基于ZnO薄膜材料的大功率半导体激光器腔面钝化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高功率半导体激光器在光纤通信、工业加工、宇宙航天、医疗卫生和国防军事等领域的广泛应用及研究,社会对高功率半导体激光器的需求越来越大。其中,腔面膜技术是研制半导体激光器的关键技术之一,腔面膜性能的优劣直接影响到半导体激光器的输出功率、功率效率、可靠性和稳定性等方面。本论文从半导体激光器的腔面退化机理和腔面光学膜的设计理论展开,以典型的808nm GaAs/AlGaAs高功率半导体激光器作为研究对象,提出了以ZnO薄膜作为腔面钝化膜,前腔面镀制单层SiO2增透膜,后端面镀制Si/SiO2高反射膜的方法,以获得高激光损伤阈值腔面光学膜,从而提高半导体激光器的输出功率和可靠性。主要研究内容分为下几个方面:
     (1)分析了半导体材料的表面态来源和表面态对激光器退化的影响,指出表面态引起的非辐射复合是GaAs/AlGaAs激光器腔面发生光学灾变损伤的主要根源。然后,详细介绍了等离子体清洗的基本过程和原理。最后研究了薄膜光学中的单层增透膜、多层增透膜以及多层高反膜的光学特性和设计原理,并对多层介质膜中的弱吸收情况进行了讨论。为设计和制备出高质量GaAs/AlGaAs激光器腔面光学薄膜提供了理论依据和参考。
     (2)采用射频磁控溅射设备,以辉光放电方式引入等离子体并对GaAs样品表面污染物和氧化层进行清洗。分别探讨了氩等离子体清洗技术、氢等离子体清洗技术以及氩、氢混合等离子体清洗技术对GaAs表面特性的影响。实验结果表明,三种等离子体清洗技术均能对GaAs样品表面进行有效清洗,其中氩、氢气混合等离子体清洗技术结合了化学反应和物理刻蚀的双重作用,对GaAs样品的清洗效果最佳。在氩气和氢气流量分别为10cm3·min-1和30cm3·min-1,工作压强为2.5Pa,溅射功率为20W,清洗时间为15min的氩、氢混合等离子体清洗条件下,GaAs样品的光致发光强度提高约140%,表面的As-O键和Ga-O键基本消失。
     (3)采用射频磁控溅射方法在GaAs (110)衬底上制备了ZnO薄膜,并通过低温PL和XPS等测试手段分析了ZnO薄膜对GaAs表面的钝化效果。结果表明,经ZnO薄膜钝化后的样品本征光致发光峰强度提高了112.5%,杂质峰强度下降了82.4%。XPS光谱表明ZnO钝化层能够有效抑制镓、砷氧化物的形成,GaAs表面的镓、砷原子比值由1.47减小到0.94。证实了在GaAs表面沉积ZnO薄膜是一种可行的表面钝化方法,为GaAs基光电器件性能的进一步提高提供了新的途径。
     (4)围绕808nm GaAs/AlGaAs激光器的腔面光学薄膜设计及其制备工艺展开研究。利用射频磁控溅射技术分别在激光器谐振腔的前后腔面上沉积单层ZnO钝化膜,然后在前腔面沉积单层SiO2增透膜,后腔面沉积三对Si/SiO2高反射膜,测试结果表明,在中心波长808nm处,增透膜和高反射膜的反射率分别达到6.7%和98.86%。808mGaAs/AlGaAs激光器的输出功率达到5.92W,ZnO薄膜钝化技术可使激光器的COD阈值提高约57%。
With the high power semiconductor lasers are widely applied and researched in the optical fiber communication, industrial processing, spaceflight aviation, medical service and national defense and military, etc. The demands for the high-power semiconductor lasers are getting greater and greater. Cavity facet coating is the key technology of semiconductor laser and its performance will affect output power, power efficiency, reliability and stability. Based on the degradation mechanism of laser cavity facet and the design theory of optical films, we mainly discussed how to plate the passivation coating, antireflection coating and high-reflection coating on the cavity facet of808nm GaAs/AlGaAs laser, respectively. The main research contents include:
     (1) We analyzed the origin of the surface states, and then discussed the effect of surface states on the cavity facet degradation of semiconductor laser. The results indicated that the non-radiative recombination caused by surface states was the main factor to cause catastrophic optical damage. Then, the basic process and principle of plasma cleaning was described in detail. Finally, we studied the optical properties and design theory of single-layer AR coating, multilayer AR coating and multilayer HR coating, respectively, and discussed the mechanism of weak absorption in multi-layer dielectric films. It provided a theoretical foundation and reference for the design and preparation of cavity surface films with a high laser damage threshold.
