精细化黄麻纤维制备、纺纱技术及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然纤维素纤维具有良好的综合服用性能,深受广大消费者的青眯,且资源丰富,可生物降解,可循环再生,符合绿色生态和可持续发展要求,市场发展前景广阔。棉纤维是第一大天然纤维,但由于受到耕地面积、种植条件等因素的制约,其供需矛盾日益突出,迫切需要寻求新型非棉纤维素纤维资源。黄麻从产量上作为仅次于棉纤维的第二大天然纤维素纤维,具有产量大、价格低、力学性能优良等优势,同时还具有吸湿性好、抗菌性优良等优点。但由于精细化技术和纺纱技术未能取得突破,黄麻纤维还存在粗、硬、抱合力差等缺点,无法纺制细度较高的纱线,从而限制了黄麻纤维在高档纺织服装领域的应用。
     本文在总结前人研究成果的基础上,提出选用化学-生物联合精细化技术制备黄麻纤维。在化学法精细化研究中,以黄麻纤维细度、断裂强度、残胶率和木质素含量为指标,分析探讨了氢氧化钠和亚硫酸钠浓度、煮练时间、煮练温度及浴比对各指标的影响:在生物酶法精细化研究中,采用正交分析法计算得出了最佳生物酶浓度、处理时间和处理温度。本文采用红外光谱法和化学成分分析法对黄麻纤维成分研究表明,化学法除去了黄麻纤维中绝大部分半纤维素与部分木质素,漆酶进一步除去了黄麻纤维中的部分木质素。XRD分析表明,随着半纤维素和部分木质素成分的去除,黄麻纤维的结晶度逐步提高。
     化学-生物联合精细化处理后黄麻纤维的细度虽然显著提高,但仍具有弯曲刚度大、成网抱合力差等缺点,在棉型梳理机上成网困难,无法进行纺纱。因此,本文研究了黄麻纤维的纺前改性处理,通过SEM图片和FTIR图谱分析,并结合纤维摩擦系数测试结果,研究了高浓度(300g/L)和低浓度(25g/L)有机硅油试剂对黄麻纤维可绕度的作用机理,发现低浓度时硅油试剂仅存在于黄麻纤维表面,而高浓度时有机硅油不但渗透进入了黄麻纤维内部,还包覆在纤维表面,显著降低了黄麻纤维的动、静摩擦系数,纤维可绕度也显著提高。
     分别采用紧密纺技术和传统环锭纺技术纺制了黄麻/棉混纺纱,对比研究发现,紧密纺混纺纱的断裂强度高于相应的传统环锭纺纱,但提高并不显著;而断裂伸长率却显著提高。紧密纺混纺纱的条干、毛羽值、棉结和粗、细节等指标均优于传统环锭纱;但由于网格圈原因,紧密纺纱机无法纺制黄麻比例高于50%的混纺纱。因此,本文采用传统环锭纺纱技术纺制了黄麻比例为30%~70%的系列黄麻/棉混纺纱,并借助2参数Weibull模型预测纱线强度随隔距的变化规律。研究发现:混纺纱中的弱节数量越多,其断裂强度随测试隔距的力学衰减就越严重。纱线的断裂强度随隔距的力学衰减会降低织造效率,因此成纱过程中应着重控制和减少黄麻/棉混纺纱的细节数量。
     本文在研究黄麻纤维断裂强度时发现,传统2参数Weibull模型由于没有考虑到纤维直径的变异因素,而无法准确预测黄麻纤维的断裂强度,因此本文根据纤维直径变异的对数值与测试隔距对数值之间存在线性关系计算得出黄麻纤维Weibull参数γ值等于0.3474,推导出了改进的黄麻纤维Weibull强度方程为:(?)=σ_0(L/L_0)~(-r/m)Γ(1+(1/m))(其中m为Weibull模量,σ_0为尺度参数,L为测试隔距,L_0为单位长度,Γ为伽玛函数)。试验验证表明:改进的Weibull方程比传统的2参数Weibull方程更加精确。黄麻与棉纤维的尺度效应研究表明,棉纤维断裂强度和断裂伸长率符合传统的2参数Weibull方程,为典型的Weibull纤维。
     本文以改进的黄麻纤维Weibull力学方程为基础推导出黄麻/棉混纺纱断裂强度方程为:σ_y=(V_J+V_C(E_C/E_J)σ_(0J)(l_(cJ)~(γ))~(-1/m_J)exp(-1/m_J)cos~2θ′(其中V_J、V_C分别为黄麻纤维和棉纤维的体积含量,E_J和E_C为黄麻纤维和棉纤维的模量,σ_(0J)为黄麻纤维Weibull特征强度,l_(cJ)为黄麻纤维最小破碎长度,γ为黄麻纤维的Weibull参数γ,m_J为黄麻纤维Weibull模量,θ′为纱线断裂时纤维螺旋角)。研究发现L_f/l_c比值,即纤维在混纺纱中最小破碎次数,对混纺纱的断裂强度有重要的影响:混纺纱线的断裂强度随着L_f/L_c比值的增加而增大。ln(拉伸隔距)与ln(黄麻纤维断裂伸长率)有很高的线性关系,由此推导出了纤维断裂伸长率ε_f与最小破碎长度l_c的关系为:ε_f=8.5634·l_c~(-0.4343),并首次计算得出混纺纱中纤维的最小破碎长度lc。讨论分析表明:随着黄麻纤维混纺比的提高和测试隔距的增加,黄麻纤维最小破碎长度也随之提高;但由于黄麻纤维的加入使得混纺纱的CV值增大、弱节增多,导致了混纺纱中黄麻纤维断裂次数(L_f/l_c比值)减少,因而降低了黄麻混纺纱的断裂强度。
The fibrics made from natural cellulose fibre have good wearability and properties such as biodegradable,renewable,eco-friendly,and sustainable.The cellulose fibre will have a bright prospects in the future.The supply of the cotton fibre can not meet the needs of textile industry in China.The output of cotton fibre can not be increased largely due to the restriction of the plantation and planting condition.Therefore,more and more novel natural cellulose fibres have been developed.Jute fibre which occupies the second place to cotton in the output has many advantages such as high output,low price,good mechanical properties,excellent moisture absorption and antibacterial properties.However,it is difficult for the jute fibres to be spun into the finer yarns because the jute also has a few undesirable properties,such as stiffness, harshness and there are no turns on the fibre.Therefore,the jute fibre can not be used for clothes.
     Based on the investigations of the previous researchers,chemical and enzyme treatment was the most promising method for degumming the jute fibre.For the chemical treatment,the effect on jute fibre properties by sodium hydroxide concentration,sodium sulfite concentration,treatment time,treatment temperature and liquor ratio was studied in detail.For the enzyme treatment,the concentration of enzyme,treatment time and treatment temperature were optimized by using of an orthogonal experimental design.The chemical composition and crystallinity index of jute fibre were also investigated in this paper,the results show that most of the hemicellulose and part of lignin in jute fibre was removed by the chemical treatment. The lignin content was removed further after the laccase treatment.The crystallinity index of jute fibre was increased after chemical and enzyme treatment.
