan, K.Y., 2001.Soil particulate organic matter under different land use and management Soil Use and Management, 17:217-221.
    119.Chan, K.Y., Heenan, D.P.and Oates, A., 2002.Soil carbon fractions and relationship to soil quality under different tillage and stubble management.Soil & Tillage Research, 63:133-139.
    120.Chander, K., Brookes, P.S.1991.Is the dehydrogenas assay invalid as a method to estimate microbial activity in Cu-contaminated and non-contaminated soils? Soil Biology& Biochemistry, 87,23:901-915.
    121.Chantigny, M.H., Angers, D.A., Prevost, D., Vezina, L.P., and Chalifour, F.P.1997.Soil aggregation and fungal and bacterial biomass under annual and perennial copping systems.Soil Science Society of America Journal, 61:262-267.
    122.Chantigny, M.H., 2003.Dissolved and water-extractable organic mater in soils: a review on the influence of land use and management practices.Geodenrta, 113: 357-38.
    123.Chefetz B, Tarchitzkyy J, Deshmukh A P, et al.2002.Structural characterization of soil organic matter and humic acids in particle-size fraction of an agricultural soil[J]..Soil Science Society of American Journal, 66:129-141.
    124.Christensen, B.T., 2001.Physical fractionation of soil and structural and functional complexity in organic matter turnover.European Journal of Soil Science, 52 :345-353.
    125.Cheng, W., Virginia, R.A.1993.Measurement of microbial biomass in arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures.Soil Biology&Biochemistry, 25: 135-141.
    126.Christensen, B.1986.T Straw incorporation and soil organic matter in macro-aggregations and particle size separates.Journal of Soil Science, 37: 125-135.
    127.Ciardi, C, Ceccanti, B., Nannipieri, P., Casella, S., Tofanin, A.1993.Effect of various treatments on contents of adenine nucleotides and RNA of Mediterranean soils.Soil Science Society of America Journal, 25: 735-746.
    128.Clay, K., et al.,1999.Fungal endophyte symbiosis and plant diversity in successional fields.Science, 285 (5434);1742-1744.
    129.Collins, H.P., Rasmussen, P.E.1992.Crop rotation and residue management effects on soil carbon and microbial dynamics.Soil Science Society ofAmerica Journal, 56: 783-788.
    130.COMarquez, VJGarcia, CACambardella, R C Schultz, T M Isenhart.2004.Aggregate-Size Stability Distribution and Soil Stability.Soil Science Society of America Journal, 68 (3) :725-735.
    131.Conklin, A.R., MacGregor, A.N.1972.Soil adenosine triphosphate: exatration, recovery and half-life.Bulletin of Environmental Contamination and Toxicology, 72: 296-300.
    132.Connin S L, Feng X, Virginia R A.2001 .Isotopic discrimination during long-term decomposition in an arid land ecosystem.Soil Biology and Biochemistry ,33 : 41-51
    133.Davis, WM., White, D.C.1980.Fluorometric determination of adenosine nucleotide derivatives as measure of the microfouling, detrital and sedimentary microbial biomass and physiological status.Applied Environment Microbiology, 40: 539-548.
    134.Crossman ZM , McNamara N , Parekh N , et al .2001.A new method for identifying the origins of simple and complex hopanoids in sedimentary materials using stable isotope labeling with ~(13)CH_4 and compound specific stable isotope analyses.Organic Geochemistry , 32 :359-364
    135.Dalal.R, C, Chan, K .Y., 2001.Soil organic matter in rainfield cropping systems of the Australian cereal belt.Australian Journal of Soil Research, 39:435-464.
    136.Desjardins,T.,F.Andreux,B.Volkoff, and C.C.Cerri.1994,Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia.Geoderma, 61:103-118.s
    137.Doane T A, Devevre O C , Horwath W R.2003.Short-term soil carbon dynamics of humic fractions in low2input and organic cropping systems.Geoderma, 114:319-331
    138.Dorioz, J.M., Robert, M., Chenu, C.1993.The role of roots, fungi and bacteria on clay particle organization.An experimental approach.Geodemma, 56:179-194.
    139.Drazzkiewicz, M.1994.Distribution of microorganisms in soil aggregates: effect of aggregate size.Folia Microbiologica, 39(4): 276-282.
    140.Drobnik, J.Primary oxidation of organic mater in the soil.1.The form of respiration curves with glucose as the substrate.Plant & Soil, 1960, 7: 199-211.