     (2) A new plasma cleaning process for GaAs surface using Ar/H2plasma was introduced. The process for Ar/H2plasma cleaning and surface activation was studied comprehensively to remove various contaminants, oxide layer on GaAs surface, and the influence of Ar/H2plasma under different plasma parameters was discussed in detail. The results show that GaAs samples treated under the condition of Ar/H2flow rate10,30cm3/min, sputtering power20W and cleaning time15min give the best cleaning effect, the photoluminescence intensity increases nearly140%, and the As-O and Ga-O bonds on the GaAs surface decrease greatly.
     (3)An ultrathin passivation layer of ZnO on GaAs substrate was prepared by RF deposition method to control the interface trap densities and to prevent the Feimi level pinning. The passivation performance of ZnO coating have been investigated by the photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS).An increase in intrinsic PL intensity up to112.5%and a decrease in impurity PL intensity down to82.4%were observed after depositing ZnO coating compared to unpassivated GaAs surface. XPS measurement results show that the atomic concentration ratio of Ga/As (originally-1.47) has been modified to a value of~0.94, signifying an improvement of the surface stoichiometry in GaAs, Ga-O, As-O bonding are found to get effectively suppressed in RF deposited ZnO/GaAs interface structures. Research results indicated that the GaAs surface deposited with an ultrathin ZnO thin film was a feasible surface passivation method.
     (4) We mainly researched on the design and preparation technology of the various cavity facet coatings of808nm high-power semiconductor laser. The single-layer ZnO passivation coating was first deposited on the front and rear facets of the LD by RF magnetron sputtering technology, respectively. Then, a single-layer of SiO2as the antireflection coating was deposited on the front facet and three pairs of Si/SiO2layers as the high-reflection coatings were fabricated on the rear facet of semiconductor laser. The results of test demostrate that the reflectivity of AR/HR coatings is up to6.7%and98.86%at the wavelength of808nm, respectively. And the maximum output power of808nm GaAs/AlGaAs laser is5.92W,57%COD ability enhanced.
引文
[1]Vodhanel R. S. Laming R.1. Shah V. et al. Highly efficient 978 nm dipole-pumped erbium-doped fiber amplifier with 24dB gain. Electronics Lett,1989,25(20):1386-1388
    [2]Kuang G. K. Bohm G. Graf N. High-Temperature performance of InGaAs-InGaAlAs-lnP 1.79 μm diode lasers grown in solid-source molecular-beam eitaxy. IEEE Photonics Technology Letters.2001.13(4):275-277
    [3]陈云良.沈爱东.Ⅱ-Ⅵ族多量子阱双稳器件的研制.半导体情报.1991.28(6):74-76
    [4]Zhu H. Shan C-X. Zhang J-Y. et al. Low-Threshold Electrically Pumped Random Lasers. Advanced Materials.2010. 22(16):1877-1881
    [5]Zhu H. Shan C X, Yao B. et al. Ultralow-Threshold Laser Realized in Zinc Oxide. Advanced Materials,2009,21(16): 1613-1617
    [6]Chen H. Z. Ghaffari A, Wang H, et al. Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. Optics Letters,1987,12(10):812-813
