风浪破碎的随机性、非线性和能量耗散特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风浪破碎是海气间动量、能量传输和物质交换的重要渠道,在海气相互作用中扮演着主要角色;破碎产生的湍对海洋上混合层各种物理过程有着显著影响;风浪破碎也是维持波浪场能量平衡、限制波高的主要机制。深入研究风浪破碎,对海洋科学研究有重要的意义。
     风浪破碎是一种具有高度非线性和强间歇性的复杂物理过程,破碎发生的时间、地点、方式、强度都是随机的。这种非线性、间歇性和随机性成为风浪破碎理论研究的主要障碍。由于缺乏恰当的数学工具,人们对此认识模糊。
     随机点过程是描述具有间歇性、阵发性随机现象的有力工具。本文将随机点过程的理论方法引入风浪破碎研究,提出了描述风浪破碎随机性的点过程模型,给出了破碎概率、破碎耗散的严格数学表示。对实验室风浪实验数据的分析表明,点过程理论是研究风浪破碎随机性的有效工具。这为人们深入理解风浪破碎找到了一条新途径。
     随机过程的二阶谱能有效地度量过程中的非线性程度,而风浪破碎具有显著的非线性特征。本文研究了破碎风浪的二阶谱、二阶相干谱特征,考查了二阶谱实部、虚部特征量随破碎程度的变化。数据分析结果表明:二阶谱实部最大值、实部积分以及偏度等特征量都随破碎程度的增强而显著增大,能敏感地反映破碎程度的变化,可以用于度量风浪破碎程度;而虚部最大值、积分以及由此定义的水平不对称性等特征量在不同破碎程度下差异并不明显;二阶相干谱中显著部分所占的比例随破碎程度的增强不断增大,提示波波相互作用的范围不断扩大,强度不断增强。
     破碎导致的能量耗散是海浪研究的一个热点,也是一个难点。本文借鉴Young和Babanin (2006)的思路,将波面信号划分为破碎段与非破碎段,二者平均谱的差异归因为破碎的影响,由此估计破碎能量耗散。本文也借鉴了Yefimov和Khristoforov (1971a)的思路,利用实测速度谱与波生速度谱的差估计耗散。分析结果表明:前一种方法尽管可能会低估真实的耗散,但估计结果基本合理;后一种方法的结果则明显受深度影响。
     可靠的破碎判别是风浪破碎点过程理论实证的一个关键。结合实验数据,本文仔细研究了各种破碎判据的有效性,发现:运动学判据变量、动力学判据变量等局地判据变量能敏感地反映破碎事件的发生,能很好地区分破碎波与非破碎波,存在一个稳定的阈值,依据这些判据的判别结果绝大多数时候是一致的;波陡、峰前波陡、峰后波陡等几何量能够指示破碎事件的发生,但不存在一个稳定的阈值;两种水平不对称因子、垂向不对称因子、波面偏度等不对称几何量在破碎波与非破碎波上的行为没有明显差异,不适合于作为破碎判据变量。
     基于47组风浪破碎实验,采用动力学判据,确定破碎波破碎波群,依次获得每个信号的破碎波间隔、破碎波群间隔、波群内破碎波个数等序列,计算破碎概率与破碎率,风浪破碎点过程理论得到初步验证:
     破碎间隔的分布能够完整的表达破碎发生的间歇性,小间隔占得比例大,大间隔出现的概率小,这是破碎间隔分布的共同特征;对间隔分布的Kolmogorov-Smimov检验表明:低风速情形的破碎波间隔服从指数分布。这意味着,低风速情形下,风浪破碎的发生可以视为一齐次Poisson过程;对应的,描述破碎耗散的标值累计过程可以简化为复合Poisson过程。
     高风速情形,群发性是风浪破碎的典型特征,波群内破碎波个数的分布能有效地表达群发性。只有在风速超过一定水平时,包含多个破碎波的波群才会渐次出现,风速越大,这种波群占得比例越大,平均的波群内破碎波个数也越大。
     破碎发生率与平均破碎间隔呈几近理想的倒数关系,随着风速的增大,破碎间隔减小,破碎发生率增大。事实上,主导波破碎概率、破碎发生率、平均破碎波间隔的倒数以及波群内破碎波平均个数四个指标间存在明显的线性关系,属于一类;波群破碎概率、波群破碎发生率、平均破碎波群间隔则属于另一类。要完整地描述破碎频繁程度,需同时使用两类指标,缺一不可。
Wind wave breaking in deep water is an important component in the process of air-sea interaction, playing a primary role in the exchange of mass, momentum and energy between the atmosphere and the ocean, which have a profound effect on weather and climate. It serves to maintain the energy balance within the continuous wind-wave field and limit the height of surface waves, mix the surface waters, generate ocean current. Its role in the dynamics of the upper ocean is critical.
     However, it may represent one of the most complex physical phenomena of nature. It is an intermittent random process, with strong non-linearity, very fast by comparison with other processes in the wave system, and the distribution of wave breaking on the water surface is not continuous. The intermittency and randomicity of the wave breaking are the main barriers in the breaking wave research. Due to lack of proper mathematical representation, they are not clear for us by now.
     Actually, the intermittency and randomicity can be clearly described by stochastic point processes. The concept and theory of stochastic point process were introduced into wave breaking research. Wind wave breaking observed at a fixed point can be viewed as a one-dimension point process; considering the groupness of breaking waves, cluster point process is the general model for wind wave breaking; marked point process is proper for the expressing energy loss due to breaking. In this theoretical frame, definition and estimation of breaking probability and energy dissipation were discussed strictly. Breaking probability is the mean of a stochastic process and the energy loss due to breaking is a stochastic processes. A series of wind wave breaking experiments and the data analysis results reveal that the theory and method of stochastic point process is effective for wind wave breaking research. This is a new way to understand wind wave breaking.
     The bispectrum can measure the non-linearity of a process, and wind wave breaking is a process with strong non-linearity. The bispectra of breaking wind waves under different breaking rate were investigated and come into the following conclusions:the maxima and the integral of the real part of wind wave bispectra, and the skewness of the wave elevation time series increase with dominant wave breaking probability sensitively, and they are suitable for measuring the breaking frequency, however, there is no clear trend in the maxima and the integral of the image part of bispectra at different wind speed.
