氨性溶液中含铜矿物浸出动力学及氧化铜/锌矿浸出工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汤丹低品位氧化铜矿和兰坪低品位氧化锌矿分别为中国大型氧化铜矿和氧化锌矿,难以用传统浮选技术分离与富集,也不宜直接酸浸。本文采用氨-硫酸铵体系,通过研究不同含铜矿物的浸出行为及氧化铜矿-氧化锌混合矿的浸出工艺,期望为湿法炼铜/锌工艺提供基础数据和理论指导。
     本文系统研究了几种含铜矿物在氨-硫酸铵溶液中非氧化氨浸和氧化氨浸的行为,在此基础上提出低品位氧化铜矿氧化氨浸新工艺和低品位氧化铜矿-氧化锌矿混合矿催化氧化氨浸新工艺。具体内容与结论如下:
     1.系统研究了孔雀石矿物在氨-硫酸铵溶液中非氧化氨浸过程。通过对比研究孔雀石在氨水溶液和氨-硫酸铵溶液中的浸出行为,发现氨-硫酸铵体系有利于孔雀石的浸出;在氨-硫酸铵溶液中,影响孔雀石浸出速率的主要因素为反应温度、矿物粒度、氨浓度和硫酸铵浓度;在氨-硫酸铵溶液中,孔雀石的浸出动力学行为符合混合控制的收缩核模型,浸出过程受界面传质和残留固体膜层扩散混合控制,反应的表观活化能为26.75kJ/mol,浸出动力学方程为:
     2.系统研究了斑铜矿在氨-硫酸铵体系中的氧化浸出行为。研究发现温度、反应时间、矿物粒度,过硫酸钠用量以及氨与硫酸铵浓度是影响斑铜矿氧化浸出的主要因素;斑铜矿浸出动力学行为符合混合控制的收缩核模型,浸出过程受界面传质和残留固体膜层扩散混合控制,反应表观活化能为15.63kJ/mol,浸出动力学方程为:
     根据斑铜矿浸出渣XRD分析结果,提出过硫酸盐氧化浸出斑铜矿反应的可能机理为:
     3.系统研究了低品位氧化铜矿在氨-硫酸铵溶液中非氧化氨浸过程,确定其浸出动力学行为符合扩散控制的收缩核模型。在氨-硫酸铵溶液中,影响低品位氧化铜浸出速率的主要因素为氨和硫酸铵的浓度、反应温度、液固比和矿物粒度。浸出渣的化学物相分析和SEM-EDS分析结果表明:低品位氧化铜矿中的孔雀石全部浸出、硫化铜矿少量溶解,而硅孔雀石难以浸出,是影响低品位氧化铜矿中铜的浸出的主要原因。
     低品位氧化铜矿的浸出行为可用扩散控制的收缩核模型来描述,浸出过程受残留固体膜层的扩散所控制,反应的表观活化能为25.54kJ/mol,浸出过程动力学方程为:
     4.系统研究了低品位氧化铜矿在氨-硫酸铵溶液中的氧化氨浸过程,确定其浸出动力学符合混合控制的收缩核模型,浸出过程受界面传质和残留固体膜层扩散混合控制,反应的表观活化能为22.91kJ/mol,浸出动力学方程为:由此,首次提出低品位氧化铜矿过硫酸盐氧化氨浸新工艺。
     研究发现,过硫酸铵盐、钠盐和钾盐等作为氧化剂可以氧化低品位氧化铜矿中的硫化矿,其中以过硫酸铵的氧化效果最好,氧化氨浸的铜浸出率比非氧化氨浸的铜浸出率至少高9%。SEM-EDS及物相分析结果表明,斑铜矿可以被过硫酸盐氧化而溶于氨性溶液中。
     5.以氨-硫酸铵体系中浸出低品位氧化铜矿得到的Cu(NH3)42+为催化剂,催化氧化浸出低品位氧化锌矿,提出了以过硫酸盐为氧化剂,Cu(NH3)42+催化氧化浸出ZnS的反应机理为:首次提出低品位氧化铜矿和氧化锌矿混合矿的催化氧化氨浸新工艺。
     研究发现,浸出温度,铜矿和锌矿的质量比,液固比,氨、硫酸铵和过硫酸铵的浓度是影响混合矿浸出的主要因素,锌浸出率比铜浸出率低。浸出渣SEM-EDS分析结果表明:在氨性溶液中,低品位氧化锌矿中的硅酸锌发生溶解,溶解析出的二氧化硅吸附在矿物表面从而阻碍锌的进一步浸出,铁酸锌不被浸出。
     氧化铜矿-氧化锌矿混合矿催化氧化氨浸的优化条件为:搅拌速度500r/min,铜矿与锌矿质量比为4/10,浸出时间6h,温度50。C,液固比3.6/1mL/g,氨浓度2.0mol/L,硫酸铵浓度1.0mol/L和过硫酸铵浓度0.3mol/L,此时铜和锌浸出率分别为92.6%和85.5%,铜浸出率比低品位氧化铜矿氧化氨浸最佳浸出条件下的浸出率高出4.9%。
Tangdan low-grade oxidized copper ore and Nanping low-grade oxidized zinc ore are Chinese massive oxidized copper/zinc ores, respectively. Both of the ores are processed and concentrated difficultly by traditional flotation methods, and are not fitted with the acid leaching technique. In view of these defects, ammonia-ammonium sulfate solution was introduced to dissolve the oxidized copper/zinc ores. The leaching kinetics of several copper ores and leaching technology of oxidative ammonia leaching for oxidized copper/zinc ores are investigated in ammonium solution. All the results will provide the theoretical foundation and basic dates for the hydrometallurgy process of copper/zinc ores.