    [7]Van der Ziel J P, Dupuis R D. Logan R A. et al. Low threshold pulsed and continuous laser oscillation from AlGaAs/GaAs double heterostructures grown by metalorganic chemical vapor deposition on Si substrates. Applied Physics Letters,1987,50(8):454-456
    [8]Tahraoui A, Matlis A, Slivken S, et al. High-performance quantum cascade lasers (λ~11μm) operating at high temperature (T≥425 K). Applied Physics Letters,2001,78(4):416-418
    [9]Arakawa Y. Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett,1982,40(11):939-941
    [10]汪剑平.半导体激光器.北京:电子工业出版社,2002:52
    [11]Basov N. G, Krokhin O. N, and Popo Yu. M. Production of negative-temperature states in p-n junctions of degenerate semiconductors. Sov. Phy. JETP,1961,13:1320-1321
    [12]程东明.21世纪的半导体激光器.光机民信息.2000,1:8-14
    [13]R. N. Hall, G. E. Fenner, J. D. Kingsley, et al. Coherent Light Emission From GaAs Junctions. Physical Review Letters. 1962.9(9):366-368
    [14]Zh.I. Alferov, R. F. Kazarinov. Semiconductor laser with electric pumping. Soviet Union Patent.1963. N181737
    [15]H. Kroemer. A Proposed Class of Heterojunction Injection Lasers. Proc. IEEE,1963,51:1782-1783
    [16]Rupprecht H, Woodall J, Pettit G. Efficient visible electroluminsecence at 300° K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy.Applied Physics Letters.1967,11(3):81-83
    [17]Alferov Zl, Andreev V, Portnoi E, et al. AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold.Soviet Physics Semiconductors,1970,3(9):1107
    [18]J. P. van der Ziel, A. C. Gossard. Optical birefringence of ultrathin AlxGa1-xAs-GaAs multilayer heterostructures. J. Appl. Phys.,1978,49(5):2919
    [19]W. T. Tsang, C. Weisbuch, R. C. Miller et al. Current injecton GaAs/Ga1-xAlxAs multi-quantum-well heterostructure lasers prepared by molecular beam epitaxy. Appl. Phys. Lett.1979,35:673
    [20]Kobayashi K, Kawata S,Gomyo A. et al. Room temperature CW operation of AlGaInP double heterostructure visible laser. Electronics Letters,1985,21(20):931-932
    [21]Ikeda M,Mori Y,Sato H,et al. Room-temperature CW operation of an AlGalnP double heterostruc-ture laser grown by atmospheric pressure metalorganic chemical vapor deposition. Appl. Phys. Lett,1985,47(10):1027-1028
    [22]Ishikawa M. Ohba Y, Sugawara H. et al. Room-temperature CW operation of InGaP/InGaAlP visible light laser diode on GaAs substrates grown by metalorganic chemical vapor deposition. Appl. Phys. Lett,1986,48(3):207-208
    [23]Kan H, Miyajima H. kanzaki T. et al. Two-dimensional high-power laser diode arrays cooled by Funryu heat sink. SPIE,2000,3889:66-70
    [24]Kanskar, Manoj.73% CW power conversion efficiency at 50 W from 970 nm diode laser bars. Electronics Letters. 2005,41(5):245-247
    [25]Yuan,Shu, Liu Chongyang. Bo Baoxue,et al. High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm. IEEE Photon. Technol.Lett.,2004.16(2):389-391
    [26]Jansen M, Bournes P, Corvini P, et al. High performance laser diode bars with aluminum-free active regions.Optics Express,1999,4(1):3-11
    [27]Silfvenius C, Blixt P, Lindstrom C, et al. High COMD, nitridized InAlGaAs laser facets for high reliability,50 W bar operation at 805nm. Proc. SPIE,2004,5336:131-143
    [28]Ayling Tim, Hendry Alec F., Carson Joan M., et al. Facet-passivation processes for the improvement of Al-containing semiconductor laser diodes. Lightwave Technology,2006,24(2):956-961
