大孤山选矿厂磨矿工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是针对大孤山选矿厂的生产实际情况进行的,旨在优化其目前正在使用的磨矿制度,减少磨矿过程中微细粒级的产生,使其磨矿产品更加有利于之后的选别作业,并同时提高能量利用率以达到节能降耗的目的。
     近几年国内矿石的开采量快速增长,同时碎磨工艺又有高投入、高磨损、高能耗、低效率的特点,因此,对碎磨工艺的优化研究有其迫切的必要性。本课题主要研究了磨矿制度中的球径、磨机转速、磨矿时间、入磨粒度等因素对磨矿效果的影响,并使用先进的激光粒度仪对磨矿产品进行了粒度测定。同时,对矿石做了邦德功指数测定、矿石的冲击破碎特性试验、矿石抗压硬度测定试验,作为分析磨矿试验数据的辅助方法。
     本课题的创新点主要体现在将磨机内钢球的运动状态及其所具有的能量、动量进行定量计算,结合矿石的破碎特性试验,从能量转化和动量转化的角度,初步探讨磨机内物料破碎过程所需能量及动量的关系。
     试验结果表明,大孤山选矿厂现场磨矿的磨机转速率偏低。抗压强度试验和邦德功指数试验结果说明大孤山矿石为中等硬度矿石;冲击试验结果说明将原来的77.6%的转速率提高到85%-90%后磨矿效果更佳,磨矿试验结果也证明了适当将磨机转速率提高有利于磨矿。实际临界转速要高于传统理论上的临界转速。
This dissertation is the actual item of Dagushan concentration plant. The aim of this item is to optimizing the mill mineral process currently used, and reduce the quantity of tiny fine fraction in the mine course, and make sure the products of the mill-mineral are more advantageous on the mineral concentration, at the same time, raise energy utilization to implementation energy-saving and wastage-reducing.
     In late years, productionvolume and import volume of ore increased rapidly, and at the same time, grinding technics have the feature of high-involvement, high-abration, high energy consumption, low ineffectiveness. So, the optimize research of grinding technics is very necessary to t save energy, lower energy consumption and reduce pollutants discharge.The dissertation mainly studied the influence of factors about ball diameter, grinding revolving speed, grinding time, feeding size etc to grinding effect. Individual take different conditions to testing cross in detail, and use advanced Laser Particle Sizer to analyzing the grinding product. At the same time, do the Bond work index test, striking-crashing characteristic test, compression strength test to by way of the assistant means to analysis the test data of grinding.
     The innovations of the issue were mainly revealed in quantitative calculation the energy,momentum and the kinestate of balls, and integrate the grinding test of ore to discus the relation between grinding and energy,momentum from the standpoint of the transform of energy and momentum.
     The result indicate that the rotation rate of mill is on the low side in Dagushan Beneficiation Plant. Result of cmpression strength test and Bond work index test indicate the ore is medium hard; result of striking-crashing characteristic test indicate if increase the rotation rate from 77.6% to 85%-90% the grinding result is better, and the result of grinding test indicate increase is propitious to grinding. The actual whirling speed is higher than the tradition theory whirling speed.
引文
1.张宁.球磨机CAE技术应用研究[D],长春:吉林大学,2006.
    2.重点冶金矿山统计年报[M],中国冶金矿山企业协会,2006,1.
    3.段希祥.球磨介质工作理论与实践[M],北京:冶金工业出版社,1999,8,1-2.
    4.魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000,8,379.
    5.吴彩斌.破碎统计力学原理及转移概率在装补球制度中的应用研究[D],昆明:昆明理工大学,2002.
    6.选矿手册[M],北京:冶金工业出版社,1990,11,97.
    7.李启衡.碎矿与磨矿[M],北京:冶金工业出版社,1980,7,131-169.
    8.C.E.安德烈耶夫等,有用矿物的破碎磨矿及筛分[M],北京矿业学院译,北京:中国工业出版社,1963,231-306.
    9.段希祥.选择性磨矿及其应用[M],北京:冶金工业出版社,1991,8,183-195.
    10. I.Iwasaki, J.J.Moore and L.A.Lindeke. Effect of ball mill size on media wear, Minerals and metallurgical Processing,1987,8:160-166.
    11. C.C.Harris and N.Arbiter. Grinding mill operation and scale up:Theory and equations, Mineral Processing Technology Review,1985,1:249-265.
    12. R.Blickensderfer and J.H.Tylczak. Evaluation of commercial US grinding dall by laboratory impact and abrasion tests, Minerals and Metallurgical Processing,1989,3: 60-68.
    13. R.Blickensderfer, J.H.Tylczak et al. A large scale impact spalling test wear,1983, 84:363-373.
    14.翟宏新.球磨机连续磨矿能耗与粒度的回归模型及其超临界转速研究[D],淮南:安徽理工大学,2006,1.