     The behavior of non-oxidative and oxidative ammonia leaching of several copper ores in ammonia-ammonium sulfate solution was investigated. A new technology of oxidative ammonia leaching for low-grade copper ore with sulphide copper was put forward and another new technology of catalytic-oxidative leaching of low-grade oxidized copper/zinc mixed ores was proposed. The main conclusions were made as follows:
     1. The dissolution kinetics of malachite was investigated systematically in ammonia-ammonium sulfate solution.
     Comparison of the leaching behavior of malachite in ammonia solution and ammonia-ammonium sulfate solution was made. The results show that the dissolution of malachite is favored in the ammonia-ammonium solution. The important factors for the leaching process in ammonia-ammonium sulfate solution are reaction temperature, particle size, concentration of ammonia and ammonium sulfate. The dissolution behavior of malachite coincides with the mixed kinetic shrinking core model, which is based on the interface transfer and diffusion across the solid layer. The activation energy is determined to be26.75kJ/mol and the kinetic equation can be expressed as follows:
     2. The oxidative leaching behavior of bornite was investigated systematically in ammonia-ammonium sulfate solution. The results show that the reaction time, temperature, particle size, concentration of ammonia and ammonium sulfate and the dosage of sodium persulfate are the main factors to the oxidative leaching process. The dissolution kinetics of bornite is controlled by the mixed kinetic shrinking core model which is affected by both the interface transfer and diffusion across the solid layer. The activation energy is calculated to be15.63kJ/mol and the dissolution kinetics of bornite can be written as follows:
     The dissolution mechanism of bornite in ammonia solution with persulfate is drawn according to the results of XRD analysis of the residue and can be expressed as follows:
     3. The non-oxidative ammonia leaching of low-grade oxidized copper ore was studied in ammonia-ammonium solution. The main factors for the leaching contain the concentration of ammonia and ammonium sulfate, temperature, the liquid-to-solid ratio and particle size. The results of the chemical phase analysis and SEM-EDS detection show that malachite is mostly dissolved, sulphide copper ore is dissolved partly and chrysocolla is extracted difficultly. The extraction of copper of low-grade copper ore is determined mainly by the dissolution of chrysocolla.
     The non-oxidative leaching behavior of low-grade oxidized copper ore can be described by diffusion shrinking model, and the leaching process is controlled by diffusion across the solid layer. The leaching kinetics with an activation energy of25.54kJ/mol can be presented as:
     4. The oxidative ammonia leaching of low-grade oxidized copper ore was investigated in ammonia-ammonium sulfate solution. The leaching process is determined to be controlled by mixed kinetic shrinking core model, which is affected by both interface transfer and diffusion across solid layer. The leaching kinetics with an activation energy of22.91kJ/mol can be expressed as: A new technique of the oxidative ammonia leaching of low-grade oxidized copper ore with sulphide copper is put forward based on the above results. It is found that sulphide copper ore in the low-grade oxidized copper ore can be oxidized by persulfates including sodium, potassium and ammonium persulfates and the oxidation efficiency of ammonium persulfate is the highest. The extraction percentage of copper by oxidative ammonia leaching is at least9%higher than that of copper by non-oxidative ammonia leaching. The results of chemical phase analysis and SEM-EDS detection show that bornite can be oxidized by persulfate and dissolved in ammoniacal solution.
     5. The catalytic-oxidative leaching of low-grade oxidized zinc ore was investigated by the catalysis of Cu(NH3)42+produced from low-grade oxidized copper ore in ammonia-ammonium sulfate solution. The dissolution mechanism of ZnS in the zinc ore with the oxidization of persulfate by the catalysis of Cu(NH3)42+is proposed as follows:
     A new technique of catalytic-oxidative ammonia leaching of low-grade oxidized copper/zinc mixed ores is proposed for the first time.
     Leaching temperature, the mass ratio of copper ore to zinc ore, liquid-to-solid ratio, the concentration of ammonia, ammonium sulfate and ammonium persulfate are the important factors that affect the leaching process of the mixed ore. The extraction percentage of zinc is lower than that of copper. The results of SEM-EDS analysis of the residue of the mixed ore show that Zn2SiO4is dissolved in ammonia solution and the dissolution of Zn2SiO4is further blocked owing to the adsorption of the precipitated SiO2on the surface of ore. ZnFeO2can not be extracted in ammonia solution.
     The optimal leaching conditions with a maximum extraction percentage of Cu92.6%and Zn87.5%were determined as follows:the mass ratio of copper ore to zinc ore4/10, temperature50℃, reaction time6h, stirring speed500r/min, liquid-to-solid3.6/1mL/g, concentration of ammonia2.0mol/L, concentration of ammonium sulfate1.0mol/L and concentration of ammonium persulfate0.3mol/L.
引文
[1]朱家泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003:1-7.
    [2]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2008:1-2.
    [3]王致勇,董松琦,张庆芳.简明无机化学教程[M].北京:高等教育出版社,1990:334-339.
    [4]刘殿文,张文彬,文书明.氧化铜矿浮选技术[M].北京:冶金工业出版社,2009:5-6.
    [5]蔡美兰.中国铜产业发展现状分析[J].中国有色金属,2010,(13):40-41.
    [6]赵涌泉.氧化铜矿的处理技术[M].北京:冶金工业出版社,1982:3-6.
    [7]Thomas G, Ingraham T R, Macdonald R J C. Kinetics of dissolution of synthetic digenite and chalcocite in aqueous acidic ferric sulphate solutions [J]. Canadian Metallurgical Quarterly,1967,6(3):281-292.
    [8]Wall A J, Mathur R, Post J E, Heaney P J. Cu isotope fractionation during bornite dissolution:An in situ X-ray diffraction analysis [J]. Ore Geology Reviews,2011, 42(1):62-70.
    [9]Amcoff O. Sulfidation of chalcopyrite:A study on the interaction between chemical and textural changes in a sulfide system [J]. N. Jb. miner. Abh.,1987, 157:207-223.