     After the chemical and enzyme treatment,jute fibres also show prominent stiffness and harshness properties,which offer hindrance to its smooth,truble-free spinning for web and yarn making.So,jute fibre is essentially conditioned for easy spinning modification by adding oil and water.The mechanism on softness of jute fibre by silicone oil treated at 300 g/L and 25 g/L was studied by using of SEM,FTIR and fibre friction coefficient testing.The results show that for the case of 25 g/L,the macromolecule of silicone oil was only on the surface of the fibre.For the case of 300 g/L,the surface of jute fibre was covered by the thick macromolecule of silicone oil and the macromolecule of silicone oil penetrated the inner structure of jute fibre. Therefore,the dynamic and static friction coefficient of jute fibre decreased after treatment at 300 g/L which results in increasing of the softness of jute fibre
     The breaking strength of compact jute/cotton yarns was slightly higher than the corresponding traditional ring blended yarns.Whereas,the breaking strain of compact jute/cotton yarns was obviously higher than the corresponding traditional ring yarns. The compact blended yarns have lower irregularities,less thin places,and smaller the number of thick places than that of traditional ring blended yarns.When there were more than 50%jute fibres in the blend,the roving could not be spun into yarn on the compact spinning frame because the perforated lattice apron is not suitable for the jute fibre.Therefore,the blended yarns with jute proportion from 30%to 70%were spun by the traditional ring spinning technology and the relationship between breaking strength and gauge length was predicted by Weibull distribution.The results show that the J70/C30 yarn decreases more sharply than the other yarns because there are more weak points in J70/C30 yarn than of the others.The tensile behaviour of the yarn at different gauge lengths is very important for practices such as warping,sizing, beaming,and weaving.So it is crucial to reduce the number of thin places in the jute/cotton blended yarns.
     The two-parameter Weibull distribution does not always adequately describe the experimental bast fibre strength at different gauge lengths.For this reason,it was modified by incorporating the diameter variation(Weibull parameterγ) of jute fibres in this paper.The results show that the Weibull parameterγwas equal to 0.3474 according to the slope of liner regression between ln(Coefficient of variations of fibre diameter) and ln(gauge length).The modified Weibull distribution for jute fibre can be written as(?)=σ_0(L/L_0)~(γ/m)Γ(1+1/m),where m is Weibull modulus,σ_0 is the characteristic strength,L is gauge length,L_0=1 mm,Γis the gamma function.The breaking strength of jute fibre at 2 mm,3 mm,and 4 mm gauge lengths can be predicted by the modified Weibull distribution more accurately than that of two-parameter Weibull distribution.The investigation of scale effect on jute and cotton fibre indicated that both of the breaking strength and breaking strain of cotton fibre were fit to the two-parameter Weibull distribution.The cotton fibre is so-called classical Weibull fibre.
     Based on the modified Weibull distribution for jute fibre,the breaking strength of jute/cotton yarn can be given by:σ_y=(V_j+V_C(E_C/E_J))σ_(0J)(l_(cJ)~(?)m_J)~(-1/mJ) exp(-1/m_J)cos~2θ' where V_J and V_C were fibre volume fraction for jute and cotton,E_J and E_C were fibre tensile modulus for jute and cotton,σ_(0J) and l_(cJ) were characteristic strength for jute and cotton,m_J was the Weibull modulus for jute fibre,andθ' was helix angle of the fibre at the time of yarn failure.The results show that the breaking strength of jute/cotton blended yarn is determined by the level of L_f/l_c ratio:the breaking strength of jute/cotton blended yarn increases with the increasing of the value of L_f/l_c.There is a good linearity between ln(breaking strain of jute fibre) and ln(gauge length),therefore the critical length(l_c) can be obtained byε_f =8.5634·l_c~(-0.4343),where is the breaking strain of jute fibre in the blended yarn.The critical length of jute fibre increases as more jute fibres are added in the blended yarn and the critical length of jute fibre decreases with the increasing of gauge length.However,in practice,the value of L_f/l_c decreases because the increasing of thin places and CV value of the blended yarn when more jute fibre are added in the blended yarn.
引文
[1]梅自强.我国棉纺织工业十一五展望.棉纺织技术,2007,35,2-4.
    [2]梅自强.我国棉纺织行业面临的挑战与应对措施.棉纺织技术,2008,36,2-4.
    [3]Basu G,De S.S.,Samanta A.K.Effect of Bio-Friendly Conditioning Agents on Jute Fibre Spinning.Industrial Crops and Products,2008,28,400-404.
    [4]Mukherjee A.,Ganguly P.K.,Sur D.Structural Mechanics of Jute:The Effects of Hemicellulose or Lignin Removal.Journal of Textile Institute,1993,84,348-353.
    [5]Basu G,Chattopadhyay S.N.Ambient Temperature Bleaching of Jute Fibre - Its Effect on Yarn Properties and Dyeing Behaviour.Indian Journal of Fibre & Textile Research,1996,21,217-222.
    [6]Ghosh P.,Samanta A.K.,Basu G Effect of Selective Chemical Treatments of Jute Fibre on Textile-Related Properties and Processibility.Indian Journal of Fibre & Textile Research,2004,29,85-99.
    [7]Bisanda E.T.N.,Ansell M.P.Properties of Sisal-Cnsl Composites.Journal of Materials Science,1992,27,1690-1700.
    [8]Sridhar M.K.,Basavarajappa G.,Kasturi S.G.,Balasubramanian.Evaluation of Jute as a Reinforcement in Composites.Indian Journal of Fibre & Textile Research,1982,7,87-92.
    [9]Mohanty A.K.,Misra M.,Hinrichsen G.Biofibres,Biodegradable Polymers and Biocomposites:An Overview.Macromolecular Materials and Engineering,2000,276/277,1-24.
    [10]张瑞寅,薛文良,余燕平,俞建勇,程隆棣.黄麻产品的开发及其市场前景.纺织导报.2005(8).-50-50,52,57.
    [11]陈琼华,于伟东.黄麻和红麻单纤维的形态及特征.东华大学学报:自然科学版.2007,33(2).-265-269.
    [12]陈琼华,于伟东.黄麻纤维的形态结构及组分研究现状.中国麻业.2005,27(5).-254-258,239.
    [13]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang F.Y.Study on the Tensile Properties of Jute/Cotton Blended Yarns Using Weibull Distribution.86th Textile Institute World Conference,HongKong,2008,1819-1824.
    [14]夏兆鹏,俞建勇,刘丽芳,刘东升,程隆棣,刘国忠.物理细化工艺对黄麻纤维性能的影响.纺织学报.2008,29(7).-27-29.
    [15]姚穆,周锦芳,黄淑珍.纺织材料学.中国纺织出版社:北京,2000.
    [16]Mukherjee A.,Ganguly P.K.,Sur D.Structural Mechanics of Jute:The Effects of Hemicellulose or Lignin Removal.Journal of Textile Institute,1993,84,384-353.
    [17]Rahman M.M.M.A Study by Scanning Electron Microscopy of the Progressive Delignification of Jute Fibres.Journal of Textile Institute,1978,69,291-293.
    [18]Sarkar P.B.,Mazumdar A.K.,Pal K.B.The Hemicelluloses of Jute Fibre.Journal of Textile Institute,1948,39,T45-T48.
    [19]Srivastava H.C.,Adams G.A.Uronic Acid Components of Jute Fiber Hemicellulose.Journal of the American Chemical Society,1959,81,2409-2412.