     Energy dissipation due to wave breaking is a focus of the breaking wave research, and there is much difficulty in it. A brief review of breaking dissipation research was presented and two methods for estimating the energy loss of breaking wave were inspected. Young and Babanin (2006) separate the surface waves into two categories: breaking segments and non-breaking segments, the difference between "breaking spectrum" and "non-breaking" spectrum was attributed to the dissipation due to breaking. Yefimov and Khristoforov (1971a) use the difference of the measured velocity spectrum and the wave-induced spectrum as the estimated energy dissipation. Results from our data analysis using first method are reasonable but the other is not.
     Reliable breaking criterion is needed in our research, so the classical breaking criteria for surface elevation time series were investigated. Variables for kinematics criterion and for dynamic criterion and instantaneous wave slope are all sensitive to the breaking events, and well consistent in distinguishing the breaking waves. Those geometric variables such as wave steepnees are not so good.
     Based on the data of wind wave experiments, using dynamic criterion, the breaking wave and breaking groups were determined, the sequences of time interval between breaking waves and sequences of the number of breaking waves in a group were obtained. The stochastic point process theory for wave breaking was demonstrated as following:
     The intermittency of wind wave breaking can be clearly described using the distribution of the intervals between breaking wave. There is a common feature is that the proportion of small intervals is large and those of large intervals are small. The Kolmogorov-Smirnov test for interval sequences show that the probability distribution for intervals between breaking waves in lower wind speed is exponential distribution. This indicates that, in the lower wind speed case, the breaking waves formed a homogenous Poisson process. Correspongingly, the cumulated marked process for breaking dissipation can be simplified into compound Poisson process.
     In the higher wind speed case, groupness is the distinct character of wind wave breaking. The groupness of wave breaking can be expressed by the distribution of the number of breaking waves in a group. The groups containing more than one breaking wave occurred only when wind speed come up to certain level. The higher the wind speed is, the more of such groups, and the large is the averaged number of breaking waves in a wave group.
     The breaking rate is near with the reciprocal of the averaged breaking interval. In fact, the dominant wave breaking probability, breaking rate, the reciprocal of the averaged interval between breaking waves and the averaged number of breaking waves in a wave group are highly correlated in linear way, they are one kind of index for measuring breaking frequency, the group breaking probability, group breaking rate, and the averaged interval between breaking groups are the other kind of breaking frequency index. It is much better to combine these two kind indexes when describing how frequently the breaking is.
引文
[1]邓永录,梁之舜,1992:随机点过程及其应用.北京:科学出版社,61 1pp.
    [2]邓永录,徐宗学,1993:洪水风险分析的簇生过程模型.中山大学学报(自然科学版),32(1),35-40.
    [3]丁平兴,孔亚珍,1989:海浪二阶谱及其估计.热带海洋,8(1),73-79.
    [4]丁平兴,1991:海浪非线性性的实验与理论研究.青岛海洋大学博士论文.
    [5]丁平兴,侯伟,1992:海浪非线性性的实验研究Ⅰ:波面高度分布的非正态性.海洋学报,14(6),25-31.
    [6]丁平兴、孙孚、余宙文,1992:用TOR方法估计海浪二阶谱.海洋与湖沼,23(6),613-618.
    [7]丁平兴,孔亚珍,侯伟,1993:海浪非线性性的实验研究Ⅱ:风浪二阶谱及其与非线性外观特征间的关系.海洋学报,15(1),1-8.
    [8]丁平兴、孙孚、余宙文,1993:海浪二阶非线性特征量的研究Ⅰ:理论推导.中国科学,B辑,23(3),311-317.
    [9]丁平兴、孙孚、余宙文,1994:海浪二阶非线性特征量的研究Ⅱ:解释、推论及验证中国科学,B辑,24(4),418-425.
    [10]方欣华,吴巍,2006:海洋随机资料分析,青岛海洋大学出版社,青岛,200pp.
    [11]富永政英1976:海洋波动——基础理论和观测成果.共立出版株式会社.关孟儒译,北京:科学出版社,1984年2月,第一版.
    [12]管长龙,2000:我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报,30(4),549-556.
    [13]管长龙,孙群,2001:风浪成长关系的分析及其对3/2指数律的支持.青岛海洋大学学报,31(5),633-639.
    [14]管长龙,张淑芳,孙建,孙群,2004:深水风浪的风区指数律.中国海洋大学学报,戴永隆,1984,704-712.
    [15]华锋,袁业立,1992:海波破碎波谱研究.中国科学(B),22(9),958-965.
    [16]李晶,2007:风浪破碎和波群统计特征研究.中国海洋大学博士论文.
    [17]梁之舜,邓永录1979:随机点过程的物理背景及数学模型.中山大学学报(自然科学),(4),74-89.
    [18]梁之舜,邓永录,1980:随机点过程的重要分支及其发展概况.应用数学与计算数学,(3),48-65.
    [19]楼顺里,1997:深水破碎波研究.中国科学院海洋研究所博士论文.
    [20]楼顺里,曹露洁,1998:海洋白浪寿命的定义及测量结果.海洋与湖沼,29(2),183-190.
    [21]贾复,徐丰,1998:风生破碎波统计特性的实验研究.水动力学研究与进展A辑,13(1),14-20
    [22]孙孚,1988:三维海浪要素的统计分布.中国科学(A辑),(5),501-508.
    [23]孙群,管长龙,宋金宝2006:海浪破碎对海洋上混合层中湍能量收支的影响.海洋与湖沼,37(1),69-74.
    [24]田纪伟,曹露洁,楼顺里,1996:二维表面波的分形结构.海洋学报,18(3),1-4.
    [25]Vere-Jones,邓永录,1988:中国北部地震历史资料的点过程分析.中国地震,(4),8-19.
    [26]文圣常,余宙文,1984:海浪理论与计算原理.北京:科学出版社,662pp.
    [27]徐德伦,1987:风波破碎发生率、强度和经历时间的测量.海洋与湖沼,18(4),380-387.
    [28]徐德伦,1987:破波与海面粗糙长度的关系.海洋与湖沼,18(5),477-480.
    [29]徐德伦,于定勇,2001:随机海浪理论.北京:高等教育出版社,404pp.