    [10]Sugaki A, Shima H, Katakaze A, Harade H. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350℃ and 300℃ [J]. Econ. Geol.,1975,70(4):806-823.
    [11]Amcoff O. Experimental replacement of chalcopyrite by bronite:Textural and chemical changes during a solid-state process [J]. Mineral Deposita,1988,23(4): 286-292.
    [12]Crane M J, Sharpe J L, Williams P A. The mineralogy of the oxidized zones of the E22 and E27 orebodies at Northparkes, NSW [J]. Australian Journal of Mineralogy,1998,4:3-8.
    [13]赵匡华.中国古代的冶金化学[M].中国科技术史:卢嘉锡总主编.北京:科学出自版社,1998:179-183.
    [14]Malouf E E. In international conference on hydrometallurgy 1973 [C]. Evans D G L and Shiemaker R S Ed. AINE. New York,1973:635-620.
    [15]兰兴华.铜溶剂萃取进展[J].世界有色金属,2004,(7):38-42.
    [16]郭亚惠.铜湿法冶金现状及未来发展方向[J].中国有色冶金,2006,(4):1-7.
    [17]吕文东,郝志峰,王继民.湿法炼铜中的萃取剂[J].广东有色金属学报,2004,14(2):114-118.
    [18]马倩玲.从环保角度BK-992铜萃取剂的应用前景[J].矿冶,2003,12(3):83-85.
    [19]Swanson R R. Liquid-liquid recovery of copper values using alpha-hydroxy oximes. US Pattent:3224873 [P],1965-12-21.
    [20]Swanson R R. Compositions containing phenolicoximes and certain alpha-hydroxy aliphatic oximes. US Patent:3592775 [P],1971-07-13.
    [21]Mackay K D, Sierakoski. Solvent extraction. EP Patent:0085522 [P], 1983-10-08.
    [22]MaCkay K D, Rogier E R. Beta-diketones and the use thereof as metal extractants. US Patent:4175012 [P],1979-11-20.
    [23]Vimig M J, Kordosky G A. Improved beta-diketones for the extraction of copper from aqueous arnmoniacal solutions. EP Patent:1170389 [P],2002-09-01.
    [24]Tait B K, M alose K E, Taljard I. The extraction of some metal ions by LIX1104 dissolved in toluene [J]. Hydro-metallurgy,1995,38(1):1-6.
    [25]Viring M J, Jistn H, Collin M, et al. Ketoximes, Processes therefore, and copper extraction process. US Pattent:6342635 [P],2002-01-29.
    [26]Herreros O, Vinals J. Leaching of sulfide copper ore in a NaCl-H2SO4-O2 media with acid pre-treatment [J]. Hydrometallurgy,2007,89(3-4):260-268.
    [27]Senanayake G. A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations [J]. Hydrometallurgy, 2009,98 (1-2):21-32.
    [28]Senanayake G. Chloride assisted leaching of chalcocite by oxygenated sulphuric acid via Cu(Ⅱ)-OH-Cl [J]. Minerals Engineering,2007,20(11):1075-1088.
    [29]Mcdonald R G, Muir D M. Pressure oxidation leaching of chalcopyrite:Part Ⅱ: Comparison of medium temperature kinetics and products and effect of chloride ion [J]. Hydrometallurgy,2007,86(3-4):206-220.
    [30]Akcil A, Ciftci H. A study of the selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey [J]. Minerals Engineering,2002,15(6): 457-459.
    [31]Cordoba E M, Munoz J A, Blazquez M L, et al. Leaching of chalcopyrite with ferric ion. Part Ⅰ:General aspects [J]. Hydrometallurgy,2008,93(3-4):81-87.
    [32]Ruiz M C, Gallardo E, Padilla R. Copper extraction from white metal by pressure leaching in H2SO4-FeSO4-O2 [J]. Hydrometallurgy,2009,100(1-2):50-55.
    [33]Park K H, Mohapatra D, Reddy B R. A study on the acidified ferric chloride leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Separation and Purification Technology,2006,51(3):332-337.
    [34]Javad K S M, Aghazadeh V, Sandstrom A. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite [J]. Minerals Engineering,2011, 24(5):381-386.
    [35]Vilcaez J, Yamada R, Inoue C. Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures [J]. Hydrometallurgy, 2009,96(1-2):62-71.
    [36]Devi N B, Madhuchhnada M, Srinivasa R K, et al. Oxidation of chalcopyrite in the presence of manganese dioxide in hydrochloric medium [J]. Hydrometallurgy, 2000,57(1):57-76.
    [37]Gantayat B P, Rath P C, Paramguru R K, et al. Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium [J]. Metallurgical and Materials Transactions B,2000,31(1):55-61.
    [38]Devi N B, Madhuehhanda M, Rath P C, et al. Simultaneous leaching of a deep-sea manganese nodule and chalcopyrite in hydrochloric medium [J]. Metallurgical and Materials Transactions B,2001,32(5):777-784.
    [39]邢卫园,钟竹前,梅光贵.黄铜矿溶解动力学研究[J].有色金属(冶炼部分),1990,(5):27-30.
    [40]黄祖强,董毅宏,黎铱海,等.软锰矿湿法常压催化分解黄铜矿的研究[J].广西大学学报(自然科学版),1996,21(4):346-350.
    [41]黄祖强,董毅宏,黎铱海,等.软锰矿和黄铜矿同时浸出的研究[J].广西化工,1996,25(4):7-10.
    [42]Burkin A R, Manning G D, Monhemius A J双氧水及过硫酸在湿法冶金中的应用[J].湿法冶金,1982,(2):34-41.
    [43]王致勇,董松琦,张庆芳.简明无机化学教程[M].北京:高等教育出版社,1988:430.