    [29]曲宙,刘洋,刘博.大功率半导体激光器的军事应用.光机电信息,2006,2:52-55
    [30]蒋涛.半导体激光器在军事工程上的应用.半导体光电,1985,4:51-56
    [31]付有余.激光测距与跟踪系统低噪声电子设计方法.光学精密工程,2000,8(3):250-253
    [32]王德,李学千.半导体激光器的最新进展及其应用现状.光学精密工程,2001,9(3):279-283
    [33]詹玉书,安毓英.非扫描成像半导体激光雷达.激光与红外,1995,5:15-17
    [34]付有余.激光测距与跟踪系统低噪声电子设计方法.光学精密工程,2000,8(3):250-253
    [35]杨玉勤.引信的种类及未来发展.兵器快报(弹药引信类),1997,3:10-12
    [36]尤海平.军用光纤技术.兵器快报(光电技术类),1998,8:50-57
    [37]张景旭.激光威胁源告警定向技术研究.光学精密工程,2000,8(4):365-368
    [38]谭显裕.军用光纤陀螺的发展、关键技术和应用前景.现代防御技术,1998,16(4):55-61
    [39]Lin Li. The advances and characteristics of high-power diode laser materials processing. Laser Material Processing, 2000,34(4-6):231-253
    [40]陈彦宾.现代激光焊接技术.北京:科学出版社,2005
    [41]Jari Hovikorpi, Anssi Jansson, Antti Salminen. Case studies of industrial applications of high power diode laser in Finland. Proceedings of SPIE.2003,4973:94-105
    [42]张永康.激光加工技术.北京:化学工业出版社,2004
    [43]C. Chaminade, E. Fogarassy, D. Boisselier. Diode laser soldering using a lead-free filler material for electronic packaging structures. Applied Surface Science,2006,252:4406-4410
    [44]Joel S. Schuman, MD, Carmen A. Puliafito. Semiconductor Diode Laser Peripheral Iridotomy. Arch Ophthalmol,1990, 108(9):1207-1208
    [45]Emoto I, Okisaka S, Nakajima A. Diode laser iridotomy in rabbit and human eyes. Am J Ophthalmol,1992,113(3): 321-327
    [46]Wolf-de Jonge IC, Beek JF, Balm R..25 years of laser assisted, vascular anastomosis (LAVA):what have we learned?. European Journal of Vascular and Endovascular Surgery,2004,27(5):466-476
    [47]Papathanasiou A, Kastali S, Perry RD, Kugel G. Clinical evaluation of a 35% hydrogen peroxide in-office whitening system. Compend Contin Educ Dent,2002,23(4):335-340
    [48]Muccini JA Jr, O'Donnell FE Jr, Fuller T, Reinisch L. Laser treatment of solar elastosis with epithelial preservation. Lasers Surg Med,1998,23(3):121-127
    [49]Valeria B. Campos, MD, Christine C. Dierickx. Hair removal with an 800-nm pulsed diode laser. Journal of the American Academy of Dermatology,2000,43(3):442-447
    [50]Kobayashi K. Room-temperature CW operation of AlGalnP double-heterostructure visible lasers. Electronics Letters, 1985,21(20):931-932
    [51]Hiroyama, Ryoji.630 nm-band AlGaInP strained MQW laser diodes with an MQB grown on misoriented substrates. Semiconductor Laser Conference,1992:154-155
    [52]Nakamura, Shuji. Characteristics of InGaN multi-quantum-wcll-structure laser diodes. Applied Physics Letters,1996, 68(23):3269-3271
    [53]黄心耕,刘江.从欧洲真空镀膜会议分析光学薄膜及其技术发展.光学仪器,21(5):238-242
    [54]Michael Ettenberg. A new dielectric facet reflector for semiconductor lasers. Applied Physics Letters,1978,32(11): 724-725
    [55]Kimio Shigihara, Yutaka Nagai, Shoichi Karakida, et al. High-Power Operation of Broad-Area Laser Diodes with GaAs and AlGaAs Single Quantum Wells for Nd:YAG Laser Pumping. IEEE Journal of Quantum Electronics,1991, 27(6):1537-1543
    [56]Shi-Yun Cho,Baik-Hyung Han. The Optimum Facet Reflectivities for High-Power and Highly Reliable Operation of 980-nm InGaAs/AlGaAs FP Laser Diodes. Journal of the Korean Physical society.1998,32(2):132-137
    [57]吴根柱,齐鸣.何友军等.半导休激光器腔面镀膜研究.半导体光电.2003.24(3):203-205.