    [30]徐宗学,叶守泽,1988:洪水风险率CSPPC模型及其应用.水利学报,(9),1-9.
    [31]徐宗学,邓永录,1989:洪水风险率HSPPB模型及其应用.水力发电学报,(1),46-55.
    [32]徐宗学,肖焕雄,1991:洪水风险率CSPPN模型初步应用研究.水利学报,(1),(28-33,73).
    [33]徐宗学,曾光明,1992:洪水频率分析HSPPC模型应用研究.水科学进展,(3).
    [34]殷水清,谢云,陈德亮,林小娟,李维京,2009:日以下尺度降雨随机模拟研究进展,地球科学进展,24(9),981-989.
    [35]袁业立,华锋,潘增弟,Norden, E.Huang, Chi-chao Tung,1988:破碎波统计及其在上层大洋动力学中的应用.中国科学,B辑,(10),1084-1091.
    [36]袁业立,Huang,NE,1993:一个新的破碎波统计模式.海洋与湖沼,24(6),577-583.
    [37]张书文,袁业立,2003:海浪破碎统计及其在海气通量估计中的应用Ⅰ:理论模型.中国科学,D辑,33(7),695-703.
    [38]张贤达,2002:现代信号处理(第二版).北京:清华大学出版社,528pp.
    [39]郑桂珍,2003:风浪破碎统计特征及流对短波破碎影响研究.中国海洋大学博士论文.
    [40]Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams IIl, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii,1992:Enhanced dissipation of kinetic energy beneath surface waves. Nature,359,219-220.
    [41]Alber, I.E.,1978:The effects of randomness on the stability of two-dimensional wavetrains. Proc. R. Soc. Lond., A363,525-546.
    [42]Anis, A., and J. N. Moum,1995:Surface wave-turbulence interactions:Scaling s(z) near the sea surface. J. Phys. Oceanogr,25,2025-2045.
    [43]Babanin, A. V.,1995:Field and laboratory observations of wind wave breaking. In The Second Int. Conf, on the Mediterranian Coastal Environment, Tarragona, Spain, October, 24-27.
    [44]Babanin, A. V.,2006:On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett.,33, L20605, doi:10.1029/2006GL027308.
    [45]Babanin, A. V.,2009:Breaking of Ocean Surface Waves. Acta Physica Slovaca,59,4, 305-535.
    [46]Babanin, A. V., and Polnikov, V. G.,1995:On the non-Gaussian nature of wind waves. Phys. Oceanogr.,6,241-245.
    [47]Babanin A.V., and V.P. Soloviev,1998:Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J.Phys.Oceanogr.,28, 563-576.
    [48]Babanin, A.V., I.R. Young, and Michael L. Banner,2001:Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophy. Res.,106(c6), 11659-11676.
    [49]Babanin, A. V., and I. R. Young,2005:Two-phase behavior of the spectral dissipation of wind waves. In Proc. Ocean Waves Measurement and Analysis, Fifth Intern. Symposium WAVES2005,3-7 July,2005, Madrid, Spain, Eds. B. Edge, and J.C. Santas, paper no.51, l1p.
    [50]Babanin, A. V., D. Chalikov, I. R. Young, and I. Savelyev,2007:Predicting the breaking onset of surface water waves. Geophys. Res. Lett.,34, L07605, doi:10.1029/2006GL029135
    [51]Babanin, A. V., M. L. Banner, I. R. Young, and M. A. Donelan,2007:Wave follower measurements of the wind input spectral function. Part 3. Parameterization of the wind input enhancement due to wave breaking. J. Phys. Oceanogr.,37,2764-2775.
    [52]Babanin, A. V., I. R.Young, R. Manasseh, and E. Schultz,2007:Spectral dissipation term for wave forecast models, experimental study. In Proc.10th Intern. Workshop on Wave Hindcasting and Forecasting and Coastal Hazards, Oahu, Hawaii, November,11-16,2007, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM),19p.
    [53]Babanin, A. V., and A. J. Vander Weshuysen,2008:Physics of "saturation-based" dissipation functions proposed for wave forecast models. J. Phys. Oceanogr.,38, 1831-1841.
    [54]Banner, M.L., and D.H. Peregine,1993:Wave breaking in deep water. Annu. Rev. Fluid Mech,25,373-397.
    [55]Banner, M.L., and I.R. Young,1994:Modeling spectral dissipation in the evolution of wind waves. Part I:Assessment of existing model performance. J.Phys. Oceanogr.,24,1550-1571.
    [56]Banner, M. L., and X. Tian,1998:On the determination of the onset of breaking for modulating surface gravity waves. J. Fluid Mech.,77,2953-2956.
    [57]Banner, M. L., A.V. Babanin, and I. R. Yong,2000:Breaking Probability for dominant waves on the sea surface. J.Phys. Oceanogr.,30,3145-3160.
    [58]Banner, M. L., J. R. Gemmrich, and D. M. Farmer,2002:Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr.,32,3364-3375.
    [59]Banner, M. L., and J. Song,2002:On the determining the onset and strength of breaking for deep water waves. Part 2:Influence of wind forcing and surface shear. J. Phys. Oceanogr., 32,2559-2570.
    [60]Banner, M. L., and W. L. Peirson,2007:Wave breaking onset and strength for two-dimensional and deep-water wave groups. J. Fluid Mech.,585,93-115.
    [61]Barrick, D. E. and B. L. Weber,1977:On the nonlinear theory for gravity waves on the ocean's surface. Part II:Interpretation and applications. J. Phys. Oceanogr.,1,11-21.
    [62]Benjamin, T.B.,1967:Instability of periodic wave trains in non-linear dispersive systems. Proc. R.. London Ser. A299,59-75.
    [63]Benjamin,T.B., and J.E. Feir,1967:The disintergration of wave trains on deep water. I.Theory. J.Fluid Mech.,27,417-30.
    [64]Bitner-Gregersen, E. M., and S. Gran,1983:Local properties of sea waves derived from a wave record. Appl. Ocean Res.,5,210-214.
    [65]Bondur, V. G., and E. A. Sharkov,1982:Statistical properties of whitecaps on a rough sea. Oceanology,22,274-279.
    [66]Bonmarin, P.,1989:Geometric properties of deep-water breaking waves. J. Fluid Mech., 209,405-433.