    [44]Jiang T, Y Yongbin, Huang Z, et al. Leaching kinetics of pyrolusite form manganese-silver ores in the presence of hydrogen peroxide [J]. Hydrometallurgy,2004,72(1-2):129-138.
    [45]Jiang T, Yang Y, Huang Z, Zhang B. Kinetics of silver leaching of from manganese-silver associated ores in sulphuric solution in the presence of hydrogen peroxide [J]. Metallurgical and Materials Transactions B,2002,33(6): 813-816.
    [46]孙亚光,余丽秀.双氧水湿法处理锰银矿工艺研究[J].中国锰业,2003,21(2):13.
    [47]Antonijevic M M, Jankovic Z D, Dimitrijevic M D. Kineties of chalecopyrite dissolution by hydrogen peroxide in sulphuric acid [J]. Hydrometallurgy,2004, 71(3-4):329-334.
    [48]Adebayo A O, Ipinmoroti K O, Ajayi O O. Dissolution kinetics of chalcopyrite with peroxide in sulphuric acid medium [J]. Chemical and Biochemical Engineering Quarterly,2003,17(3):213-218.
    [49]Mahajan V, Misra M, Zhong K. Fuerstenau M C. Enhanced leaching of copper from chalcopyrite in hydrogen peroxide-glycol system [J]. Minerals Engineering, 2007,20(7):670-674.
    [50]Rajko Z V, Natasa V, Zeljko K. Leaching of copper (I) sulphide by sulphuric acid solution with addition of sodium nitrate [J]. Hydrometallurgy,2003,70(1-3): 143-151.
    [51]Sokic M D, Markivic B, Zivkovic D. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid [J]. Hydrometallurgy,2009,95(3-4):273-279.
    [52]赵天从.重金属冶金学[M].北京:冶金工业出版社,1981:171-172.
    [53]Antonijevic M M, Jankovic Z, Dimitrijevic M. Investigation of the kinetics of chalcopyrite oxidation by potassium dichromate [J]. Hydrometallurgy,1994, 35(2):187-201.
    [54]Murr L E, Hiskey J B. Kinetics effects of particle-size and crystal dislocation density on the dichromate leaching of chalcopyrite [J]. Metallurgical and Materials Transaction B,1981,12(2):255-267.
    [55]姜永智,廖雪珍,郭亮明,等.铜湿法冶金技术的研究与应用评述[J].甘肃有色金属,2002,17(1):17-22.
    [56]刘大星.铜湿法冶金技术进展及对铜工业的影响[J].有色金属工业,2000,(10):36-38.
    [57]王海北,蒋开喜,邱定蕃,卢惠民.国内外硫化铜矿湿法冶金发展现状[J].有色金属,2003,55(4):101-104.
    [58]张忠平.硫化铜矿湿法冶金工艺综述[J].安微化工,2002,(5):8-10.
    [59]Wang H, Wu A, Zhou X, et al. Accelerating column leaching trial on copper sulfide ore [J]. Rare Metals,2008,27(1):95-100.
    [60]Xu B, Zhong H, Jiang T. Recovery of valuable metals from Gacun complex copper concentrate by two-stage countercurrent oxygen pressure acid leaching process [J]. Minerals Engineering,2011,24(10):1082-1083.
    [61]Ruiz M C, Vera M V, Padilla R. Mechanism of enargite pressure leaching in the presence of pyrite [J]. Hydrometallurgy,2011,105(3-4):290-295.
    [62]张兴仁.处理黄铜矿的几种可供选择的工艺方案述评[J].国外黄金参考,1998,(11-12):19-22.
    [63]Bell S L.黄铜矿原地氨浸的研究[J].湿法冶金,1996,(3):52-58.
    [64]Beckstead L W, Miller J D. Ammonia oxidation leaching of chalcopyrite reaction kinetics[J]. Metallurgical and Materials Transaction B,1977,8(1):19-29.
    [65]Beckstead L W, Miller J D. Ammonia oxidation leaching of chalcopyrite-surface deposit effects [J]. Metallurgical and Materials Transaction B,1977,8(1):31-38.
    [66]郑于炼.湿法冶金中的浸出过程.湿法冶金,1986,(3):67-76.
    [67]Park K H, Mohapatra D, Ramachandra R B, et al. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Hydrometallurgy,2007,86(3-4):164-171.
    [68]全宏东.矿物化学处理[M].北京:冶金工业出版社,1987:133-136.
    [69]Kekm U, Helle S. Acid leaching of malachite in synthetic mixtures of clay andzeolite-rich gangue:An experimental approach to improve the understanding of problems in heap leaching operations [J]. Applied Clay Science,2005,29(3-4): 187-198.
    [70]Bingol D, Canbazoglu M. Dissolution kinetics of malachite in sulphuric acid [J]. Hydrometallurgy,2004,72(1-2):159-165.
    [71]Helle S, Kelm U. Experimental leaching of atacamite, chrysocolla and malachite: Relationship between copper retention and cation exchange capacity [J]. Hydrometallurgy,2005,78(3-4):180-186.
    [72]Lwanbiyi M, Kasonde M, Kongolo K, et al. Investigation into the heap leaching of copper ore from the Disele deposit [J]. Hydrometallurgy,2008,98(1-2): 177-180.
    [73]Habbache N, Alane N, Djerad S, Tifouti L. Leaching of copper oxide with different acid solutions [J]. Chemical Engineering Journal,2009,152 (2-3): 503-508.
    [74]朱屯.现代铜湿法冶金[J].北京:冶金工业出版社,2002:188-200.
    [75]Kunkul A, Muhtar K M, Yapici S, et al. Leaching kinetics of malachite in ammonia solutions [J]. International Journal of Mineral Processing,1994,41 (3-4):167-182.