    [58]舒雄文,徐晨.田增霞.电子束蒸发非晶硅光学薄膜工艺研究.光电子·激光.2006.17(8):905-908
    [59]赵妙,周代兵.谭满清.双源电子束蒸发制备Si/SiO2光学薄膜的工艺.半导体学报.2006.27(9):1586-1589
    [60]Yefan Chen, D. M. Bagnall. Hang-jun Koh. et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys,1998,84:3912-3918
    [61]J. F. Muth, R. M. Kolbas, A. K. Sharma, et al. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J Appl Phys,1999,85(11):7884-7887
    [62]Benny Josepha, K.G Gopchandrana, P.V Thomasa, et al. A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties. Materials Chemistry and Physics.1999,58(1):71-77
    [63]Y. Liu,C. R. Gorla,S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. Journal of Electronic Materials.2000,29(1):69-74
    [64]Nunes P. Fortunato E. Martins R. Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films. 2001.383(1/2):277-280
    [65]R. Groenen, J. L. Linden, H. R. M. van Lierop. et al. An expanding thermal plasma for deposition of surface textured ZnO:Al with focus on thin film solar cell applications. Applied Surface Science.2011,173(1-2):40-43
    [66]Minami. Tadatsugu. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination. Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2007,25(4): 1172-1177
    [67]Souvik Kundu, Shripathi T. Banerji P. Interface engineering with an MOCVD grown ZnO interface passivation layer for Zro2-GaAs metal-oxide-semiconductor devices.Solid State Communications.2011,151(24):1881-1884.
    [68]Souvik Kundu. Yelagam Anitha. Interface studies on high-k/GaAs MOS capacitors by deep level transient spectroscopy.Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2012,30(5): 051206.
    [69]陆家.陈长彦等.面分析技术.北京:电了工业出版社.1987
    [70]刘恩科.朱秉升.罗晋生等.半导体物理学.北京:国防工业出版社.1994
    [71]施敏编.黄振刚译.导体器件物理.电了工业出版社,1987
    [72]J. S. Yoo, H. H. Lee. Enhancement of output intensity limit of semiconductor lasers by chemical passivation of mirror facets. IEEE Phot. Tech. Lett.,1991.3 (3):202-204
    [73]王华英,朱海丰,何杰等.半导体光电特性的表面光电压谱表征.河北建筑科技学院学报,2004.21(2):90-93
    [74]李明亮,王祖朝,王广祥.朱月红.提高半导体激光器可靠性的研究.科学技术与工程.2006,6(16):2545-2547
    [75]Moser. Andreas. Thermodynamics of facet damage in cleaved AlGaAs lasers. Applied Physics Letters,1991,59(5): 522-524
    [76]Schatz R, Bethea C G. Steady state model for facet heating leading to thermal runaway in semiconductor lasers. J. Appl. Phys.,1994,76(4):2509-2521
    [77]Henry C H, Petroff P M, Logan R A. et al. Catastrophic damage of AlGaAs double-heterostructure laser material.J. Appl. Phys.,1979,50:3721-3732
    [78]Jongwoo Park, D.-S. Shin. Package-induced catastrophic mirror damage of 980-nm GaAs high -power laser. Materials Chemistry and Physics,2004,88:410-416
    [79]Francis F. Chen. Introduction to plasma physics and controlled fusion.2nd ed. New York and London:Plenum Press. 1983
    [80]赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993:1-60
    [81]唐晋发.郑权.应用薄膜光学(第一版),上海:上海科学技术出版社.1984:82-86
    [82]Turner G. M. Monte Carlo calculations of gas rarefaction in a magnetron sputtering discharge. J.Vac. Sci. Technol. 1995.13(4):2161-2169
    [83]Bogaerts A. Gijbels R and Serikov V. V. Calculation of gas heating in direct current argon glow discharges. J. Appl. Phys.2000,87(12):8334-8344
    [84]Zhi Li. Wei Li. Yadong Jiang, et al. Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD. J. Raman Spectroscopy.2010.42(3):415-421