    [67]Bryan K, andSpelman M.J.,1985:The ocean's response to a carbon dioxide-induced warming. J.Geophys. Res.,90,11679-11688.
    [68]Calabresea, M., M. Buccinoa, and F. Pasanisi,2008:Wave breaking macrofeatures on a submerged rubble mound breakwater. J. Hydro-Environ. Res.,1,216-225.
    [69]Cartmill, J. W., and M. Y. Su,1993:Bubble size distribution under saltwater and freshwater breaking waves. Dyn. Atmos. Oceans,20,25-31.
    [70]Caulliez, G.,2002:Self-similarity of near-breaking short gravity wind waves. Phys. Fluids, 14,2917-2920.
    [71]Chalikov, D.,2005:Statistical properties of nonlinear one-dimensional wave fields. Nonlin. Processes Geophys.,12,1-19.
    [72]Craig, P. D., and M.L. Banner,1994:Modeling wave-enhanced turbulence in the ocean surface layer. J.Phys.Oceanogr.,24,2546-2549.
    [73]Csanady, G. T.,1984:Circulation in the Coastal Ocean. D. Reidel,279 pp.
    [74]Csanady, G. T.,1990:The role of breaking wavelets in air-sea gas transfer. J. Geophys. Res.,95,749-759.
    [75]Deane, G.B., and M. D. Stokes,2002:Scale dependence of bubble creation mechanisms in breaking waves. Nature,418,839-844.
    [76]Ding Li, and.M. Farmer., David,1994:Observations of Breaking surface wave statistics. J.Phys.Oceanogr.,24,1368-1387.
    [77]Donelan, M., M.S. Longuet-Higgins, and J.S. Turner,1972:Periodicity in whitecaps. Nature, 239,449-451.
    [78]Donelan, M. A.,1978:Whitecaps and momentum transfer. In Turbulent fluxes through the sea surface, wave dynamics and prediction. Favre, NATO Conf. Series, K. Hasselmann, Ed., NY, Plenum Press,74-94.
    [79]Donelan, M. A. and Y. Yuan.1994. Wave dissipation by surface processes. Dynamics and Modelling of Wind Waves, G. J. Komen et al., Eds., Cambridge University Press,143-155.
    [80]Donelan, M. A., and W.M. Drennan,1996:Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr.,26,1901-1914.
    [81]Donelan, M. A.,2001:A nonlinear dissipation function due to wave breaking. In ECMWF Workshop on Ocean Wave Forecasting,2-4 July,2001, Series ECMWF Proceedings, 87-94.
    [82]Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner,2006:Wave follower field measurements of the wind input spectral function. Part I. Parameterization of the wind input. J. Phys. Oceanogr..36,1672-1688.
    [83]Drennan, W.M., M. A. Donelan, E. A. Terray, and K. B. Katsaros,1996:Oceanic turbulence measurements in SWADE. J. Phys. Oceanogr.,26,808-815.
    [84]Duncan, J.H.,1981:An experimental investigation of breaking waves produeed by a towed hydrofoil. Proc. Roy. Soc. London, A377,331-348.
    [85]Duncan, J.H.,2001:Spilling breakers. Annu. Rev. Fluid Mech.,33,519-47.
    [86]Drazen, D., W. K. Melville, and L. Lenain,2008:Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech.,611,307-332.
    [87]Elgar, S. and R.T. Guza,1985:Observations of bispectra of shoaling surface gravity waves. J. Fluid Meck,161,425-448.
    [88]Farge, M.,1992:Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Meck,24,395-457.
    [89]Farmer, D. M., and S. Vagle,1988:On the determination of breaking surface wave distribution. J. Geophys. Res., C93,3591-3600.
    [90]Farmer, D.M., and J.R. Gemmrich,1996:Measurement of temperature fluctuations in breaking waves. J. Phys. Oceanogr.,16,816-825.
    [91]Felizardo, F. C., and W. K. Melville,1995:Correlation between ambient noise and the ocean surface wave field. J. Phys. Oceanogr.,25,513-532.
    [92]Galvin, C.J.,1968:Breaker type classitication on three laboratory beaches, J.Geophys.Res.,73,3651-3659.
    [93]Galvin, C.J.,1972:Wave breaking in shallow water. In Waves on Beaches and Resulting Sedinment Transport, R.E.Meyer, Ed., New York:Academic,413-456.
    [94]Gargett, A.E.,1989:Ocean turbulence. Ann. Rev. Fluid Mech,21,419-451.
    [95]Garrett, C., M. Li, and D. M. Farmer,2000:The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr.,30,2163-2171.
    [96]Gemmtich. J.R., and D. M. Farmer,1999a:Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr.,29,480-499.
    [97]Gemmrich. J.R., and D.M. Farmer,1999b:Observations of the scale and Occurrence of breaking surface waves. J. Phys. Oceanogr.,29,2595-2606.
    [98]Gemmrich. J.R., and D.M. Farmer,2004:Near surface turbulence in the presence of breaking waves. J.Phys.Oceanogr.34,1067-1086.
    [99]Gemmrich, J. R., M. L. Banner, and C. Garrett,2008:Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr.,38,1296-1312.
    [100]Greenan B. J. W., N. S. Oakey, and F. W. Dobson,2001:Estimates of dissipation in the ocean mixed layer using a quasi-horizontal microstructure profile. J. Phys. Oceanogr.,31, 992-1004.
    [101]Guan C, Sun Q.,2002:Analytically derived wind wave growth relations. China Ocean Eng, 16,3,359-368.
    [102]Guan C, Q. Sun, and P. Fraunie,2002:The fractional power law of wind wave growth in deep water for short fetch.J Ocean Univ Qingdao,1,2,105-108.
    [103]Guan C, and J.Sun,2004:Similarities of some wind input and dissipation source terms. China Ocean Eng,18,4,629-642.
    [104]Guan, C., W. Hu, J. Sun, and R. Li,2007:The whitecap coverage model from breaking dissipation parametrizations of wind waves. J. Geophys. Res., C112, C05031, doi:10.1029/2006JC003714.
    [105]Hara,T., and A.V. Karachintsev,2002:Observation of nonlinear effects in ocean surface wave frequency spectra. J. Phys. Oceanogr.,33:422-430.