    [76]Emin A M, Muhtar K M, Copur M. Leaching of Malachite Ore in NH3-Saturated Water [J]. Industrial and Engineering Chemistry Research.2004,43 (15): 4118-4123.
    [77]陈继斌.国外氨法提铜的实验研究与工业实践[J].有色金属(冶炼部分),1976,(9):47-53.
    [78]Bingol D, Canbazoglu M, Aydogan S. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching [J]. Hydrometallurgy,2005,76 (1-2): 55-62.
    [79]Ata O N, Yalap H. Optimization of copper leaching from ore containing malachite [J]. Canadian Metallurgical Quarterly,2007,46 (2):107-114.
    [80]马建业,刘云清,胡慧萍,等.氨水-碳酸铵浸出汤丹氧化铜尾矿研究[J].现代矿业,2011,50(3):20-23.
    [81]范斌.低品位铜矿中铜的回收实验[J].湿法冶金,1998,68(4):34-35.
    [82]纪翠翠,周庆华.氧化铜矿常温常压两段氨浸实验研究[J].有色金属,2011,63(2):152-154.
    [83]王成彦,崔学仲.新疆砂岩型氧化铜矿浸出工艺研究[J].新疆地质,2001,19(1):70-73.
    [84]李明建,陈庆邦.氨水-碳酸铵浸出处理铜锌废渣[J].中国物资再生,1997,(1):13-15.
    [85]Shalom M. Method for preparing copper products from copper precipitate. US Patent:3492115 [P],1970-01-27.
    [86]Bedform L H, Hard R H, Bedford R A H, et al. In-stiu mining of copper and nickel. US Patent:4045084 [P],1977-08-30.
    [87]Nathaniel A, Cooley B D. Sulfate precipitation during oxidative ammonium leaching of Cu, Ni, Zn sulphide ores. US Patent:4153522 [P],1979-05-08.
    [88]Evans D I, Mackiw V N. Treatment of copper-zinc concentrates by pressure hydrometallurgy [J]. Canadian minging and Metallurgical Bulletin,1964,57(6-8): 857-866.
    [89]Sarveswara R K. Process development for extraction of zinc, copper and lead from complex sulphide ore/concentrates of Ambamata. Ⅰ:An overview of the process [J]. Transactions of the Indian Institute of Metals,1984,37(1):49-53.
    [90]Rao S K, Anand S, Das R P, et al. Kinetics of ammonia leaching of multimetal sulphides [J]. Mineral Processing and Extractive Metallurgy Review,1992,10(1): 11-27.
    [91]Rao S K, Rao H S. Selection of experimental conditions for leaching studies:A case study on oxidative ammonia leaching of multimetal sulphides [J]. Metallurgy and Material Science (India),1997,78(1):70-78.
    [92]Rao S K, Rao H S. Effect of rasting and ammonia leaching on the mineralogy of multimetal sulphides [J]. Metals Materials and Pricesses,1997,9(1):33-34.
    [93]Rao S K, Rao H S. Use of thermal analysis for study of characterisation multimetal and their oxidation behavior [J]. Mineral Processing and Extractive Metallurgy Review,1997,16(4):261-278.
    [94]Rao S K, Rao H S. A new look at characterisation and oxidative ammonia leaching behaviour of multimetal suphides [J]. Minerals Engineering,1998, 11(11):1011-1024.
    [95]Chmielewski T, Wodka J, Iwachow L. Ammonia pressure leaching for Lubin shale middlings [J]. Physicochemical Problems of Mineral Processing,2009,43: 5-20.
    [96]Tromans D. Oxygen solubility modeling in ammoniacal leaching solutions: leaching of sulphide concentrates [J]. Minerals Engineering,2000,13(5): 497-515.
    [97]Calban T, Colak, Yesilyurt M. Statistical modeling of Chevreul's salt recovery from leach solutions containing copper [J]. Chemical Engineering and Processing,2006,45:168-174.
    [98]黄怀国,谢洪珍,孙鹏,等.紫金山高品位铜矿石的热压氧氨浸铜研究[J].有色金属(冶炼部分),2003,(3):7-9.
    [99]于霞,甘雪萍,杨声海,等.Cu(Ⅱ)-NH3-(NH4)2SO4-H2O体系浸出-电积生产铜的工艺研究[J].湖南有色金属,2001,17(6):18-19.
    [100]易求实.含砷氧化铜矿氨浸法制备饲料级硫酸铜[J].矿产综合利用,2001,(3):8-11.
    [101]姚雅伟,崔兆杰,王红燕.NH3-(NH4)2SO4体系浸析PCB污泥中铜的研究[J].山东大学学报(工学版),2010,40(2):96-98.
    [102]Ekmekyapar A, Oya R, Kunkul A. Dissolution kinetics of an oxidized copper ore in ammonium chloride solution [J]. Chemical and Biochemical Engineering Quarterly,2003,17(4):261-266.
    [103]Liu Wei, Tang Motang, Tang Chaobo, et al. Thermodynamic research of leaching copper oxide materials with ammonia-ammonium chloride-water Solution [J]. Canadian Metallurgical Quarterly,2010,49 (2):131-146.
    [104]Wang X, Chen Q, Hu H, et al. Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25 ℃ [J]. Hydrometallurgy,2009, 99 (3-4):231-237.
    [105]Liu W,Tang M, Tang C, et al. Thermodynamics of solubility of Cu2(OH)2CO3 in ammonia-ammonium chloride-ethylenedia mine(En)-water system [J]. Transa-ction of Nonferrous Metal Society of China,2010,20(2):336-343.
    [106]Ju S, Tang M, Yang S, et al. Thermodynamics of Cu(II)-NH3-NH4Cl-H2O system. Transaction of Nonferrous Metal Society of China,2005,15(6): 1414-1419.