    [85]Moravej M. Yang X. Barankin M. et al. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Sci. Tech,2006,15(2):204-210
    [86]Shih-Wei Tan. Hon-Ren Chen. Min-Yuan Chu, et al. Comparisons between InGaP/GaAs hetero-junction bipolar transistors with a sulfur-and an InGaP-passivated base surface. Superlattices and Microstructures.2005,37(6): 401-409
    [87]Keda Wang. Daxing Han,Guozhen Yue, et al. Light-induced increase of nonradiative recombination centers in hydrogenated nanocrystalline silicon solar cells under reverse electric bias. Applied Physics Letters.2009,95(2): 23506
    [88]S. Dogan and S. Tuzemen. Direct recognition of non-radiative recombination centers in semi-insulating LEC InP:Fe using double excitation photoluminescence. Journal of Luminescence.2008,128(2):232-238
    [89]M. V. Maksimov. D. S. Sizov. A. G. Makarov, et al. Effect of nonradiative recombination centers on photoluminescence efficiency in quantum dot structures. Low-Dimensional systems,2004,38(10):1207-1211
    [90]Shamirzaev. T. S. Sokolov. A. L, Zhuravlev. K. S. et al. Changes in the Density of Nonradiative Recombination Centers in GaAs/AlGaAs Quantum-well Structures as a Result of Treatment in CF4 Plasma,2002. Semiconductors.36(1):81
    [91]Hattangady S. V. Rudder R. A. Mantini M. J. et al. In situ cleaning of GaAs surfaces using hydro gen dissociated with a remote noble-gas discharge. J. Appl. Phys,1990,68(3):1233-1236
    [92]Mikhailov G. M, Bulkin P. V, Khudobin S. A. et al. XPS investigation of the interaction between ECR-excited hydrogen and the native oxide of GaAs (100). Vacuum,1992,43(3):199-201
    [93]Choquette K. D. Shul R. J. Howard A. J, et al. Smooth reactive ion etching of GaAs using a hydrogen plasma pretreatment. J. Vac. Sci. Technol,1995,13(1):40-42
    [94]Sugaya T, Kawabe M. Low-temperature cleaning of GaAs substrate by atomic hydrogen irradiation. Jpn. J. Appl. Phys, 1991,30(3A):L402-L404
    [95]Kondo N, Nanishi Y. Low-temperature surface cleaning of GaAs by electron cyclotron resonance (ECR) plasma. Jpn. J. Appl. Phys,1989,28(1):L7-L9
    [96]Yamada M. Ide Y. Direct observation of species liberated from GaAs native oxides during atomic hydrogen cleaning. Jpn. J. Appl. Phys,1994.33(5A):L671-L674
    [97]Sugata S. Takamori A, Takado N, et al. GaAs cleaning with a hydrogen radical beam gun in an ultrahigh-vacuum system. J. Vac. Sci. Technol,1988. B6(4):1087-1091
    [98]Takamori A, Miyauchi E, Arimoto H. et al. Growth-Interrupted interfaces in multilayer MBE growth of gallium arsenide. Jpn. J. Appl. Phys,1985,24:L414-L416
    [99]Wagner C D, Riggs W M, Davis L E. et al. Handbook of X-ray Photoelectron Spectroscopy.Perkin-Elmer: Perkin-Elmer Corporation,1979:1-190
    [100]Zhizhen Ye, Jingrui Wang, Yazhen Wu. et al. Growth of phosphorus-doped p-type ZnO thin films by MOCVD. Frontiers of Optoelectronics in China.2008.1(1-2):147-150
    [101]Lei Zhao, Jianshe Lian. Yuhua Liu. et al. Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition. Applied Surface Science,2006,252:8451-8455
    [102]S. ILICAN. Y. CAGLAR. M. CAGLAR. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. Journal of Optoelectronics and Advanced Materials,2008,10(10):2578-2583