    [106]Hasselmann, K.,1960:Grundgleichungen der seegangsvoraussage. Schiffstechnik,39, 191-195.
    [107]Hasselmann, K.,1962:On the non-linear energy transfer in a gravity-wave spectrum. Part Ⅰ. General theory. J. Fluid Mech,12,481-500.
    [108]Hasselmann, K., W. Munk, and G. MacDonald,1963:Bispectra of ocean waves. In Time Series Analysis, M. Rosenblatt, Ed., New York:Wiley,125-139.
    [109]Hasselmann, K., and Coauthors,1973:Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogh. Z. Suppl, A8,12, 1-95.
    [110]Hasselmann, K.,1974:On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor,6,107-127.
    [111]Haubrich, R.A.,1965:Earth noise,5 to 500 millicycles per second. J. Geophys. Res.,70, 1415-1427.
    [112]Hayashi Yoshikazu,1980:Estimation of nonlinear energy transfer spectra by the cross-spectral method. Journal of the atmospheric sciences.37:299-307.
    [113]Herbers, T.H.C., N.R. Russnogle, and S. Elgar,1999:Spectral energy balance of breaking wave within the surf zone. J. Phys. Oceanogr.,30,2723-2737.
    [114]Herring, J.R.,1980:Theoretical calculation on turbulent bispectra. J. Fluid Mech,97, 193-204.
    [115]Holthuijsen, L. H., and T. H. C. Herbers,1986:Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr.,16,290-297.
    [116]Holthuijsen, L. H.,2007:Waves in Oceanic and Coastal Waters. Cambridge University Press,387pp.
    [117]Huang, N. E., S. R. Long, and L. F. Bliven,1983:A non-Gaussian statistical model for surface elevation of nonlinear random wave fields. J. Geophys. Res., C88,7597-7606.
    [118]Huang, N. E., S. R. Long, L. F. Bliven, and C. C. Tung,1984:The non-Gaussian joint probability density function of slope and elevation for a non-linear gravity wave field. J. Geophys. Res., C89,1961-1972.
    [119]Huang, N. E.,1986:An estimate of the influence of breaking waves on the dynamics of the upper ocean. In Wave Dynamics and Radio Probing of the Sea Surface, O.M. Phillips, K. Hasselmann, Eds., New York:Plenum,295-313.
    [120]Huang, N. E., S. R. Long, C. C. Tung, M.A. Donelan, Y. Yuan, and R. J. Lai,1992:The local properties of ocean waves by phase-time method. Geophys. Res. Lett.,19,7,685-699.
    [121]Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu,1998:The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London,454A,903-955.
    [122]Huang, N. E., Z. Shen, S. R. Long, and M. C. Wu,1999:A new view of nonlinear water waves:The Hilbert spectrum. Annu. Rev. Fluid Mech,31,417-517.
    [123]Hwang, P. A., Delun Xu, and Jin Wu,1989:Breaking of wind-generated waves: measurements and characteristics. J. Fluid Mech,202,177-200.
    [124]Hwang, P. A., and D. W. Wang,2004:An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett.,31, L15301, doi:10.1029/2004GL020080.
    [125]Hwang, P. A.,2007:Spectral signature of wave breaking in surface wave components of intermediate-length scale. J. Mar. Sys.,66,28-37.
    [126]Imasato, N., and H. Kunishi,1977:Bispectra of wind waves and wave-wave interaction. J. Oceanogr. Soc. Japan,33,5,267-271.
    [127]Janssen, P. A. E. M.,1994:Wave growth by wind. In Dynamics and Modelling of Ocean Waves. G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, P.A.E.M. Janssen, Cambridge University Press,71-112.
    [128]Jessup, A.T.,1995:The infrared signature of breaking waves. In Proc. Symp. on Air-Sea Interaction, Marseille, France 1993, Ed MA Donelan, WJ Plant, WH Hui. Toronto:Univ Toronto Press.
    [129]Jessup, A.T., C.J. Zappa., M.R. Loewen, and W. Hesany,1997:Infrared remote sensing of breaking waves. Nature,385,52-55.
    [130]Kennedy,R.M., and R.L.Snyder,1983:On the formation of whitecaps by a threshold mechanism. Part 2:Monte Carlo experiments. J.Phys.Oceanogr.,13,1493-1504.
    [131]Khinchin, A. Ya. (1955), Mathematical Methods in the Theory of Queueing.[English translation (1960)],Griffin,London.[张里千,殷永泉译,公用事业理论的数学方法,科学出版社,1958]
    [132]Khinchin, A.Ya.,1956a:Streams of events without aftereffects. Theor. Prob. Appl,1,1-15.
    [133]Khinchin, A.Ya.,1956b:On Poisson streams of events, Theor. Prob. Appl,1,248-255.
    [134]Kim.,Y. C., and E. J. Pawer,1979:Digital bispectral analysis and its application to nonlinear wave interactions. IEEE Trans. Plasma Science,1,120-131.
    [135]Kim,Y.C., J.M. Beall, E.J. Powers, and R.W. Miksad,1980:Bispectrum and nonlinear wave coupling. Phys.Fluid,23,2,258-263.
    [136]Kitaigorodskii, S.A., and J.L. Lumley,1983a:Wave-turbulence Interactions in the upper ocean Part Ⅰ:the energy balance of the interacting fields of surface wind waves and wind induced three-dimensional turbulence. J. Phys. Oceanogr.,13,1977-1987.
    [137]Kitaigorodskii, S.A., M.A. Donelan,J.L. Lumley, E.A, Terray,1983b:Wave-turbulence interactions in the upper ocean, Part Ⅱ Statistical characteristics of wave and turbulent components of random velocity field in the marine surface layer. J.Phys.Oceanogr.,13, 1988-1999.
    [138]Komen, G. J., S. Hasselmann, and K. Hasselmann,1984:On the existence of a fully developed wind-sea spectrum. J.Phys.Oceanogr.,14,1271-1285.
    [139]Komen, G. I., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen,1994:Dynamics and Modelling of Ocean Waves. Cambridge University Press, UK, 554pp.
    [140]Kway, J. H. L., Y. S. Loh, and E. S. Chan,1998:Laboratory study of deep-water breaking waves. Ocean Eng.,25,8,657-676.