    [107]Liu W, Tang M, Tang C, et al. Dissolution kinetics of low grade complex copper ore in Ammonia-ammonium chloride solution [J]. Transaction of Nonferrous Metal Society of China,2010,20(5):910-917.
    [108]Zhao G, Liu Q. Leaching of copper from tailings using ammonia/ammonium chloride solution and its dynamics [C].2010 International Conference on Chemistry and Chemical Engineering (1-3). New York:Institute of Electrical and Electronics Engineers,2010:216-220.
    [109]贺红.一种处理混合铜矿和氧化铜矿以提取铜的方法.中国专利,CN94111476[P],1994-10-28.
    [110]紫鑫矿业集团股份有限公司.含铜尾渣的湿法浸出方法.中国专利,CN101812587[P],2010-08-25.
    [111]李青山,刘日辉.氨-氯化铵槽浸难选氧化铜矿的机理及动力学[J].湿法冶金,1991,(4):16-20.
    [112]唐朝波,晋帅勇,唐谟堂,等.NH4C1-NH3-H20体系浸出黄铁矿烧渣中铜的动力学[J].湿法冶金,2010,29(4):245-249.
    [113]王成彦.高碱性脉石低品位难处理氧化铜矿的开发利用-浸出工艺研究[J].矿冶,2001,10(4):50-51.
    [114]程琼,章晓林,刘殿文,张文彬.某高碱性氧化铜矿常温常压氨浸实验研究[J].湿法冶金,2006,25(2):74-77.
    [115]李运刚.低品位氧化铜矿还原焙烧-氨浸实验研究[J].矿产综合利用,2000,(6):7-9.
    [116]尹才研,蒋训雄.用活化浸出工艺从低品位氧化铜矿中回收铜[J].有色金属,1996,(2):54-59.
    [117]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:188-195.
    [118]赵有才,张承龙,蒋家超.碱介质湿法冶金技术[M].北京:冶金工业出版社,2009:10-17.
    [119]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:173-312.
    [120]Dickinson C F, Heal G R. Solid-liquid diffusion controlled rate equations [J]. Thermochimica Acta,1999,340-341:89-103.
    [121]Szekely J, Evans J W, Sohn H Y. Gas-solid reactions [M]. New York:Academic Press,1976:124-345.
    [122]Georgiou D, Papangelakis V G. Sulphuric acid pressure leaching of a limonitic laterite:chemistry and kinetics [J]. Hydrometallurgy,1998,49(1-2):35-40.
    [123]Bhatia S K, Vartak B J. Reaction of microporous solids:The discrete random pore model [J]. Carbon,1996,34(11):1383-1391.
    [124]Sohn H Y, Wadsworth M E. Rate processes of extractive metallurgy [M]. New York:Plenum Press,1979:53-112.
    [125]金继祥.东川汤丹难选氧化铜矿石新工艺实验进展[J].云南治金,1997,26(2):22-30.
    [126]荣生,张文彬,徐晓军.东川汤丹难选氧化铜矿石的选冶处理方法的研究现状[J].国外金属矿选矿,1998,(4):16-18.
    [127]胡绍彬.乙二胺磷酸盐浮选东川氧化铜矿的生产实践[J].云南冶金,1981,(2):27-29.
    [128]胡绍彬.关于汤丹难选氧化铜矿浮选过程中连生体的浮选问题[J].云南冶金,1999,28(1):25-27.
    [129]胡绍彬.消除矿泥对汤丹难选氧化铜矿浮选影响的研究进展[J].云南冶金,1999,28(3):15-18.
    [130]胡绍彬,罗才高.深度活化浮选汤丹氧化铜矿的研究及应用[J].云南冶金,1997,26(3):172-174.
    [131]东川矿务局,北京矿冶研究总院,昆明工学院.汤丹一期工程选矿实验研究报告[R],1992.
    [132]蒋开喜,李岚.浅谈中国铜工业现状与西部铜资源开发技术[J].2002,11(7)(增刊):24-27.
    [133]陈家铺,杨守志,柯家骏.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998:2-10.
    [134]方建军,李艺芬,张文彬.高钙镁难选氧化铜矿处理技术的进展[J].矿冶,2008,17(4):55-57.
    [135]康有才.氧化铜矿处理方法评述[J].云南冶金,1996,25(4):26-31.
    [136]程琼,张文彬.汤丹高钙镁氧化铜矿氨浸技术的进展[J].云南冶金,2005,34(6):17-20.
    [137]金继祥,张如仙.难选氧化铜矿处理工艺研究及经济评估[J].云南冶金,1995(3):21-28.
    [138]北京矿冶研究总院,东川矿务局.东川氧化铜矿采取加压氨浸-萃取-电积工艺生产电解铜中试(综合报告)[R].1991.
    [139]李文孝,王德华.汤丹难选氧化铜矿选矿的研究与实践[J].云南冶金,1995,(3):29-32.
    [140]张振健.汤丹铜精矿焙烧-氨浸-萃取电积新工艺研究[J].有色金属(冶炼部分),1999,(4):16-20.
    [141]尹才娇,蒋训雄,李新财.用活化浸出工艺从低品位氧化铜矿中回收铜[J].有色金属,1996,48(2):54-60
    [142]刘维MACA体系中处理低品位氧化铜矿的基础理论和工艺研究[D].长沙:中南大学,2010.
    [143]杨耀宗,王宗荣,金继祥.处理难选氧化铜矿石新工艺-氨浸硫化沉淀浮选法和水热硫化浮选法的研究[J].云南冶金,1989(1):18-20.
    [144]刘殿文,张文彬.东川汤丹难处理氧化铜矿加工利用技术进步[J].中国工程科学,2005,7(增刊):260-265.
    [145]方建军,李艺芬,鲁相林.低品位氧化铜矿石常温常压氨浸工艺影响因素研究与工业应用结果[J].矿冶工程,2008:28(3):26-38.