    [103]Y. Segawa,A. Ohtomo, M. Kawasaki, et al. Growth of ZnO Thin Film by Laser MBE:Lasing of Exciton at Room Temperature,Physica Status Solidi (B),1997,202(2):669-672
    [104]Minami, Tadatsugu. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination. Journal of Vacuum Science & Technology A:Vacuum. Surfaces, and Films.2007, 25(4):1172-1177
    [105]李云奇.真空镀膜技术与设备.东北工学院出版社,1992
    [106]顾培夫.薄膜技术.浙江大学出版社.1990
    [107]王力衡,黄运添.郑海涛.薄膜技术.清华大学出版社,1991
    [108]吕建国,叶志镇,陈汉鸿等.直流反应磁控溅射生长p型ZnO薄膜及其特性的研究.真空科学与技术,2003, 23(1):5-8
    [109]陈汉鸿,吕建国,叶志镇等.反应磁控溅射ZnO薄膜的高温退火研究.真空科学与技术,2002,22(6):467-449
    [110]D. C. Look, B. Claflin. P-type doping and devices based on ZnO. Phys. Stat. Sol. (B),2004,241:624-630
    [111]Ashrati A B M A. Ueta A, Avramescu A. et al. Growth and characterization of hypothetical zinc-blende ZnO film on GaAs(001)substrates with ZnS buffer layers. Appl Phys Lett,2000,76(5):550
    [112]Desgreniers S. High-density Phases of ZnO:Structural and Compressive Parameters. Physical Review B,1998, 58(21):14102-14105
    [113]S. J. Pearton. D. P. Norton. K. Ip. Y. W. Heo,et al. Recent Progress in Processing and Properties of ZnO. Superlattice and Microstructures,2003,34(1-2):3-32
    [114]Norton D P.Heo Y W. lvill M P,et al. ZnO:Growth.Doping and Processing. Materials today,2004,7(6):34-40
    [115]陈肖静,王永谦.朱拓等.射频溅射功率对ZnO透明导电薄膜光电性能的影响.人工晶体学报.2009.38(2):354-357
    [116]Yasuhiro I. Hirokazu K. Argon Gas Pressure Dependence of the Properties of Transparent Conducting ZnO:Al Films Deposited On Glass Substrates. Appl. Surf. Sci.,2001,169-170:508-511
    [117]杨田林,张德恒.李滋然等.射频磁控溅射制备的柔性衬底ZnO:Al透明导电薄膜的研究.太阳能学报,1999,20(2):200-203
    [118]LEE H W. LAU S P. WANG Y G. Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered catholic vacuum are tec hnique. Journal of Crystal Growth,2004,268(3/4):596-601
    [119]刘恩科,朱秉升.罗晋生.半导体物理学.北京:国防工业出版社,1994.256-260
    [120]F. Paraguay D. W. Estrada L. D. R. Acosta N. et al. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films,1999,350(1-2):192-202
    [121]王恩哥Zn/GaAs(110)系统的表面驰豫及其对费米能级钉扎的影响.物理学报.1997,46(1):117-121
    [122]Chunlei Wang, Enhong Shen, Enbo Wang, et al. Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Materials Letters,2005,59(23):2867-2871
    [123]Hong-Liang Lu. Liang Sun. Shi-Jin Ding, et al. Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment.Appl. Phys. Lett.2006,89(15):152910
    [124]Wagner C D. Riggs W M. Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer: Perkin-Elmer Corporation,1979:1-190
    [125]施敏编.黄振刚译.半导体器件物理.电了工业出版社,1987
    [126]Peter Unger. Edeltraud Gehrig, Ortwin Hess, et al. High-power Diode Lasers-fundamentals. Technology. Applications. Springer-Verlag Berlin Heidelberg,2000,34-37
    [127]李建军,韩军,邓军等.低阈值高效率InAlGaAs量子阱808 nm激光器.中国激光,2006,33(9):1159-1162
    [128]Zhe Li, Xiwen Zhang, Gaorong Han. Electrical and optical properties of boron-doped nanocry -stalline silicon films deposited by PECVD. Physica status solidi.2010,207(1):144-148
    [129]Sigurd Wagner. Amorphous silicon:Vehicle and test bed for large-area electronics. Physica status solidi.2010,207(3): 501-509
    [130]周惠健,王玉琦.何炜.局域电子态密度的俄歇复合谱分析.真空科学与技术.1995,15(5):297-302
    [131]唐晋发.郑权.应用薄膜光学.上海:科学技术出版社,1984,49-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700