    [20]Dutton G.G.S.,Rogers I.H.The Occurrence of 2-O-(4-O-Methy-D- Glucpyranosiduronic Acid)-D-Xylose in Jute Hemicellulose.Journal of the American Chemical Society,1959,81,2413-2415.
    [21]Majumder A.,Samajpati S.,Ganguly P.K.Swelling of Jute:Heterogengeity of Crimp Formation Textile Research Journal,1980,50,575-578.
    [22]Mukherjee A.C.,Mukhopadhyay A.K.,Sarkar B.K.,Dutt A.S.,Mukhopadhyay U.Liquid Ammonia Mercerization of Jute Fiber.Textile Research Journal,1981,51,40-44.
    [23]Mukherjee A.C.,Mukhopadhyay U.Infrared Spectra of Jute Fibres at Different Stages of Growth.Textile Research Journal,1983,53,473-475.
    [24]Dutta A.K.,Ghosh B.L.,Aditya R.N.The Enzymatic Softening and Upgrading of Lignocellulosic Fibres Part Iii:Pre-Treatment of Jute with Enzymes for Fine-Yarn Spinning.Journal of the Textile Institute,2000,91,28-34.
    [25]Ali M.,Islam M.N.,Mian A.J.,Chowdhury A.M.S.Adapting the Principle of Neutral Sulphite Cooking for Modification of Textile Quality of Jute Fibre.Indian Journal of Fibre &Textile Research,2000,25,298-302.
    [26]Ali M.,Islam M.N.,Mian A.J.,Chowdhury A.M.S.Modification of Jute Fibre by Sulphonation for Diverse Textile Use.Journal of the Textile Institute,2001,92,34-43.
    [27]Lu S.S.,Chen J.H.,Huang X.B.Mechanism of Kenaf Retting Using Aerobes.Journal of Dong Hua University(Eng.Ed.),2001,18,55-58.
    [28]Chattopadhyay S.N.,Pan N.C.,Day A.Pseudo Single-Bath Process for Ambient Temperature Bleaching and Reactive Dyeing of Jute.Indian Journal of Fibre & Textile Research,2003,28,450-455.
    [29]Pan N.C.,Chattopadhyay S.N.,Day A.Pseudo Single-Bath Process for Alkali Treatment and Bleaching of Jute at Ambient Temperature.Indian Journal of Fibre & Textile Research,2004,29,79-84.
    [30]Zheng L.J.,Du B.,Liu J.Y.Mechanism of Biological Enzymatic Single Bath Process Degumming and Modification for Jute & Kenaf Bast Fiber.83rd TIWC,Shanghai,China,2004,23-27.
    [31]郑来久,刘剑宇.红麻全酶法脱胶工艺及机理研究.纺织学报,2004,24,46-47.
    [32]郑来久,刘剑宇.黄红麻微生物脱胶影响因素及机理研究.东华大学学报(自然科学版),2004,30,66-69.
    [33]Salam M.A.Effect of Hydrogen Peroxide Bleaching onto Sulfonated Jute Fiber.Journal of Applied Polymer Science,2006,99,3603-3607.
    [34]Reddy N.,Yang Y.Q.Biofibers from Agricultural Byproducts for Industrial Applications.Trends in biotechnology,2005,23,22-27.
    [35]周文龙.酶纺织中的应用.中国纺织出版社:北京,2002.
    [36]Bruhlmann F.,Leupin M.,Erismann K.H.,Fiechter A.Enzymatic Degumming of Ramie Bast Fibers.Journal of Biotechnology,2000,76,43-50.
    [37]刘正初,彭源德.苎麻生物脱胶新技术工业化生产应用研究.纺织学报,2001,22,27-29.
    [38]刘正初,罗才安.苎麻生物脱胶技术应用研究.纺织学报,1991,12,18-20.
    [39]蒋国华.苎麻微生物脱胶研究.纺织学报,2001,22,47-48.
    [40]郑皆德,李玉玲.苎麻酶法脱胶新工艺的应用研究.纺织学报,2002,23,66-67.
    [41]Akin D.E.,Foulk J.A.,Dodd R.B.,Mcalister D.D.Enzyme-Retting of Flax and Characterization of Processed Fibres.Journal of Biotechnology,2001,89,193-203.
    [42]Akin D.E.,Condon B.,Sohn M.,Foulk J.A.,Dodd J.A.,Rigsby L.L.Optimization for Enzyme-Retting of Flax with Pectate Lyase.Industrial Crops and Products,2007,25,136-146.
    [43]Ossola M.,Galante Y.M.Scouring of Flax Rove with the Aid of Enzymes.Enzyme and Microbial Technology,2004,34,177-186.
    [44]Sharma H.S.S.,Whiteside L.,Kernaghan K.Enzymatic Treatment of Flax Fibre at the Roving Stage for Production of Wet-Spun Yam.Enzyme and Microbial Technology,2005,37,386-394.
    [45]Ren X.H.,Buschle-Diller G.Oxidoreductases for Modification of Linen Fibers.Colloids and Surfaces a-Physicochemical and Engineering Aspects,2007,299,15-21.
    [46]郑喜群,刘晓兰.亚麻生物脱胶新方法及其比较.纺织学报,2001,22,231-233.
    [47]俞春华,冯新星,贾长兰,陈建勇.大麻纤维高温-酶联合脱胶技术.纺织学报,2007,28,79-82.
    [48]Kapoor M.,Beg Q.K.,Bhushan B.,Singh K.,Dadhich K.S.,Hoondal G.S.Application of an Alkaline and Thermostable Polygalacturonase from Bacillus Sp.Mg-Cp-2 in Degumming of Ramie(Boehmeria Nivea) and Sunn Hemp(Crotalaria Juncea) Bast Fibres.Precess biochemistry,2001,36,803-807.
    [49]Kozlowski R.,Batog J.,Konczewicz W.,Mackiewicz-Talarczyk M.,Muzyczek M.,Sedelnik N.,Tanska B.Enzymes in Bast Fibrous Plant Processing.Biotechnology Letters,2006,28,761-765.
    [50]Chatterjee K.N.,Mukhopadhyay A.,Mitra B.,Samanta A.K.Some Studies on Jute/Polypropylene Blended Fabric Characteristics.Indian Journal of Fibre & Textile Research,1997,22,112-118.
    [51]秦贞俊.黄麻纤维混纺纱及织物.麻纺织技术.1997,20(3).-43-44.
    [52]郁崇文.转杯纺纺制黄麻/棉混纺纱.麻纺织技术.1998,21(3).-6-9.
    [53]Tao W.Y.,Calamari T.A.,Yu C.W.,Chen Y.Preparing and Characterizing Kenaf/Cotton Blended Fabrics.Textile Research Journal,1999,69,720-724.
    [54]Roy A.N.,Basu G.,Majumder A.A Study on Wrap-Spun Jute Yarn with Cellulosic Yarn as Wrapping Element.Indian Journal of Fibre & Textile Research,2000,25,92-96.
    [55]Roy A.N.,Basu G.Studies on Tensile Responses of Wrap-Spun Jute Yarn.Indian Journal of Fibre & Textile Research,2001,26,246-250.
    [56]Roy A.N.,Basu G.A Comparative Study of the Wrap-Spun,Flyer-Spun Covered and Conventional All-Jute Yams.Indian Journal of Fibre & Textile Research,2000,25,177-181.