    [141]Lake, B. M., and H. C. Yuen,1978:A new model for nonlinear wind waves. Part 1. Physical model and experimental evidence. J. Fluid Mech,88,33-66.
    [142]Laing, A. K.,1986:Nonlinear properties of random gravity waves in water of finite depth. J. Phys. Oceanogr.,16,2013-2030.
    [143]Lee, C.Y. and F.D. Mash,1970:Macro-turbulence from wind waves. Proc.12th Coastal Engineering Conf., Vol.1, Chap.14,223-242.
    [144]Leikin, I. A., M. A. Donelan, R. H. Mellen, and D. J. Mclaughlin,1995:Asymmetry of wind generated waves studied in a laboratory tank. Nonlin. Processes Geophys.,2,280-289.
    [145]Liu, P. C.,1993:Estimating breaking statistics from wind-wave time series data. Ann. Geophys.,11,970-972.
    [146]Liu, P. C., and S. Miller, Gerald,1996:Wavelet transform and ocean current data analysis. J. Atmos. Oceanic Technol,13,1090-1099.
    [147]Liu, P. C.,2000:Wavelet transform and new perspective on coastal and ocean engineering data analysis. In Advances in Coastal and Ocean Engineering 6, P. L. F. Liu, Ed., World Scientific,5-101.
    [148]Liu, P. C., and A.V. Babanin,2004:Using wavelet Spectrum analysis to resolve breaking events in the wind wave time series. Annales Geophysicae,22,3335-3345.
    [149]Long-Higgins, M. S.,1963:The effects of nonlinearities on statistical distribution in the theory of sea waves. J.Fluid Mech.,17,3,459-480.
    [150]Longuet-Higgins, M.S.,1969:On wave breaking and the equilibrium spectrum of wind-generated waves. Proc. Roy.Soc.London, A310,151-159.
    [151]Longuet-Higgins, M. S.,1975a:Integral properties of periodic gravity waves of finite amplitude. Proc. R. Soc. Lond., A342,157-174.
    [152]Longuet-Higgins, M.S.,1975b:On the joint distribution of the periods and amplitudes of sea waves. J. Geophys. Res,80,2688-2694.
    [153]Longuet-Higgins, M.S., and M.J.H. Fox,1977:Theory of almost highest wave:The inner solution. J. Fluid Mech,80,721-741.
    [154]Longuet-Higgins, M.S.,1979:Why is a water wave like a grandfather clock. Phys. Fluids., 22,9,1828-1829.
    [155]Longuet-Higgins, M.S., and N.D. Smith,1983:Measurement of breaking by a surface jump meter. J. Geophys. Res.,88,9823-9831.
    [156]Longuet-Higgins, M. S.,1984:Statistical properties of wave groups in a random sea state. Phil. Trans. R. Soc. Lond.,312A,219-250.
    [157]Longuet-Higgins, M.S.,1985:Statistical properties of wave groups. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan and G. MacNiocaill, Eds., Galway University Press.
    [158]Longuet-Higgins, M.S.,1994:A fractal approach to breaking waves. J.Phys. Oceanogr.,24, 1834-1838.
    [159]Longuet-Higgins, M.S.,1997:Progress toward understanding how waves break. Proc. Twenty-First Symposm on naval hydrodynamics. CPSMA.
    [160]Lowen, M. R., and W. K. Melville,1991:Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech,224,601-623.
    [161]Lowen, M. R., and M. H. K. Siddiqui,2006:Detecting microscale breaking waves. Meas. Sci. Technol.,17,771-780.
    [162]Lueck, R., G., F. Wolk, and H. Yamazaki,2002:Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr.,58,153-174.
    [163]Magnaudet, J., and L. Thais,1995:Orbital rotational motion and turbulence below laboratory wind water waves. J. Geophys. Res., 100(C1),757-771.
    [164]Masuda, A., Y-Y Kuo., and H. Mitsuyasu,1979:On the dispersion relation of random gravity waves. Part 1. Theoretical framework. J. Fluid Mech,92,4,717-730.
    [165]Masuda, A., and Y-Y Kuo,1981a:A note on the imaginary part of bispectra. Deep-Sea Res., 28,A(3),213-222.
    [166]Masuda, A., and Y-Y Kuo.,1981b:Bispectra for the surface displacement of random gravity waves in deep water. Deep-Sea Res.,28,3,223-237.
    [167]Melsom, A., and Saerta, YVind,2004:Effects of wave breaking on the near-surface profile of velocity and turbulent Kinetic energy. J. Phys.Oceanogr.,34,490-504.
    [168]Melville, W. K.,1983:Wave modulation and breakdown. J.Fluid.Mech.,128,489-506.
    [169]Melville, W. K., M. R.Loewen, Felizardo, F. C. Jessup, A. T. Buckingham, and M. J., 1988a:Acoustic and microwave signatures of breaking waves. Nature,336,54-59.
    [170]Melville, W.K., and R.J. Rapp,1988b:The surface velocity field in steep and breaking waves. J. Fluid Mech,189,1-22.
    [171]Melville, W.K., M. R. Loewen, and E. Lamarre,1992:Sound production and air entrainment by breaking waves:a review of recent laboratory experiments. In Breaking waves. IUTAM Symposium, Sydney, Australia,1991, M.L. Banner, R.H.J Grimshaw, Eds., Springer-Verlag, Berlin, Heidelberg,139-146.
    [172]Melville, W.K.,1994:Energy dissipation by breaking waves. J.Phys.Oceanogr,24, 2401-2409.
    [173]Melville, W.K.,1996:The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid. Mech.,28,279-321.
    [174]Melville, W.K., R. Shear, and F. Veron,1998:Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech,364,31-58.
    [175]Melville, W.K., F. Veron, and C. J. White,2002a:The velocity field under breaking waves: Coherent structure and turbulence. J. Fluid Mech.,454,203-233.
    [176]Melville, W.K., Peter Matusov 2002b:Distribution of breaking waves at the ocean surface. Nature,417,58-62.
    [177]Mendel, J.M.,1991:Tutorial on higher-order statistics (spectra) in signal processing and system theory:Theoretical results and some applications. Proc. IEEE,79,278-305.
    [178]Michel, JH.,1893:The highest wave in water. Philos. Mag,36,430-437.