    141.Duxbury J M.The significance of agricultural sources of greenhouse gases[J].Fertilizer Research, 1994,38:151-163.
    142.Elliot, E.T.1986.Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils.Soil Science Society of America Journal, 50: 627-633.
    143.Elliot, E.T, Palm, C.A., Reuss, D.E., Monz, C.A.1991.Organic mater contained in soil aggregation from a tropical chronosequence: correction for sand and light fraction.Agriculture, Ecosystems and Environment, 34: 443-451.
    144.Ehleringer J R , Buchmann N , Flanagan L B.2000.Carbon isotope rations in below ground carbon cycle processes.Ecological Applications , 10 : 412-422
    145.Emerson, W.W., Foster, RC, Oades, J.M.Organc-mineral complexes in relation to soil aggregation and structure.1986.In: Interactions of Soil Mineral with Natural Organic and Microbes.Soil Science Society of Austria, Spec.Publ.No.17, pp: 521-548.
    146.Franzluebbers, A.J., Arshad, M.1997.Soil microbial and mineralizable C of water-stable aggregates.Soil Science Society of America Journal, 61: 1090-1097.
    147.Fernandes E C M, Motavalli P P , Castilla C.1997.Management control of soil organic matter dynamics in tropical land2use systems.Geoderma, 79 : 49-67
    148.Fitter A H , Graves J D , Watkins N K , et al .1998.Carbon transfer between plants and its control in networks of arbuscular mycorrhizas.Functional Ecology, 12 : 406-412
    149.Friedel, J.K., Munch, J.C., Fischer, W.R.1996.Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation.Soil Biology & Biochemistry, 28(4/5): 479-488.
    150.Friedel, J.K., Scheller, E.2002.Composotion of hydrilysable amino acids in soil organic mater and soil microbial biomass.Soil Biology & Biochemistry, 34: 315-325.
    151.Frostegdrd, A., Tunlid, A., Bddth, E.1996.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.Biology and Fertility of Soils.22, 59-65.
    152.Garcia, C, Hernandez, T., Roldan, A., Martin, A.2002.Effect of plant cover decline on chemical and micrbobiological parameters under Mediterranean climate.Soil Biology&Biochemistry, 34:635-642.
    153.Gerzabek MH, Pichlmayer F, Kirchmann H, et al.The response of soil organic matter to manure amendments in a long - term experiment in Ultima, Sweden [J].European Journal Soil Science, 1997, 48:273- 282.
    154.Gerzabek MH, Haberhauer G, Kirchmann H.Soil organic matter pools and carbon- 13 natural abundances in particle- size fractions of a longterm agricultural field experiment receiving organic amendments [J].Soil Science Society American Journal, 2001, 65: 352- 358.
    155.Golchin, A., Baldock, J.A., Oades, J.A.A model linking organic matter decomposition, chemistry, and aggregate dynamics, In R.Lai, et al.(ed.) 1998.Soil process and the Carbon Cycle, Lewis Publ.,CRC Press, Roca Raton, FL.pp: 245-266.
    156.Golchin A, Oades J M, Skjemstad J O.1995 .Structural and dynamic properties of soil organic matter as reflected by ~(13)C natural abundance ,pyrolysis mass spectrometry and solid state~(13)C NMR spectroscopy in density fractions of an Oxisol under forest and pasture.AustralianJoumal of Soil Science, 33 :59-76
    157.Golchin, A., Oades, J.M., Skjernstd, J.O., and Clsrke, P, 1994b.Study of free and occluded particulate organic matter in soils by solid state C CP/MAS NMR Spectroscopy and Scanning Electron Microscopy.Australian Journal of Soil Research, 32 :285-309.
    158.Goni M A , Eglinton T I.1996.Stable carbon isotopic analyses of ligninderived CuO oxidation products by isotope ratio monitoring2gas chromatography2mass spectrometry ( IRM2GC2MS) .Organic Geochemistry , 24:601-615
    159.Gregorich,E.G, B.H.Elliert, and CM.Monreal.1994.Turnover of soil organic matter and storage of corn residue carbon estimated from natural ~(13)C abundance.CanJ.Soil Sci, 75.161-167.
    160.Guggenberger, G., Ellion, E.T., Fray, S.D., Six, J., 1999.Paustian, K.Microbial contributions to the aggregation of a cultivated grassland soil amended with starch.Soil biology & Biochemistry.31: 407-419.