    [57]Sett S.K.,Mukherjee A.,Sur D.Tensile Characteristics of Rotor and Friction Spun Jute Blended Yarns.Textile Research Journal,2000,70,723-728.
    [58]郑来久,郁崇文.红黄麻纤维化学改性及纺麻棉混纺纱.大连轻工业学院学报.2002,21(2).-145-148.
    [59]夏兆鹏,俞建勇,程隆棣,刘丽芳,刘国忠.一种物理精细化黄麻混纺纱及其制备方法.2007
    [60]俞建勇,夏兆鹏,程隆棣,刘丽芳,刘东升,刘国忠.一种养生黄麻混纺纱及其制备方法.2007
    [61]Basak M.K.,Ghosh S.K.,Jain A.K.,Ghosh A.Suitablility of Different of Iils for Processing of Jute in a Miniature Spinning System.Institution of Engineers Journal(India):Textile Engineering Division,1992,73,48.
    [62]Samanta A.K.,Basu G.,Ghosh P.Enzyme and Silicone Treatments on Jute Fibre.Part Ⅰ:Effect on Textile-Related Properties.Journal of the Textile Institute,2008,99,295-306.
    [63]Basu G.,Samanta A.K.,Ghosh P.Enzyme and Silicone Treatments on Jute Fibre.Part Ii:Effect on Process Performance During Yarn Making and Yarn Properties.Journal of the Textile Institute,2008,99,307-316.
    [64]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang W.M.Study on the Breaking Strength of Jute Fibres Using Modified Weibull Distribution.Composites Part a-Applied Science and Manufacturing,2009,40,54-59.
    [65]Ingle N.P.,Doke.Analysis of Sunnhemp Fibers Processed Using Jute Spinning System.Industrial Crops and Products,2006,23,253-243.
    [66]Xia Z.P.,Yu J.Y.,Liu L.F.,Wang F.Y.Study on Properties of Jute Fibres Produced on Ring Spinning System.Journal of Donghua University(Eng.Ed.),2009,25,1-4.
    [67]Regasamy R.S.,Ishtiaque S.M.,Ghosh A.Prediction of Spun Yarn Strength at Different Gauge Lengths Using Weibull Distribution.Indian Journal of Fibres & Textile Research,2005,30,283-289.
    [68]Pan N.,Chen H.C.,Thompson J.,Inglesby M.K.,Khatua S.,Zhang X.S.,Zeronian S.H.The Size Effects on the Mechanical Behaviour of Fibres.Journal of Materials Science,1997,32,2677-2685.
    [69]Peirce F.T.Tensile Tests for Cotton Yarns 5 - "The Weakest Link" Theorems on the Strengths of Long and Composite Specimens.Journal of Textile Institute,1926,17,355-368.
    [70]Raghunathan K., Subramaniam V., Srinivasamoorthy V. R. Studies on the Tensile Characteristics of Ring and Rotor Yams Using Modified Weibull Distribution. Indian Journal of Fibre & Textile Research, 2002, 27, 358-361.
    [71]Rengasamy R. S., Ishtiaque S. M., Ghosh A. Prediction of Spun Yarn Strength at Different Gauge Lengths Using Weibull Distribution. Indian Journal of Fibre & Textile Research, 2005, 30, 283-289.
    [72]Pan N., Zhao S. M., Hua T. Relationship between Scale Effect and Structure Levels in Fibrous Structures. Polymer Composites, 2000, 21, 187-195.
    [73]McCreight D. J., Feil R. W., Booterbaugh J. H. Short Staple Yarn Manufacturing. Carolina Academic Press: Durham, North Carolina, 1997.
    [74]EI Mogahzy Y. E. Selecting Cotton Fibre Properities for Fitting Reliable Equations to Hvi Data. Textile Research Journal, 1988, 58, 392-397.
    [75]Ethridge M. D., Towery J. D., Hembree J. F. Estimating Functional Relationship between Fibre Properties and the Strength of Open-End Spun Yarn. Textile Research Journal, 1982, 52, 35-45.
    [76]Gharehaghaji A. A., Shanbeh M., Palhang M. Analysis of Two Modeling Methodologies for Predicting the Tensile Properties of Cotton-Covered Nylon Core Yarns. Textile Research Journal, 2007, 77,565-571.
    [77]Ramey Jr H. H., Lawson R., Worley Jr S. Relationship of Cotton Fibre Properties to Yarn Tenacity. Textile Research Journal, 1977, 47, 685-691.
    [78]Cheng L., Adams D. L. Yarn Strength Prediction Using Neural Networks: Part I: Fiber Properties and Yam Strength Relationship. Textile Research Journal, 1995, 65, 495 - 500.
    [79]Rajamanickam R., Hansen S. M., Jayaraman S. Analysis of the Modelling Methodologies for Predicting the Strength of Air-Jte Spinning. Textile Research Journal, 1997, 67, 39-44.
    [80]Ramesh M. C, Rajamanickam R., Jayaraman S. The Predicting of Yarn Tensile Properties by Using Artificial Neural Networks. Journal of Textile Institute, 1995, 86, 459-469.
    [81]Hearle J. W. S. Theoretical Analysis of the Mechanics of Twisted Staple Fibre Yarns. Textile Research Journal, 1965,35, 1060-1071.
    [82]Monego C. J., Backer S. Tensile Ruprure of Blended Yarns. Textile Research Journal, 1968, 38, 762-766.
    [83]Hearle J. W. S. Theory of Mechanics of Staple Fibre Yarns, Structural Mechanics of Fibres, Yarns and Fabrics. John Wiley & Sons: England, 1969.
    [84]Hearle J. W. S. On the Theory of the Mechanics of Twisted Yarns. Journal of Textile Institute, 1969,60,95-101.
    [85]Fredrych I. A New Approach for Predicting Strength Properities of Yarn. Textile Research Journal, 1992, 62, 340-348.
    [86]Pan N. Development of a Constitutive Theory for Short Fibre Yaens Part I: Mechanics of Staple Yarn without Slippage Effect. Textile Research Journal, 1992, 62, 749-765.
    [87]Pan N. Development of a Constitutive Theory for Short Fibre Yaens Part Ii: Mechanics of Staple Yarn with Slippage Effect. Textile Research Journal, 1993, 63, 504-514.
    [88]Pan N. Prediction of Statistical Yarn Strength of Twisted Yarn Structure. Journal of Materials Science, 1993,28,6107-6114.
    [89]Frydrych I. Strength Properties of Cotton Blend Yarns. Textile Research Journal, 1994, 64, 198-208.
    [90]Ghosh A., Ishtiaque S. M., Rengasamy R. S. Analysis of Spun Yarn Failure. Part I: Tensile Failure of Yarns as a Function of Structure and Testing Parameters Textile Research Journal, 2005,75,731-740.
    [91]Ghosh A., Ishtiaque S. M., Rengasamy R. S. Analysis of Spun Yarn Failure. Part Ii: The Translation of Strength from Fiber Bundle to Different Spun Yarns. Textile Research Journal, 2005,75,741-744.
    [92]Liu T., Choi K.. F., Li Y. Mechanical Modeling of Singles Yarn. Textile Research Journal, 2007, 77, 123-130.
    [93]Ghosh A., Ishtiaque S., Rengasamy S., Mai P., Patnaik A. Predictive Modles for Strength of Spun Yarns: An Overview. AUTEX Research Journal, 2005, 5, 20-28.