    15.陈炳辰.磨矿原理[M],北京:冶金工业出版社,1989,11,416.
    16.段希祥.我国粗磨球磨机钢球尺寸状况的分析[J],矿冶工程,1998,18(1).
    17.吴彩斌,段希祥.不同装球制度下球磨机产品粒度组成特性研究[J],有色金属,2002,3.
    18.A.F.塔加尔特主编.《选矿手册》第二卷第二分册(湿式磨矿)[M],北京:冶金工 业出版社,1959,9.
    19.万小金.球磨机合理装球计算方法[J],金属矿山,2001,11.
    20.马希青,仁志字,赵润华.计算机仿真在磨球磨损研究中的应用[J],矿山机械,1997,10.
    21.陈继斌.矿泥的危害及对策[J],中国锰业,1998,5,16(2).
    22.翟宏新.球磨机连续磨矿能耗与粒度的回归模型及其超临界转速研究[J],矿山机械,2006,34(1).
    23.唐新民,刘明生,吴多义,王会兵.球磨机充填率与磨矿能力的关系[J],矿山机械,2002,4.
    24.崔学茹,刘厚乾,李明东.磨矿介质与磨矿效率剖析[J],矿业工程,2005,12,3(6)
    25.司亚梅,吕一波.磨机中磨矿介质的运动规律[J],中国非金属矿工业导刊,2006,57(5).
    26.王金玮.钢球直径对磨矿的影响[J],中国铝业,2003,2,27(1).
    27.雷季纯.粉碎工程[M]·北京:冶金工业出版社,1990,2.
    28.董为民,迟毅林,孙东明,文书明,许平.超临速球磨机磨矿介质冲击特性的计算[J],有色金属,2006,(4).
    29.文书明,张文彬,陶泽光.超临速球磨机[M].中国专利:ZL99127837.2,2002-03-20.
    30.叶贤东.超临速磨矿理论研究[D],昆明:昆明理工大学,2002.
    31.文书明,叶贤东.超临速磨机的工作原理和结构特点[J],有色金属,2002,6.
    32. R.Blickensderfer, J.H.Tylczak. Evaluation of commercial US grinding balls by laboratory impact and abrasion tests, Mineral and Metallurgical Processing,1989,3: 60.
    33. R.Blickensderfer, G.Laird. A pin-on-drum abrasive wear test and comparison with other pin wear tests, tribological mechanisms and wear problems in materials, ASM international,1987,10:71.
    34.毛益平,陈炳辰,高继森.球磨机有功功率和磨矿效率影响因素研究[J],矿冶工程,2000,12,20(4).
    35.杨小生.磨矿功耗、声响及适宜工作参数的研究[D],沈阳:东北大学,1985,6.
    36.马少健,陈建新.球磨机适宜磨矿介质配比的研究[J],2000,11,(293).
    37.刘如金.确定球磨机适宜钢球尺寸的新公式[J],矿冶工程,1991,(4).
    38. R.Blickensderfer, J.H.Tylczak et al. Alarge scale impact spalling test Wear,1983,84: 363.
    39.何建璋.锂辉石磨矿中球径和补加球制度的合理选择[J],新疆色金属,1997,(4).
    40.刘嘉荔.关于调整磨机介质装载提高磨矿效率的初探[J],国外金属矿选矿1998,(6).
    41. R.Blickensderfer, J.H.Tylczak et al. The effect of heat treatment on spalling of a Cr-Mo white cast iron, Wear of materials ASME,1983:471.
    42.刘连香等.磨矿动力学及其在选择计算球介质中应用的研究[J],16届IMPC论文,1987,2.
    43.段希祥.我国粗磨球磨机钢球尺寸状况的分析[J],矿冶工程,Vol 18 No 1,1998.
    44.段希祥.球磨机钢球尺寸的理论计算研究[J],中国科学(A辑),No.8,1989.
    45.F.法巴什.矿物加工简史[J],第23届国际矿物加工大会论文,国外金属矿选矿,2007,4.
    46. I.Iwasaki等.球磨机研磨中腐蚀磨损与磨蚀磨损的特性v,国外金属矿选矿,1990,27(12).
    47. I.Iwasaki.磨剥与腐蚀在磨矿介质损耗中的作用及其对浮选的影响[J],国外金属矿选矿,1985,22(4).
    48.王鹏,宋陆琴等.浅谈如何评价磨矿介质[J],金属矿山,1990,(1).
    49.孙成林,王宏勋等.粗谈选矿磨矿介质的技术-经济-社会考虑因素[J],首届全国粉磨介质与耐磨材料技术研讨会论文集,1992.
    50.呈绍良,王宏勋等.我国新型磨矿介质材质研究、工业生产和推广应用综合述评[J],首届全国粉磨介质与耐磨材料技术研讨会论文集,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700