    161.Guggenberger, G.1999.Microbial contributions to the aggregation of a cultivated grassland soil amended with starch.Soil Biology & Biochemistry, 31:407-419.
    162.Gupa, V V S.R., Gemvda, J.J.1988.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation.Soil Biology&Biochemistry, 20:777-786.
    163.Hallett, P.D., and Young, I.M., 1999.Changes to water repellence of soil aggregates caused by substrate-induced microbial activity.European Journal of Soil Science, 50: 35-40.
    164.Hallett, P.D., Ritz, K., and Wheatley, R.E.2001.Microbial derived water repellency in golf course soil.International Turfgmss Society, 9:518-524.
    165.Hallett, P.D., Baumgartl, T., and Young, I.M., 2001.Subcritical water repellency of aggregates from a range of soil management practices.Soil Science Society of America Journal, 65:184-190.
    166.Harper, R.J., McKissock, L, Gilkes, R.J., Carter, D.J., and Blackwell, P.S., 2000.A multivariate framework for interpreting the efects of soil properties, soil management and landuse on water repellency.Journal of Hydrology, 231-232: 371-383.
    167.Hassink, J ., 1994.Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation.Soil Biology& Biochemistry, 26:1221-1231.
    168.Haynes, R.J., Beare, M.H.1997.1nfluence of six crop species on aggregate stability and some labile organic mater fractions.Soil Biology & Biochemistry, 29(11-12): 1647-1653.
    169.Heleen Bossuyt; Johan Six; Paul F Hendrix., 2002.Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue.
    170.Insam, H., Donisch, K.H.1988.Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites.Microbial Ecology, 15: 177-188.
    171.Hassink J.1996.Preservation of plant residues in soils differing in unsaturated protective capacity.Soil Science Society of America Journal.60:487-491.
    172.Horn, R., 1990.Aggregate characterization as compared to soil bulk properties Soil&Tillage Research.17:265-289.
    173.Home, D.J., and Mcintosh, J.C.,2000.Hydrophobic compounds in sands in New Zealand-extraction,characterisation and proposed mechanisms for repellency expression.Journal of Hydrology, 231-232:35-46.
    174.Hsieh Y P.1992.Pool size and mean age of stable organic carbon in cropland.Soil Science Society of American Journal, 56 :460-464
    175.Jastrow, J.D.1996.Soil aggregates formation and the accrual of particulate and mineral-associated organic mater.Soil Biology & Biochemistry, 28(4-5): 665-676.
    176.Jastrow J D.1996.Soil aggregate formation and the accrual of particulate and mineral associated organic matter[J].Soil Sciences Society American Journal, 60:801-807.
    177.Kabir, Z., Koide, R.T.2000.The effect of dandelion or a cover crop on mycorrhiza inoculums potential, soil aggregation and yield of maize.Agricultural Ecosystem Environment, 78: 167-174.
    178.Kay, B.D., 1998.Soil structure and organic carbon: a review.In: Lai, R., Kimble, J.M., Follett, R.F,Stewart ,B .A.( Eds.),Soil Processes and the Carbon Cycle.CRC Press, Boca Raton, F L.169 -197.
    179.Kalbitz, K., Solinger, S., Park, J.H.Michalzik, B., and Matzner, E.,2000.Controls on the dynamics of dissolved mater in soils: A Review.Soil Science, 165 (4): 277-304.
    180.Kalbitz, K., 2001.Properties of organic mater in soil solution in a German fen area as dependent on land use and depth.Geoderma, 104: 203-214.
    181.Kilbertus, G.1980.Etude des microhabitats contenus daps les aggregates du sot: leur relation avec la biomass bacterienne et lataille des prokaryotes presents.Rev.Ecol.Biol.Sol.17: 573-558.
    182.Le Bissonnais,Y, 1996.Aggregate stability and assessment of soil crustability and credibility: I.Theory and methodology.European Journal of Soil Science, 47: 425-437.
    183.Le Bissonnais, Y., and Arrouays, D., 1997.Aggregate stability and assessment of soil crustability and erodibility: ll.Application to humic loamy soils with various organic carbon European Journal of Soil Science, 48: 39-48.
    184.Leinweber, B., Schulten, H.R., Korschens, M., 1995.Hot water extracted organic mater: chemical compostion and temporal variations in a long-term field experiment.Biology and Fertilized Soils,20:17-23.