    [94]Guha A., Chattopadhyay R., Jayadeva. Predictiing Yarn Tenacity: A Comparison of Mechanistic, Statistical, and Neural Nerwork Models. Journal of the Textile Institute, 2001, 92, 139-145.
    [95]El-Hattab H. E., El-Shaer M. H., Samra A. M. Evaluation of Fiber Properties of Single Cotton Plants as Related to Yarn Strength. Textile Research Journal, 1972,42,650-654.
    [96]Zurek W., Frydrych I., Zakrzewski S. A Method of Predicting the Strength and Breaking Strain of Cotton Yarn. Textile Research Journal, 18-987,57,439 - 444.
    [97]Wang X. G. Predicting the Strength Variation of Wool from Its Diameter Variation. Textile Research Journal, 2000, 70, 191-194.
    [98]Monego C. J., Backer S., Qiu Y. P., Machida K. Illustration of Stress-Strain Bechavior and Yarn Fragmentation in a Pseudo-Hybrid Composite System. Composites Science and Technology, 1994, 50,451 -456.
    [99]Realff M. L., Pan N., Seo M., Boyce M. C, Backer S. A Stochastic Simulation of the Failure Process and Ultimate Strength of Blended Continuous Yarns. Textile Research Journal, 2000, 70,415-430.
    [100]Weibull W. A Statistical Theory of Strength of Materials. In: Proceedings of the Royal Swedish Academy of Engineering Science (Ingeniorsvetenskapsakademiens Handlingar) 1939, 151,1-55.
    [101]Weibull W. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 1951, 18,293-297.
    [102]Daniel H. E. The Statistical Theory of the Strength of Bundles of Threads. proceeding of royal society, 1945, A183,405435.
    [103]Pan N., Postle R. Strengths of Twisted Blend Fibrous Structures: Theoretical Prediction of the Hybrid Effects. Journal of the Textile Institute, 1995, 86, 559-580.
    [104]Pan N., Hua T., Qiu Y. P. Relationship between Fiber and Yarn Strength. Textile Research Journal, 2001,71,960-964.
    [105]Zhang Y. P., Wang X. G, Pan N., Postle R. Weibull Analysis of the Tensile Behavior of Fibers with Geometrical Irregularities. Journal of Materials Science, 2002, 37, 1401-1406.
    [106]Pickering K. L., Beckermann G. W., Alam S. N., Foreman N. J. Optimising Industrial Hemp Fibre for Composites. Composites Part a-Applied Science and Manufacturing, 2007, 38, 461-468.
    [1]姚穆,周锦芳,黄淑珍.纺织材料学.中国纺织出版社:北京,2000;Vol.第二版.
    [2]王维明,蔡再生.黄麻纤维化学脱胶工艺的研究.印染助剂,2008,25,21-23.
    [3]史加强.亚麻生物化学加工与染整.中国纺织出版社:北京,2005.
    [4]杨淑惠 植物纤维化学(第三版).中国轻工业出版社:北京,2001.
    [5]Das Gupta P.C.,Sarkar P.B.The nature of the hemicelluloses of jute fiber Part Ⅱ.Textile Research Journal,1954,24,705-711.
    [6]Sarkar P.B.,Mazumdar A.K.,Pal K.B.The Nature of the Hemicelluloses of Jute Fiber Part ⅠTextile Research Journal,1952,22,529-534.
    [7]Reddy N.,Yang Y.Q.Biofibers from Agricultural Byproducts for Industrial Applications.Trends in biotechnology,2005,23,22-27.
    [8]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang W.M.Study on the breaking strength of jute fibres using modified Weibull distribution.Composites Part a-Applied Science and Manufacturing,2009,40,54-59.
    [9]Sarkar P.B.,Mazumdar A.K.,Pal K.B.The hemicelluloses of jute fibre.Journal of Textile Institute,1948,39,T45-T48.
    [10]Roy G.T.K.,Mukhopadhyay A.K.,Mukherjee A.K.Surface Features of Jute Fibre Using Scanning Electron Microscopy.Textile Research Journal,1984,54,874-882.
    [11]Ali M.,Islam M.N.,Mian A.J.,Chowdhury A.M.S.Modification of jute fibre by sulphonation for diverse textile use.Journal of the Textile Institute,2001,92,34-43.
    [12]Ali M.,Islam M.N.,Mian A.J.,Chowdhury A.M.S.Adapting the principle of neutral sulphite cooking for modification of textile quality of jute fibre.Indian Journal of Fibre & Textile Research,2000,25,298-302.
    [13]Mukherjee A.,Ganguly P.K.,Sur D.Structural Mechanics of Jute:The Effects of Hemicellulose or Lignin Removal.Journal of Textile Institute,1993,84,384-353.
    [14]Widsten P.,Kandelbauer A.Laccase applications in the forest products industry:A review.Enzyme and Microbial Technology,2008,42,293-307.
    [15]周文龙.酶纺织中的应用.中国纺织出版社:北京,2002.
    [16]王德骥 苎麻纤维素化学与工艺学—脱胶和改性.科学出版社:北京,2001.
    [17]付书玉,俞建勇,吴丽莉,刘丽芳,夏兆鹏,刘国忠.黄麻纤维高温脱胶工艺初探.纺织科技进展,2008,130,73-74.
    [18]Salam M.A.Effect of hydrogen peroxide bleaching onto sulfonated jute fiber.Journal of Applied Polymer Science,2006,99,3603-3607.
    [19]Barreca A.M.,Fabbrini M.,Galli C.,Gentili P.,Ljunggren S.Laccase/mediated oxidation of a lignin model for improved delignification procedures.Journal of Molecular Catalysis B-Enzymatic,2003,26,105-110.
    [20]Bruhlmann F.,Leupin M.,Erismann K.H.,Fiechter A.Enzymatic degumming of ramie bast fibers.Journal of Biotechnology,2000,76,43-50.
    [21]Kozlowski R.,Batog J.,Konczewicz W.,Mackiewicz-Talarczyk M.,Muzyczek M.,Sedelnik N.,Tanska B.Enzymes in bast fibrous plant processing.Biotechnology Letters,2006,28,761-765.
    [22]Tavares A.P.M.,Cristóv(?)o R.O.,Loureiro J.M.,Boaventura R.A.R.,Macedo E.A.Application of statistical experimental methodology to optimize reactive dye decolourization by commercial laccase. Journal of Hazardous Materials, 2009,162,1255-1260.
    [23] Tavares A. P. M.,Coelho M. A. Z.,Agapito M. S. M.,Coutinho J. A. P.,Xavier A. M. R. B. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Biochemistry and Biotechnology, 2006,134, 233-248.
    [24] Tavares A. P. M.,Cristovao R. O.,Loureiro J. M.Boaventura R. A. R.,Macedo E. A. Optimisation of reactive textile dyes degradation by laccase-mediator system. Journal of Chemical Technology and Biotechnology, 2008, 83,1609-1615.
    [25] Adamsen A. P. S.,Akin D. E.,Rigsby L. L. Chelating Agents and Enzyme retting of flax Textile Research Journal, 2002, 72, 296-302.
    [26] Kalmea S.Jadhavb S.,Jadhavb M.,Govindwar S. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme and Microbial Technology, 2009, 44, 65-71.