    [146]程琼.东川汤丹高钙镁难处理氧化铜“氨浸-浮选”实验研究及机理初探[D].昆明:昆明理工大学,2005:10-40.
    [147]Peacey J, Guo X, Robles E. Copper hydrometallurgy current Status, preliminary economics, future direction and positioning versus smelting [J]. Transaction of Nonferrous Metal Society of China,2004,14(3):560-568.
    [148]Zhang J, Wu A, Wang Y, Chen X. Experimental research in leaching of copper-bearing tailings enhanced by ultrasonic treatment [J]. Journal of China University of Mining and Technology,2008,18(1):98-102.
    [149]Watling H R. The bioleaching of sulphide Minerals with emphasis on copper sulphites-a review [J]. Hydrometallurgy,2006,84(1-2):81-108.
    [150]Antonijevic M M, Dimitrijevic M D, Stevanovic Z O. Investigation of the possibility of copper recovery from the floatation tailing by acid leaching [J]. Journal of Hazardous Materials,2008,158(1):23-34.
    [151]Sun X, Hen B, Yang X, et al. Technological conditions and kinetics of leaching copper from complex copper oxide ore [J]. Journal of Central South University of Technology,2009,16(6):936-941.
    [152]Stevanovic Z, Antonijevic Z, Avramovic L, et al. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia [J]. Journal of Mining and Metallurgy, Section B:Metallurgy,2009, 45(1):45-57.
    [153]Ata O N, Colaks S, Ekinci Z, et al. Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions [J]. Chemical Engineering& Technology,2001,24(4):409-413.
    [154]Nanarro O P, Alguacil F J. Extraction of copper from sulphate solutions by LIX 864 in escaid100 [J]. Minerals Engineering,1999,12(3):323-327.
    [155]Amores M, Coedo A G, Aluacil F J. Extraction of copper from sulphate solutions by Moc 45:application to Cu separation from leachates of a copper flue dust [J]. Hydrometallurgy,1997,47(1):99-112.
    [156]Habashi F. Trends in the hydrometallurgical treatment of copper oxides ores [J]. Arab Mining Journal,1983,3(4):46-52.
    [157]Alguacil F J. Recovery of copper from ammoniacal/ammonium carbonate medium by LIX 973N [J]. Hydrometallurgy,1999,52(1):55-61.
    [158]Oudenne P D, Olson F A. Leaching kinetics of malachite in ammonium carbonate solutions [J]. Metallurgical and Materials Transactions B,1983,14(1): 33-40.
    [159]Cao Z, Zhong H, Liu G, et al. Techniques of recovery copper from Mexican copper oxide ore [J]. Mining Science and Technology,2009,19(1):45-48.
    [160]Yartasi A, Copur M. Dissolution kinetic of copper(II) oxide in ammonium chloride solutions [J]. Minerals Engineering,1996,9(6):693-698.
    [161]Bryden K O. Study of extraction rate of Cu++ from ore containing malachite and chrysocolla as the predominant source of copper with ammonium sulphate solution as leaching agent [D]. Salt Lake City:Department of Metallurgical Engineering, University of Utah,1975:25-48.
    [162]巨少华MACA体系中铜、镍和金的冶金热力学及其低品位矿的堆浸工艺研究[D].长沙:中南大学,2006:50-52.
    [163]Antonijevic M M, Jankovic Z D, Dimitrijevic M D. Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid [J]. Hydrometallurgy,2004, 71(3-4):329-334.
    [164]Dutrizac J E, Macdonald R J C, Ingraham T R. The kinetics of dissolution of bornite in acidified ferric sulfate solutions [J]. Metallurgical and Materials Transactions B,1970,1(1):225-231.
    [165]Price D C. The anodic reactions of bornite in sulphuric acid solution [J]. Hydrometallurgy,1981,7(1-2):117-133.
    [166]Pesic B, Olson F A. Leaching of bornite in acidified ferric chloride solutions [J]. Metallurgical and Materials Transaction B,1983,14(4):577-587.
    [167]Pesic B, Olson F A. Dissolution of bornite in sulfuric acid using oxygen as oxidant. Hydrometallurgy,1984,12(2):195-215.
    [168]Arce E M, Gonzalez I. A comparative study of electrochemical behavior of chalocopyrite, chalcocite and bornite in sulfuric acid solution [J]. International Journal of Mineral Processing,2002,67(1-4):17-28.
    [169]Bevilaqua D, Acciari H A, Benedetti A V, Fugivara C S, Filho T G, Jr G O. Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4 by Acidithiobacillus ferrooxidans [J]. Hydrometallurgy,2006,83(1-4):50-54.
    [170]Wang J, Qin W, Zhang Y, et al. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism [J]. Transaction of Nonferrous Metal Society of China,2008,18(6):1468-1472.
    [171]Denise B, Acciari H A, Arena F A, et al. Utilization of electrochemical impedance spectroscopy for monitoring bornite(Cu5FeS4) oxidation by Acidithiobacillus ferrooxidans [J]. Minerals Engineering,2009,22(3):254-262.
    [172]Bevilaqua D, Jr G O, Tuovinen O H. Oxidative dissolution of bornite by acidithiobacillus ferrooxidans [J]. Process Biochemistry,2010,45(1): 101-106.
    [173]Beckstead L W, Miller J D, Ammonia, oxidation leaching of chacopytite—reaction kinetics [J]. Metallurgical and Materials Transaction B, 1977,8(1):19-29.
    [174]Reilly I G, Scott D S. Recovery of elemental sulfur during the oxidative ammoniacal leaching of chalcopyrite [J]. Metallurgical and Materials Transactions B,1984,15(4):726-729.