    185.Lynch, J.M., Bragg, E.1985.Microorganisms and soil aggregate stability.Soil Science Society of America Journal, 2: 133-171.
    186.Martens, D.A.,2000,Plant residue biochemistry regulates soil carbon cycling and carbon sequentration.Soil Biology& Biochemistry, 32 (3):361-369.s
    187 .Maysoon M Mikha,Charles W Rice.2004.Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen.Soil Science Society of America Journal, 68(3):809-816.
    188.Mendex, I.C.1999.Microbial biomass and activities in soil aggregates affected by winter cover crops Soil Science Society of America Journal.63(4): 873-881.V
    189.Oades, J.M., and Waters, A.G., 1988.The retention of organic mater in soils.Biogeochemistry, 5:35-70.
    190.Oades, J.M..and Waters, A.G., 1991 .Aggregate hierarchy in soils.Australian Journal of Soil Research, 29:815-828.
    191.Puget, P., Chenu, C, Balesdent J.1995.Total young organic matter distributions in aggregate of silly cultivated soils.European Soil Science, 46: 449-459.
    192.Puget P , Lal R , Izaurralde C , et al .2005.Stock and distribution of total and cornderived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices.Soil Sci., 170 (4) :256-279.
    193.Puget P, Chenu C , Balesdent J.2000.Dynamics of soil organic matter associated with particle2size fractions of water2stable aggregates.European Journal of Soil Science , 51 :595-605.
    194.Rochette P , Flanagan L B , Gregorich E G 1999.Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon213.Soil Science Society of American Journal, 63: 1207-1213
    195.Roscoe, R., Buurman, P, Velthors,t E.J.2000.Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic mater of a clay Latosol: carbon, nitrogen and delta C-13 distribution in particle-size fractions.European Journal of Journal of Soil Science, 51:445-054.
    196.Roscoe R, Buurman P, Velthorst E J .2001.Soil organic matter dynamics in density and particle size fractions as revealed by the ~(13)C/~ (12)C isotopic ration in a Cerrado' soxisol.Geoderma, 104 :185-202
    197.Roscoe R , Buurman P.2003.Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol.Soil and Tillage Research, 70 :107-119
    198.Schulten, H.R, Leinweber, P., 2000,New insights into organic-mineral particles: composition,properties and models of molecular structure.Biology and Fertility of Soils, 30:399-432.
    199.Schwartz D , Mariotti A , Lanfranchi R.1986 .~(13)C/12C Ratios of soil organic matter as indicators of vegetation changes in the congo.Geoderma, 39 :97-103
    200.Six, J., Elliot, E.T., Paustian, K.2000a.SoiI macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture.Soil Biology & Biochemistry, 32: 2099-2103.
    201.Six, J., Elliot, E.T., Paustian, K.1999.Aggregate and soil organic mater dynamics under conventional and no-tillage systems.Soil Science Society of America Journal, 63: 1350-1358.
    202.Six, J., EllioMK.Combrink, EX.2000.Soil structure and soil organic mater: I.Distribution of aggregate associated carbon.Soil Research Society of America Journal, 64: 681-689.
    203.Six, J., Elliot, E.T, and Paustian, K., 2000.Soil structure and Soil organic mater: Ⅱ.A normalized stability index and the effect of mineralogy.Soil Science Society of America Journal, 64: 1042-1049.
    204.Six, J., Elliot, E.T., Paustian, K.and Doran, J.W., 1998.Aggregation and soil organic mater accumulation in cultivated and native grassland soils.Soil Science Society of America Journal, 62:1367-1377.
    205.Skinner, F.A.1979.Rothamsted studies of soil structure.Ⅶ.The effects of incubation on soil aggregate stability.J.soil Science, 30: 473-481.
    206.Smolander, A, and Kitunen, V., 2002.Soil microbial activities and characteristics of dissolved organicC and N in relation to tree species.Soil Biology & Biochemistry, 34: 651-660.
    207.Stemmer M, Gerzabek M H , Kandeler E.1998.Organic matter and enzyme activity in particle2size fractions of soils obtained after low-energy sonication.Soil Biol.Biochem., 30 : 9-17.
    208.Strichland, T.C., and Sollins, P., 1987.Improved method for separating light- and heavy- fraction organic mater from soil.Soil Science Society of America Journal, 51: 1390-1393.