    [27] You J. X.,Meng J. J.,Chen X. X.,Ye H. L. Study on Direct Delignification with Laccase/Xylanase System. Journal of Wood Chemistry and Technology, 2008, 28, 227 - 239.
    [28] Rahman M. M. M. A Study By Scanning Electron Microscopy of The Progressive Delignification of Jute Fibres. Journal of Textile Institute, 1978, 69, 291-293.
    [29] Roy A. K.,Sen S. K.,Bag S. C.,Pandey S. N. Infrared Spectra of Jute Stick and Alkali-treated Jute Stick. Journal of Applied Polymer Science, 1991,42, 2943-2950.
    [30] Sinha E.,Rout S. K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. Journal of Materials Science, 2008,43, 2590-2601.
    [31] Ouajai S.,Shanks R. A. Composition Structure and Thermal Degradation of Hemp Cellulose after Chemical Treatments. Polymer Degradation and Stability, 2005, 89, 327-355.
    [32] Ray D.,Sarkar B. K.,Rana A. K.,Bose N. R. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Composites Part a-Applied Science and Manufacturing, 2001, 32, 119-127.
    [33] Sinha E.,Rout S. K. Effect of neutron irradiation on the structural, mechanical, and thermal properties of jute fiber. Journal of Applied Polymer Science, 2008, 110,413-423.
    [34] Wang W. M., Wang F., Cai Z. S., Yu J. Y. Tentative Research of Short Process of Jute Degumming and Bleaching. Journal of Dong Hua University (Eng. Ed.), 2008, 25,706-709.
    [1]俞建勇,夏兆鹏,程隆棣,刘丽芳,刘东升,刘国忠.一种养生黄麻混纺纱及其制备方法.申请号200710171278.5,2007.
    [2]Ghosh P.,Samanta A.K.,Basu G.Effect of selective chemical treatments of jute fibre on textile-related properties and processibility.Indian Journal of Fibre & Textile Research,2004,29,85-99.
    [3]Basu G.,De S.S.,Samanta A.K.Effect of bio-friendly conditioning agents on jute fibre spinning.Industrial Crops and Products,2008,28,400-404.
    [4]Basu G.,Chattopadhyay S.N.Ambient temperature bleaching of jute fibre - Its effect on yarn properties and dyeing behaviour.Indian Journal of Fibre & Textile Research,1996,21,217-222.
    [5]Dutta A.K.,Ghosh B.L.,Aditya R.N.The enzymatic softening and upgrading of lignocellulosic fibres Part Ⅲ:Pre-treatment of jute with enzymes for fine-yarn spinning.Journal of the Textile Institute,2000,91,28-34.
    [6]Atkinson R.R.Jute:Fibre to Yarn.Chemical Publishing Company:New York,USA,1965.
    [7]Stout H.P.Fibre and Yarn Quality in Jute-spinning.The Textile Institute:Manchester,UK,1988;Vol.3,46-47.
    [8]Chakrabarty S.K.,Sinha S.N.Enzyme additives technology for productivity improvement and cost reduction in jute processing.Journal of The Institution of Engineers(India),Textile Engineering Division,2001,82,1-4.
    [9]Badsk M.K.,Ghodh S.K.,Jain A.K.,Ghosh A.Suitability of different oils for processing of jute in a miniature spinning system.The Institution of Engineers(India),Textile Engineering Division,1992,73,48-50.
    [10]Rahman M.M.M.The contamination of jute products.Journal of Textile Institute,2001,92, 146-149.
    [11]查克拉伯蒂,辛哈.改善黄麻工业生产率的黄麻和/或类似纤维的增效润滑组合物.ZL97111607.5,1997.
    [12]Sinha M.K.,Nandy S.,Mitra S.,Sengupta D.,Dutta P.,Das F.,Chakraborty S.C.Selection for textile quality in Tossa jute(Corchorus olitorius L.) advanced generations.Sabrao Journal of Breeding and Genetics,2008,40,63-68.
    [13]陈琼华,于伟东.黄麻和红麻单纤维的形态及特征.东华大学学报:自然科学版.2007,33(2).-265-269.
    [14]陈琼华,于伟东.黄麻纤维的形态结构及组分研究现状.中国麻业.2005,27(5).-254-258,239.
    [15]Mohany A.K.,Misra M.Study on Jute Composite - A Literature Review.Polymer - Plastics Technology and Engineering,1995,34,729-792.
    [16]Ingle N.P.,Doke.Analysis of Sunnhemp fibers processed using jute spinning system.Industrial Crops and Products,2006,23,253-243.
    [17]于伟东,章跃庭,刘洪涛.一种用于脱胶麻类纤维的拉伸细化处理剂和工艺.ZL200410024649.3,2004.
    [18]金佳燕,程隆棣,薛文良.黄麻纤维细化工艺的探讨.纺织导报.2006(4).-60-60,62-64.
    [19]俞建勇,刘国忠,余燕平,张熙明,蔡再生,张振华,顾肇文,薛文良,张瑞寅,金佳燕,王维明,程隆棣.一种黄麻的梳理细化方法.ZL200510111705.1,2005.
    [20]俞建勇,刘国忠,余燕平,张熙明,蔡再生,张振华,顾肇文,薛文良,张瑞寅,金佳燕,王维明,程隆棣.一种黄麻的牵伸细化方法.ZL200510111706.6,2005.
    [21]Purohit P.,Somasundaran P.,Kulkarni R.Study of properties of modified silicones at solid-liquid interface:Fabric-silicone interactions.Journal of Colloid and Interface Science,2006,298,987-990.
    [22]王金伟,陈磊,陶然,李文波.有机硅改性聚氨酯的合成及其防腐性能研究.中国涂料.2006,21,29-31.
    [23]杨金胜,李承业,付学红,翟荣霞,高凯,郭世强.高活性硅氢加成反应用催化剂的合成及应用.有机硅材料,2006,20,26-28.
    [24]Ouajai S.,Shanks R.A.Composition Structure and Thermal Degradation of Hemp Cellulose after Chemical Treatments.Polymer Degradation and Stability,2005,89,327-355.
    [25]Burrell M.C.,Butts M.D.,Derr D.,Genovese S.,Perry R.J.Angle-dependent XPS study of functional group orientation for aminosilicone polymers adsorbed onto cellulose surfaces.Applied Surface Science,2004,227,1-6.
    [26]于伟东,储才元.纺织物理.东华大学出版社:上海,2002.
    [27]夏兆鹏,俞建勇,程隆棣,刘丽芳,刘国忠.一种物理精细化黄麻混纺纱及其制备方法.申请号200710171279.X,2007.
    [28]任家智 纺纱原理.纺织工业出版社:北京,2002;Vol.第一版.
    [29]Reddy N.,Yang Y.Q.Biofibers from Agricultural Byproducts for Industrial Applications.Trends in biotechnology,2005,23,22-27.
    [1] Sett S. K.,Mukheijee A.,Sur D. Tensile characteristics of rotor and friction spun jute blended yarns. Textile Research Journal, 2000, 70, 723-728.
    [2] Celik P.,Kadoglu H. A Research on the Compact Spinning for Long Staple Yarns. Fibres & Textiles in Eastern Europe, 2004, 12, 27-31.
    [3] Czekalski J.,Cyniak D., Jackowski T.,Sieradzki K. Quality of Wool-Type Compact Yarns from Twisted and Rubbed Roving. Fibres & Textiles in Eastern Europe, 2007, 15.