    [379]Mironov, A. S., and V. A. Dulov,2008:Detection of wave breaking using sea surface video records. Meas. Sci. Technol.19, doi:1018/0957-0233/19/l/015405,10p.
    [180]Mitsuyasu, H., Y-Y Kuo., and A. Masuda,1979:On the dispersion relation of random gravity waves. Part 2. An experiment. J. Fluid Meck,92,4,731-749.
    [181]Naoto Ebuchi, Hiroshi Kawamura, and Yoshiaki Toba,1987:Fine structure of laboratory wind-wave surface studied using an optical method. Bound.-Layer Meteor.,39,133-151.
    [182]Nepf, H.M., C. Wu, and E.S. Chan,1998:A comparison of two-and three-dimensional wave breaking. J. Phys. Oceanogr.,28,1496-1510.
    [183]Nikias, C. L., and M. R. Raghuveer,1985:Discussion:Higher-order autospectra by maximum entropy method. Geophy.,50,1,165-166.
    [184]Nikias, C.L., and M.R. Raghuveer,1987:Bispectrum estimation:A digital signal processing framework. Proc. IEEE,75,869-91.
    [185]Nikias, C.L., and J.M. Mendel,1993:Signal processing with higher-order spectra. IEEE Signal Processing Magazine,10,3,10-37.
    [186]Nikias, C.L., and A.P. Petropulu,1993:Higher-Order Spectra Analysis:A Nonlinear Signal Processing Framework. New Jersey:Prentice-Hall,528pp.
    [187]Oakey, N.,1985:Statistics of mixing parameters in the upper ocean during JASIN phases 2. J. Phys. Oceanogr.,15,1662-1675.
    [188]Ochi, M. K., and C. H. Tsai,1983:Prediction of occurrence of breaking waves in deep water. J. Phys. Oceanogr.,13,2008-2019.
    [189]Onorato, M., A. R. Osborne, and M. Serio,2002:Extreme wave events in directional, random oceanic sea states. Phys. Fluids.,14,25-28.
    [190]Osborn, T. R., J. F. E. Jackson, A. J. Hall, and R. G. Lueck,2003:Measurements of turbulence in the upper-ocean mixing layer using Autosub. J. Phys. Oceanogr.,33, 122-145.
    [191]Peregrine, D.H.,1983:Breaking waves on beaches. Annu. Rev. Fluid Mech.,15,149-78.
    [192]Phillips, O.M.,1985:Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J.Fluid.Mech.,156,505-531.
    [193]Phillips, O.M., F.L. Posner, and J.P. Hansen,2001:High range resolution radar measurement of the speed distribution of breaking events in wind-generated ocean waves:surface impulse and wave energy dissipation rates. J.Phys.Oceanogr.,31,450-460.
    [194]Pidgeon, Emily Jane.,1999:An experimental investigation of breaking wave-induced turbulence. Ph.D. Thesis, Stanford University.
    [195]Plaisted, K.O., and H.G. Pena,1983:High order autospectra by maximum entropy motropy method. Geophy.,48,10,1409-1411.
    [196]Plant, J. P.,1982:A relationship between wind stress and wave slope. J.Geophys Res,87 (C3),1961-1967.
    [197]Polnikov, V.G.,1993:On a description of a wind-wave energy dissipation function. In:M.A. Donelan, W.H. Hui and W.J. Plant, Editors, The Air-sea Interface. Radio and Acoustic Sensing, Turbulence and Wave Dynamics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL (1993), pp.277-282.
    [198]Raghuveer, M.R., and C. L. Nikias,1985:Bispectrum estimation:A parametric approach. IEEE Trans. Assp.,33,5,1213-1230.
    [199]Rapp, R.J., and W.K. Melville,1990:Laboratory measurements of deep-water breaking waves. Phil.Trans.R.Soc.Lond.,A331,735-800.
    [200]Rice, S. O.,1954:Mathematical analysis of random noise. In Noise and Stochastic Processes, N. Wax, Ed., Dover, New York,133-294.
    [201]Ruddick, B., A. Anis, and K. Thompson,2000:Maximum likelihood spectral fitting:The Batchelor spectrum. J. Atmos. Oceanic Technol,17,1541-1555.
    [202]Sang-Ho Oh, Natsuki Mizutani, Kyung-Duck Suh, and Noriki Hashimoto,2005: Experimental investigation of breaking criteria of deepwater wind waves under strong wind action.Appl. Ocean Res.,27,235-250.
    [203]Schulz, E. W.,2009:The Riding Wave Removal Technique:recent developments. J. Atmos. Ocean. Technol,26,135-144.
    [204]Sharkov, E. A.,2007:Breaking Ocean Waves. Geometry, Structure and Remote Sensing. Springer,278pp.
    [205]She,K., C. A. Greated, and W. J. Easson,1994:Experimental study of three-dimensional wave breaking, J. Waterw. Port Costal Ocean Eng.,120(1),20-36.
    [206]She,K., C. A. Greated, and W. J. Easson,1997:Experimental study of three-dimensional breaking wave dynamics, Appl. Ocean. Res.,19,324-329.
    [207]Shemer, L., K. Goulitski, and E. Kit,2007:Evolution of wide-spectrum unidirectional wave groups in a tank:an experimental and numerical study. Europ. J. Mech. B/Fluids,26, 193-219.
    [208]Snyder,R.L., and R.M. Kennedy,1983a:On the formation of whitecaps by a threshold mechanism. Part 1:Basic formalism. J. Phys. Oceanogr.,13,1482-1492.
    [209]Snyder,R.L.,Linda Smith and R.M. Kennedy,1983b:On the formation of whitecaps by a threshold mechanism. Part 3:Field experiment and comparison with theory. J. Phys. Oceanogr.,13,1505-1518.
    [210]Soloviev,A., N.V. Vershinsky, and V.A. Bezverchnii,1988:Small-scale turbulence measurements in the thin surface layer of the ocean. J. Mar. Res.,35,12,1859-1874.
    [211]Soloviev, A., R. Lukas, P. Hacker, M. Backer, H. Schoeberlein, and A. Arjannikov,1999:A near-surface microstructure system used during TOGA COARE:Part Ⅱ. J. Atmos. Oceanic Technol.,16,1598-1618.
    [212]Soloviev, A., and R. Lukas,2003:Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res.,50,371-395.