    209.Strobel, B.W., Bemhoft, I., Borggaard, O.K., 1999.Low-molecular-weight aliphatic carboxylic acids in soil solutions under different vegetations electrophoresis.Plant and Soil, 212: 115-121
    210.Tarafdar, J.C., Claassen, N.1988.0rganic phosphorus compounds as a phosphorus source for higher plants roots through the activity of phosphatases produced by plant roots and microorganisms.Biology and Fertility of Soils, 5:308-312.
    211.Tisdall, J.M.1994.Possible role of soil microorganisms in aggregation in soils.Plant and Soil, 159:115-121.
    212.Tisdall, J.M.1994.Possible role of soil microorganisms in aggregation in soils.Plant Soil,117:145-153.
    213.Tunlid, A., et al.1989.Characterization of bacteria that suppress Rhizoctonia damping-of in bark compost media by analysis of fatty acid biomarkers.Applied Environment Microbiology.55: 1368-1374.
    214 .Vahjen, W., Munch, J.C., Tebble, C.C.1995.Carbon source utilization of soil extracted microorganisms as a tool to detect the effects of soil supplemented with genetically-engineered and non-engineered Coryne bacterium glutamicum and a recombinant peptide at the community level.FEMS Microbiology Ecology, 18: 317-328.
    215.van Gestel, M., Ladd, J.N., and Amato, M., 1991.Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: Influence of sequential fumigation, drying and storage.Soil Biology & Biochemistry, 23: 313-322.
    216.van Gestel, M., Merckx, R., and Vlassak, K., 1993.Microbial biomass responses to soil drying and reweting: the fate of fast- and slow-growing microorganisms in soils from different climates.Soil Biology & Biochemistry, 25: 109-123.
    217.Vogel J C.1980.Fractionation of the Carbon Isotopes during Photosynthesis.New York: Springer- Verlag, 29
    218.Wallis, M.G., and Home, D.J., 1992.Soil water repellency Advances in Soil Science: 92-146.
    219.Wardle, D.A., Yeates, GW.Watson, R.N., Nicholson, K.S.1993.Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus ecosystems.Soil Biology & Biochemistry, 25: 857-868.
    220.Wanek W , Heintel S , Richter A.2001.Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis.Rapid Communications in Mass Spectrometry ,15:1136-1140
    221.Waters, A.G., and Oades, J.M., 1991.Organic mater in water-stable aggregates.Advances in Soil Organic Mater Research, 163-174.
    222.Wats, C.W., Whalley, W.R., Longstaf, D.J., White, R.P., Brooke, P.C., and Whitmore, A.P., 2001.Aggregation of a soil with diferent cropping histories following the addition of organic materials.Soil Use and Management, 17: 263-268.
    223.Wedin D A, Tieszen L L , Dewey B.1995.Carbon isotope dynamics during grass decomposition and soil organic matter formation.Ecology, 76 : 1383-1392
    224.West A G, Midgley J J , Bond WJ .2001.The evaluation of 5 ~(13)C isotopes of trees to determine past regeneration environments.Forest Ecology and Management, 147 :139-149
    225.Winsome, T., McColl, J.G.1998.Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer eisen(megascolecidae).Soil Biology &Biochemistry, 30(13): 1677-1687.
    226.White, I., and Sully, M., 1987.Macroscopic and microscopic capillary length and time scales from field infiltration.Water Resources Research, 23: 1514-1522
    227.Yano, Y., McDowell, W.H., and Aber, J.D., 2000.Biodegradable dissolved organic carbon in forest soil solutions and efects of chronic nitrogen deposition.Soil Biology&Biochemistry, 32:1743-1751.
    228.You, S.J., Yin,Y, and Allen, ME., 1999.Partitioning of organic matter in soils: Effects of pH and water/soil ratio.The Science of the Total Environment, 227: 155-160.
    229.Zhang, B., and Horn, R., 2001.Mechanisms of aggregates stabilization in Ultisols from substropical China.Geoderma, 99: 123-145.
    230.Zsolnay, A., 1996.Dissolved humus in soil waters.In: Piccolo, A (Ed.), Humic Substances in Terrestrial Ecosystems.Elsevier Science, Amsterdam, 171-224 pp.
    231.Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, P., 1999.Diferentiating withfluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying Chemosphere, 38: 45-50.
    232.Zsolnzy, A., and Gorlitz, H., 1994.Water extractable organic matter in arable soils: effects of drought and long-term fertilization.Soil Biology&Biochemistry, 26: 1257-1261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700