    [4] Krifa M.,Ethridge M. D. Compact Spinning Effect on Cotton Yarn Quality: Interactions with Fibre Charateristics. Textile Research Journal, 2006, 75, 388-399.
    [5] Goktepe F.,Yilmaz D.,Goktepe O. A comparison of compact yarn properties produced on different systems. Textile Research Journal, 2006, 76, 226-234.
    [6] Jackowski T.,Cyniak D.,Czekalski J. Compact Cotton Yarn. Fibres & Textiles in Eastern Europe, 2004, 12,22-26.
    [7] Ozguney A. T.,Taskin P.,Gurkan P., Ozerdem G,Qzerdem A. Properties of printed fabrics woven with compact -versus ring-spun yarns. Aatcc Review, 2006,44-47.
    [8] Ozturk M.,Nergis B. U. Determining the dependence of colour values on yarn structure. Coloration Technology, 2008, 124, 145-150.
    [9] Ingle N. P.,Doke. Analysis of Sunnhemp fibers processed using jute spinning system. Industrial Crops and Products, 2006, 23, 253-243.
    [10] McCreight D. J.,Feil R. W.,Booterbaugh J. H. Short staple yarn manufacturing. Carolina Academic Press: Durham, North Carolina, 1997; 441-443.
    
    [11] Ghosh A.,Ishtiaque S.,Rengasamy S.,Mal P.,Patnaik A. Predictive modles for strength of spun yarns: an overview. AUTEX Research Journal, 2005, 5, 20-28.
    
    [12] Pan N.,Zhao S. M.,Hua T. Relationship between scale effect and structure levels in fibrous structures. Polymer Composites, 2000, 21, 187-195.
    
    [13] Bazant Z. P. Size effect. International Journal of Solids and Structures, 2000, 37, 69-80.
    [14] Regasamy R. S.,Ishtiaque S. M., Ghosh A. Prediction of spun yarn strength at different gauge lengths using Weibull distribution. Indian Journal of Fibres & Textile Research, 2005, 30, 283-289.
    [15] Pan N.,Chen H. C.,Thompson J., Inglesby M. K.,Khatua S.,Zhang X. S.,Zeronian S. H. The size effects on the mechanical behaviour of fibres. Journal of Materials Science. 1997, 32, 2677-2685.
    [16] Peirce F. T. Tensile tests for cotton yarns 5 - "the weakest link" Theorems on the strengths of long and composite specimens. Journal of Textile Institute, 1926, 17, 355-368.
    [17] Raghunathan K.,Subramaniam V.,Srinivasamoorthy V. R. Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution. Indian Journal of Fibre & Textile Research. 2002, 27, 358-361.
    [18] Rengasamy R. S., Ishtiaque S. M.,Ghosh A. Prediction of spun yarn strength at different gauge lengths using Weibull distribution. Indian Journal of Fibre & Textile Research, 2005, 30, 283-289.
    [19] Realff M. L.,Seo M.,Boyce M. C.,Schwartz P.,Backer S. Mechanical Properties of Fabrics Woven from Yarns Produced by Different Spinning Technologies: Yarn Failure as a Function of Gauge Length. Textile Research Journal, 1991, 61, 517-530.
    [20]Pan N.,Chen H.C.,Thompson J.,Jnglesby M.K.,Khatua S.,Zhang X.S.,Zeronian S.H.The size effects on the mechanical behaviour of fibres.Journal of Materials Science,1997,32,2677-2685.
    [21]Roy A.N.,Basu G.A comparative study of the wrap-spun,flyer-spun covered and conventional all-jute yarns.Indian Journal of Fibre & Textile Research,2000,25,177-181.
    [22]Basal G.,QOxenham W.Comparison of properties and structures of compact and conventional spun yarn.Textile Research Journal,2006,76,567-575.
    [23]Yilmaz D.,G(o|¨)ktepe F.,G(o|¨)ktepe O.,Kremenakova D.Packing Density of Compact Yams.Textile Research Journal,2007,77,661-667.
    [24]Sharma I.C.,Chattejee K.N.,Mukhopadhyay A.,Ray N.C.Some studies on properties of wrapped jute/acrylic(parafil) yarns.Indian Journal of Fibre & Textile Research,1997,22,89-93.
    [25]李瑞洲.Tencel纤维纺纱牵伸力分析.纺织标准与质量,1999,20-22.
    [26]于伟东,储才元.纺织物理.东华大学出版社:上海,2002.
    [27]夏兆鹏,俞建勇,刘丽芳,刘东升,程隆棣,刘国忠.物理细化工艺对黄麻纤维性能的影响.纺织学报.2008,29(7).-27-29.
    [28]Zhang Y.P.,Wang X.G.,Pan N.,Postle R.Weibull analysis of the tensile behavior of fibers with geometrical irregularities.Journal of Materials Science,2002,37,1401-1406.
    [29]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang F.Y.Study on the Tensile Properties of Jute/cotton Blended Yarns Using Weibull Distribution.86th Textile Institute World Conference,HongKong,2008,1819-1824.
    [30]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang W.M.Study on the breaking strength of jute fibres using modified Weibull distribution.Composites Part a-Applied Science and Manufacturing,2009,40,54-59.
    [31]Pickering K.L.,Murray T.L.Weak link scaling analysis of high-strength carbon fibre.Composites Part a-Applied Science and Manufacturing,1999,30,1017-1021.
    [1] Zhang Y. P.,Wang X. G.,Pan N.,Postle R. Weibull analysis of the tensile behavior of fibers with geometrical irregularities. Journal of Materials Science, 2002, 37, 1401-1406.
    [2] Weibull W. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 1951, 18,293-297.
    [3] Pickering K. L.,Murray T. L. Weak link scaling analysis of high-strength carbon fibre. Composites Part a-Applied Science and Manufacturing, 1999, 30, 1017-1021.
    [4] Anserson J., Joffe R., Hojo M., Ochiai S. Glass fibre strength distribution determined by common experimental methods. Composites Science and Technology, 2002, 62, 131-145.
    [5] Paramonov Y.,Andersons J. A family of weakest link models for fiber strength distribution. Composites Part a-Applied Science and Manufacturing, 2007, 38, 1227-1233.
    [6] Pickering K. L.,Beckermann G. W.,Alam S. N., Foreman N. J. Optimising industrial hemp fibre for composites. Composites Part a-Applied Science and Manufacturing, 2007, 38, 461-468.
    [7] Zhang Y. P.,Wang X. G,Pan N. Weibull analysis of the tensile behavior of fibers with geometrical irregularities. Journal of Materials Science, 2002, 37, 1401-1406.
    [8] Doan T. T. L.,Gao S. L.,Mader E. Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 2006, 66, 952-963.
    [9] Wilson D. M. Statistical tensile strength of Nextel? 610 and Nextel~(TM) 720 fibres. Journal of Materials Science, 1997, 32, 2535-2542.
    [10]Xia Z. P.,Yu J. Y.,Cheng L. D., Liu L. F.,Wang W. M. Study on the breaking strength of jute fibres using modified Weibull distribution. Composites Part a-Applied Science and Manufacturing, 2009,40, 54-59.