    [213]Song, J., and M. L. Banner,2002:On the determining the onset and strength of breaking for deep water waves. Part 1:Unforced irrotational wave groups. J. Phys. Oceanogr.,32, 2541-2558.
    [214]Stansell, P., and C. MacFarlane,2002:Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr.,32,1269-1283.
    [215]Stewart, R. W., and H. L. Grant,1962:Determining the rate of dissipation of turbulent energy near the surface in the presence of waves. J. Geophys. Res.,67,3177-3180.
    [216]Snyder, D. L. (1975), Random Point Processes,Wiley, New York梁之舜,邓永录译,人民教育出版社,1982.
    [217]Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. WilliamsIII, P. A. Hwang, and S. A. Kitaigorodskii,1996:Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr.,26,792-807.
    [218]Thais, L., and J. Magnaudet,1995:A triple decomposition of the fluctuating motion below laboratory wind water waves, J. Geophys. Res.,100(C1),741-755.
    [219]Thais, L., and J. Magnaudet,1996:Turbulent structure beneath surface gravity waves sheared by the wind. J. Fluid Meck,328,313-344.
    [220]Thorpe, S.A.,1993:Energy loss by breaking waves. J.Phys.Oceanogr.,23,2498-2502.
    [221]Thorpe,1995:Dynamical process of transfer at the sea surface. Progress in Oceanography, 35, Pergramon,315-352.
    [222]Thorpe, S.A., T. R. Osborn, J. F. E. Jackson, A. J. Hall, and R. G. Lueck,2003: Measurements of turbulence in the upper-ocean mixing layer using Autosub. J. Phys. Oceanogr.,33,122-145.
    [223]Tick, L.,1959:A non-linear random model of gravity waves. J. Math. Mech.,8,5,643-651.
    [224]Toba,1972:Local balance in the air-sea boundary process. Journal of the Oceanagraphical Society of Japan.28,109-120.
    [225]Tsikunov V. A.,1954:On the coefficient of turbulent viscosity in the upper layer of sea. Trudi (in Russian), GOIN,27,13-25.
    [226]Tulin, M.P., and Li, J.J.,1992:On the breaking of energetic waves. Int. J. Offshor. Polar Eng.,2,46-53.
    [227]Tulin, M. P., and T. Waseda,1999:Laboratory observations of wave group evolution, including breaking effects. J. Fluid Mech.,378,197-232.
    [228]Tulin, M.P., and M. Landrini,2001:Breaking waves in the ocean and around ships. In Proc. Twenty-Third Symp. Of Naval Hydrodynamics,713-745.
    [229]Veron, F., and W. K. Melville,1999:Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol.,16,1580-1597.
    [230]Weber, B.L., and D.E. Barrick,1977:On the nonlinear theory for gravity waves on the ocean's surface. Part I:Derivations. J. Phys. Oceanogr.,7,1-10.
    [231]Weissman, M.A., S.S. Atakturk, and K.B. Katsaros,1984:Detection of breaking events in a wind-generated wave field. J. Phys. Oceanogr.,14,1608-1619.
    [232]Wu Chin H., and H.M. Nepf,2002:Breaking criteria and energy losses for three-dimensional wave breaking. J.Geophy.Res.,107, C10, (3177-)(41-18).
    [233]Wu, J.,1979:Ocean whitecaps and sea stat. J. Phys. Oceanogr.,9,9,1064-1068.
    [234]Xu Delun, Paul A. Hwang, and Jing Wu 1986:Breaking of wind-generated waves. J.Phys.Oceanogr.,16,2172-2178.
    [235]Xu D, Liu W.,1995:An analytically derived whitecap coverage model. Acta Oceanol Sinica,14,3,329-336.
    [236]Xu D, Yu D, Lu H. A,1998:Whitecap coverage model based on the surface slope for criterion of wave breaking. China Ocean Eng.,12,1,73-85.
    [237]Yao Neng-chun, Steve Neshyba, and Henry Crew.,1975:Rotary cross-bispectra and energy transfer functions between non-gaussian vector processes I. Development and example. J.Phys.Oceanogr.,5,164-172.
    [238]Yao Neng-chun, S. Neshyba, and H. Crew.,1977:Rotary cross-bispectra and energy transfer functions between non-gaussian vector processes II. Winds and currents off the Oregon coast. J.Phys.Oceanogr.,7,892-903.
    [239]Yao AiFeng, and ChinH. Wu,2004:Energy dissipation of unsteady wave breaking on currents. J.Phys.Oceanogr.,34,2288-2304.
    [240]Yefimov, V.V., and G.N. Khristoforov,1969:Some properties of the velocity field in the layer of wind-induced undulation. Izv. Akad. Nauk SSSR Ser. Fiz. Atomos. Okeana,5, 1036-1048.
    [241]Yefimov, V.V., and G.N. Khristoforov,1971a:Wave related and turbulent components of velocity spectrum in the top sea layer. Izv. Akad. Nauk SSSR Ser. Fiz. Atomos. Okeana,7, 200-211.
    [242]Yefimov, V.V., and G.N. Khristoforov,1971b:Spectral and statistical relations between the velocity fluctuations in the upper layer of the sea and surface waves. Izv. Akad. Nauk SSSR Ser. Fiz. Atomos. Okeana,7,1290-1310.
    [243]Young, I. R.,1999 Wind Generated Ocean Waves. Elsevier,288pp.
    [244]Young Ian R., M.L. Banner, M.A. Donelan, A.V. Babanin, W.K. Melville, F. Veron, and C. McCormick,2005:An integrated system for the study of wind-wave source terms in finite-depth water. J. Atmos. Oceanic Technol,22,814-831.
    [245]Young Ian R., and Alexander V. Babanin,2006:Spectral Distribution of energy dissipation of wind-generated waves due to dominant wave breaking, J.Phys.Oceanogr.,36,376-394.
    [246]Yuan Y, and Coauthors.1986:Statistical characteristics of breaking waves. In:Wave dynamics and radio probing of ocean surface. Plenum Press,265-272.
    [247]Zaslavskii G. M., and Sharkov E. A.,1987:Fractal features in breaking wave areas on sea surface. Doklady Acad. Nauk SSSR (Trans. of USSR Academy of Sciences Engl.Trans.),294, 1362-1366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700