    [175]Rao K S, Das R P, Muknda P G, et al. Use of X-ray diffraction in a study of ammonia leaching of Multimetal sulfides [J]. Metallurgical and Materials Transaction B,1993,24(6):937-945.
    [176]Ghosh M K, Das R P, Biswas A K. Oxidative ammonia leaching of sphalerite Part Ⅱ:Cu(Ⅱ)-catallyzed kinetics. International Journal of Mineral Processing, 2003,70 (1-4):221-234.
    [177]李敦钫,王成彦,尹飞,等.添加剂对失效锂离子电池氨性浸出脱铜的影响[J].电源技术,2009,33(6):454-457.
    [178]Reed W A, Yu A, Rao G L, et al. Oxidative alkaline leaching of Americium from simulated high-level nuclear waste sludges [J]. Separation Science and Technology,2005,40 (5):1029-1046.
    [179]Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate [J]. Environmental Science and Technology,2010,44(16):6423-6428.
    [180]Dutrizac J E, Chen T T, Jambor J L. Mineralogical changes occurring during the ferric ion leaching of bornite [J]. Metallurgical and Materials Transacion B, 1985,16(4):679-683.
    [181]Qiu T, Nie G, Wang J, et al. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature [J]. Transaction of Nonferrous Metal Society of China,2007,17(2):418-422.
    [182]王海北,蒋开喜,张邦胜,等.新疆某复杂硫化铜矿低温低压浸出工艺研究[J].有色金属,2004,56(3):52-56.
    [183]Jin B, Yang X, Shen Q. Kinetics of copper dissolution during pressure oxidative leaching of lead-containing copper matte [J]. Hydrometallurgy,2009,99(1-2): 56-61.
    [184]杨俊奎,徐斌,杨大锦.复杂铜精矿氧压浸出综合回收工艺[J].矿冶工程,2011,3(1):73-80.
    [185]徐志峰,李强,王成彦.复杂硫化铜矿热活化-加压浸出工艺[J].中国有色金属学报,2010,20(12):2412-2418.
    [186]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册铜镍[M].北京:冶金工业出版社,2000:433-441.
    [187]Ekmekyapar A. Colak S, Alkan M, et al. Dissolution kinetics of an oxidezed copper ore in water saturated by chlorine [J]. Journal of Chemical Technology and Biotechnology,1988,43(3):195-204.
    [188]Colak S, Alkan M, Kocakerim M M. Dissolution kinetics of chalcopyrite containing pyrite in water saturated with chlorine [J]. Hydrometallurgy,1987, 18(2):183-193.
    [189]Bell S L, Welch G D, Bennett P G. Development of ammoniacal lixiviants for the in-situ leaching of chalcopyrite [J]. Hydrometallurgy,1995,39(1-3):11-23.
    [190]Ghosh M K, Das R P, Biswas A K. Oxidative ammonia leaching of sphalerite Part Ⅰ:noncatalytic kinetics [J]. International Journal of Mineral Processing, 2002,66(1-4):241-254.
    [191]Halpern J, Milants H, Wiles D R. Kinetics of the dissolution of copper in oxygen-containing solutions of various chelating agents [J]. J. Electrochem. Soc.,1959,106(8):647-650.
    [192]刘殿文,张文彬,方建军,等.试论东川汤丹难选氧化铜矿的工艺矿物学特征及可选性[J].云南冶金,2003,32(3):7-8.
    [193]Munnoz J A, Dreisinger D B, Cooper W C, et al. Silver-catalyzed bioleachng of low-grade copper ores. Part Ⅰ:Shake flasks tests [J]. Hydrometallurgy,2007,88 (1-4):3-18.
    [194]Munnoz J A, Dreisinger D B, Cooper W C, et al. Silver-catalyzed bioleachng of low-grade copper ores. Part Ⅱ:Stirred tank tests [J]. Hydrometallurgy,2007, 88(1-4):19-34
    [195]Munnoz J A, Dreisinger D B, Cooper W C, et al. Silver-catalyzed bioleachng of low-grade copper ores. Part Ⅲ:Column reactors [J]. Hydrometallurgy,2007, 88(1-4):35-51.
    [196]梁铎强,王吉坤,汪云华.闪锌矿氧压酸浸过程中银的催化作用[J].贵金属,2008,29(4):20-24.
    [197]Carranza F, Palencia I, Romero R. Silver catalyzed IBES process:application to a Spanish copper-zinc sulphide concentrate [J]. Hydrometallurgy,1997,44(1-2): 29-42.
    [198]Romero R, Palencia I, Carranza F. Silver catalyzed IBES process:Application to a Spanish copper-zinc sulphide concentrate. Part 2. Biooxidation of the ferrous iron and catalyst recovery [J]. Hydrometallurgy,1998,48(1):101-112.
    [199]Romero R, Palencia I, Carranza F. Silver catalyzed IBES process:application to a Spanish copper-zinc sulphide concentrate:Part 3. Selection of the operational parameters for a continuous pilot plant [J]. Hydrometallurgy,1998,49(1-2): 75-86.
    [200]Niederkon J S. Kinetic study on catalytic leaching of sphalerite [J]. Journal of Metallurgy.1985,37(7):53-56.
    [201]Nelen I M, Sobol S I. Mechamism of catalytic effect of copper during ammoniacal leaching in am autoclave. Sb. Tr.-Gos. Vses [J]. Naucno-issled. Inst. Tsvetnykh Metal,1959,15:577-584.
    [202]Yin Z, Ding Z, Hu H, et al. Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution [J]. Hydrometallurgy,2010,103 (1-4): 215-220.
    [203]Zhao Y, Stanforth R. Extraction of zinc from zinc ferrites by fusion with caustic soda [J]. Mining Engineering,2000,13(13):1417-1421.
    [204]Forward F A, Peters A. Leaching vol.2. SME Mineral Processing Handbook [M], New York,1985:136-1312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700