    
    [11] Wang Y.,Xia Y. M., Jiang Y. X. Tensile Behaviour and Strength Distribution of Polyvinyl-Alcohol Fibre at High Strain Rates. Applied Composite Materials, 2001, 8, 297-306.
    
    [12]Waston A. S., Smith R. L. An examination of statistical theories for fibrous materials in the light of Experimental Data. Journal of Materials Science, 1985, 20, 3260-3270.
    [13]Zhu Y. T.,Taylor S. T.,Stout M. G., Butt D. P.,Blumenthal W. R.,Lowe T. C. Characterization of Nicalon fibres with varying diameters: Part II Modified Weibull distribution. Journal of Materials Science, 1998, 33, 1475-1480.
    [14]Taylor S. T.,Zhu Y T.,Blumenthal W. R.,Stout M. G,Butt D. P.,Lowe T. C. Characterization of Nicalon fibres with varying diameters: Part I Strength and fracture studies. Journal of Materials Science, 1998, 1465-1473.
    [15]Mukherjee A.,Ganguly P. K.,Sur D. Structural mechanics of jute: the effects of hemicellulose or lignin removal. Journal of Textile Institute, 1993, 84, 384-353.
    [16]Zafeiropoulos N. E.,Dijon G. G., Baillie C. A. A study of the effect of surface treatments on the tensile strength of flax fibres: Part I. Application of Gaussian. Composites Part a-Applied Science and Manufacturing, 2007, 38, 621-628.
    [17]Xia Z. P.,Yu J. Y.,Liu L. F.,Wang F. Y Study on properties of jute fibres produced on ring spinning system. Journal of Donghua University (English Version), 2009.
    [18]Pan N.,Chen H. C.,Thompson J., Inglesby M. K.,Khatua S.,Zhang X. S.,Zeronian S. H. The size effects on the mechanical behaviour of fibres. Journal of Materials Science, 1997, 32, 2677-2685.
    [19]Khalili A.,Kromp K.Statistical properties of Weibull estimators.Journal of Materials Science,1991,26,6741-6752.
    [20]Trustrum K.,Jayatilaka A.D.S.On estimating the Weibull modulus for a brittle material.Journal of Materials Science,1979,14,1080-1084.
    [21]Langlois R.Estimation of Weibull parameters.Journal of Materials Science,1991,10,1049-1051.
    [22]Tiryakio(?)lu M.,Hudak D.On estimating Weibull modulus by the linear regression method.Journal of Materials Science,2007,42,10173-10179.
    [23]Wu D.F.,Zhou J.C.,Li Y.D.Unbiased estimation of Weibull parameters with the linear regression method.Journal of the European Ceramic Society,2006,26,1099-1105.
    [24]Tiryakio(?)lu M.An unbiased probability estimator to determine Weibull modulus by the linear regression method.Journal of Materials Science,2006,41,5011-5013.
    [25]Zafeiropoulos N.E.,Baillie C.A.A study of the effect of surface treatments on the tensile strength of flax fibres:Part Ⅱ.Application of Weibull statistics.Composites Part a-Applied Science and Manufacturing,2007,38,629-638.
    [26]Reddy N.,Yang Y.Q.Biofibres from agricultural byproducts for industrial applications.Trends in biotechnology,2005,23,22-27.
    [27]Pan N.,Zhao S.M.,Hua T.Relationship between scale effect and structure levels in fibrous structures.Polymer Composites,2000,21,187-195.
    [1]Pan N.Prediction of Statistical Yarn Strength of Twisted Yarn Structure.Journal of Materials Science,1993,28,6107-6114.
    [2]Daniel H.E.The statistical theory of the strength of bundles of threads.proceeding of royal society,1945,A183,405-435.
    [3]Pan N.,Brookstein D.Physical properties of twisted structures.Ⅱ.Industrial yarns,cords and ropes.Journal of Applied Polymer Science,2002,83,610-630.
    [4]Pan N.Development of a constitutive theory for short fibre yaens Part Ⅰ:Mechanics of staple yarn without slippage effect.Textile Research Journal,1992,62,749-765.
    [5]Pan N.Development of a constitutive theory for short fibre yaens Part Ⅱ:Mechanics of staple yarn with slippage effect.Textile Research Journal,1993,63,504-514.
    [6]Raghunathan K.,Subramaniam V.,Srinivasamoorthy V.R.Studies on the tensile characteristics of ring and rotor yarns using modified Weibull distribution.Indian Journal of Fibre & Textile Research,2002,27,358-361.
    [7]Pan N.,Chen K.Z.,Monego C.J.,Backer S.Studying the mechanical properties of blended fibrous structures using a simple model.Textile Research Journal,2000,70,502-507.
    [8]Ghosh P.,Samanta A.K.,Basu G.Effect of selective chemical treatments of jute fibre on textile-related properties and processibility.Indian Journal of Fibre & Textile Research,2004,29,85-99.
    [9]Xia Z.P.,Yu J.Y.,Cheng L.D.,Liu L.F.,Wang W.M.Study on the breaking strength of jute fibres using modified Weibull distribution.Composites Part a-Applied Science and Manufacturing,2009,40,54-59.
    [10]Coleman B.D.On The Strength of Classical Fibres and Fibre Bundles.Journal of the Mechanics and Physics of Solids,1958,7,60-70.
    [11]Pan N.,Postle R.Strengths of twisted blend fibrous structures:Theoretical prediction of the hybrid effects.Journal of the Textile Institute,1995,86,559-580.
    [12]Pan N.Development of a constitutive theory for short-fiber yarns.4.The mechanics of blended fibrous structures.Journal of the Textile Institute,1996,87,467-483.
    [13]Hearle J.W.S.,Grosberg P.,Backer S.Structural Mechanics of Fibres,Yarn and Fabrics.Wiley Inter Science:New York,1969.
    [14]Pan N.,Hua T.,Qiu Y.P.Relationship between fiber and yarn strength.Textile Research Journal,2001,71,960-964.
    [15]Yilmaz D.,G(o|¨)ktepe F.,G(o|¨)ktepe O.,Kremenakova D.Packing Density of Compact Yarns.Textile Research Journal,2007,77,661-667.
    [16]Mohany A.K.,Misra M.Study on Jute Composite - A Literature Review.Polymer - Plastics Technology and Engineering,1995,34,729-792.
    [17]于伟东,储才元.纺织物理.东华大学出版社:上海,2002.
    [18]Monego C.J.,Backer S.Tensile Rupture of Blended Yarns.Textile Research Journal,1968,38,162-766.
    [19]Pan N.A Detailed Examination of the Translation Efficiency of Fiber Strength into Composite Strength.Journal of Reinforced Plastics and Composites,1995,14,2-28.
    [20]Hickie T.S.,Chaikin M.Some Aspects of Worsted-Yarn Structure,Part-3:The Fibre_packing Density in the Cross-Section of Some Worsted Yarns.Journal of the Textile Institute,1974,65, 433-437.
    [21]杜善义,王彪.复合材料细观力学.科学出版社:北京,1997.
    [22]Pan N.,Zhao S.M.,Hua T.Relationship between scale effect and structure levels in fibrous structures.Polymer Composites,2000,21,187-195.
    [23]Zhang Y.P.,Wang X.G.,Pan N.,Postle R.Weibull analysis of the tensile behavior of fibers with geometrical irregularities.Journal of Materials Science,2002,37,1401-1406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700