新生态二氧化锰对水中有机污染物的强化去除作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国饮用水源污染严重,特别是有机污染物,如果不能在混凝过程中去除,在后续的消毒过程中可能会与氯作用生成毒害更强的消毒副产物,对人体健康构成威胁。因此,混凝过程是保障饮用水安全的一个重要过程。但常规混凝剂及混凝方法对有机污染物去除效果有限,难以达到新颁布的生活饮用水卫生标准的要求。因此,开发高效、廉价、使用方便及不存在二次污染的多功能混凝剂具有重要意义。本文通过对新生态二氧化锰与有机物间的作用特性及机理研究,旨在为饮用水处理提供一种经济简便的除污染方法。
     在中性pH条件下,采用硫酸锰与高锰酸钾在线投加的方式制备新生态二氧化锰,通过原子力显微镜、红外光谱及比表面积等分析手段对新生态二氧化锰的微观结构形态进行了表征。结果表明,新生态二氧化锰颗粒呈现不规则的球形,粒径小于100nm,颗粒产生瞬间即发生凝聚。新生态二氧化锰表面富含羟基,比表面积大。
     通过研究新生态二氧化锰与苯酚的反应规律,发现溶液pH影响新生态二氧化锰与还原性有机物的作用。在中性pH条件下新生态二氧化锰与苯酚间主要发生吸附作用,而在强酸性条件新生态二氧化锰与苯酚发生氧化还原反应,苯酚的去除率也明显提高,但新生态二氧化锰不能将苯酚彻底氧化,会生成苯醌和联苯酚等中间产物。
     以新生态二氧化锰为吸附剂,以苯胺、苯酚、硝基苯和苯甲酸四种有机物为目标物,研究新生态二氧化锰对这些有机物的吸附性能和作用机理。结果表明,新生态二氧化锰对所选择的四种有机物的吸附能力为:苯胺>苯酚>硝基苯>苯甲酸。通过对有机物分子结构的比较,正负离子对新生态二氧化锰吸附效能的影响分析,发现新生态二氧化锰的比表面积及静电作用对其吸附作用有重要影响。一般情况下,新生态二氧化锰的比表面积越大,其对有机物的吸附能力越强,新生态二氧化锰更易于吸附带正电荷的有机物;有机物的疏水作用次之,有机物的疏水性越强,有利于其在新生态二氧化锰表面吸附。新生态二氧化锰对有机物的吸附更符合Langmuir吸附等温模型。
     以新生态二氧化锰作为混凝剂和助凝剂,考察新生态二氧化锰对微污染水中有机物的去除效能,并考察混凝条件对其混凝效果的影响。结果表明,新生态二氧化锰具有较好的有机物去除能力,如投加10mg·L-1二氧化锰,UV254的去除率约为40%以上,TOC的去除率接近20%。新生态二氧化锰混凝去除有机物的速率非常快,有机物的去除主要发生在混凝过程的快速搅拌阶段。而将新生态二氧化锰作为助凝剂投加(投量0.3 mg·L-1),强化硫酸铝混凝作用,UV254和TOC的去除率能够提高20%以上。
     以单宁酸作为天然有机物的代表,研究新生态二氧化锰对大分子有机酸的去除效能及新生态二氧化锰在高锰酸钾强化混凝去除天然有机物中的作用规律。结果表明,与苯甲酸不同,新生态二氧化锰对单宁酸具有较好的吸附去除效能,而且钙离子能够促进新生态二氧化锰对单宁酸的吸附作用,说明有机酸的分子量对新生态二氧化锰的吸附作用有影响。高锰酸钾对单宁酸的氧化作用不是单宁酸去除的主要因素,新生态二氧化锰吸附才是单宁酸去除的主要作用。
     新生态二氧化锰对松花江微污染水的混凝试验结果表明,新生态二氧化锰对实际微污染水具有很强的除有机物能力,如投加10mg·L-1的新生态二氧化锰,UV254的去除率最高达到40%以上,TOC的去除率最高也可以达到20%以上,但是混凝后水的浊度、溶解锰的含量都稍高于生活饮用水的标准。若将其作为助凝剂投加(1.37mg·L-1),强化硫酸铝的混凝作用,硫酸铝投量为10mg·L-1时,UV254的去除率可以提高20%以上,TOC的去除率可以提高10%左右,处理后水样的浊度、溶解锰和溶解铝含量都能够达到生活饮用水的标准。实际水加标实验表明,新生态二氧化锰混凝对松花江水中的苯酚、硝基苯和苯胺都有一定的去除,去除率能够达到20%以上,但是对苯甲酸的去除效果较差。实际水体中的钙离子对新生态二氧化锰混凝作用的影响弱于其在蒸馏水中。新生态二氧化锰对实际水中TOC的饱和吸附量明显大于其在蒸馏水中对小分子有机物的饱和吸附量。
Organic contamination of the drinking source water is a serious problem in water supply. The organics may form more toxic byproducts in the disinfection process with chlorine if they can not be removed in the process of coagulation. But the regular coagulants and coagulation process can not satisfy the new standard of drinking water for orgnanic micropollutants. New type of coagulant which has the advantage of high efficiency, convenience and no side effect should be developed.
     Manganese dioxide formed in situ was prepared by manganese sulfate and potassium permanganate online added under neutral pH condition. The mictopography of manganese dioxide formed in situ was characterized by AFM, FT-IR and BET. Results showed that the particles of manganese dioxide formed in situ are un-regularly spherical form and have small particle size less than 100nm. With the higher specific surface area, the particles of the manganese dioxide formed in situ will coagulate instantly as they are formed in aqueous solution.
     The pH of the aqueous solution affects the type of the reaction of manganese dioxide formed in situ with organics, as seen from the results of phenol reacting with manganese dioxide formed in situ. The adsorptive reaction was happened for manganese dioxide formed in situ with phenol under neutral pH condition, while the oxidation-reduction reaction was observed under strongly acidic condition and the phenol removal efficiency was very high. The oxidative products of phenol were p-benzoquinone and coupled phenol.
     Four kinds of organic compounds with different functional groups on aromatic, that are aniline, phenol, nitrobenzene and benzonic acid were chosen for adsorption experiments. In these four organics, the adsorption capacity increased in the order aniline>phenol>nitrobenzene>benzoic acid. According to the analysis on organics structure and the surface characteristics of manganese dioxide formed in situ, conclusion may be obtained that the surface area of oxide and electrostatic are important for adsorption and the hydrophobicity is the minor effect. The adsorption of organics by manganese dioxide formed in situ was more conform to the Langmuir adsorption mode.
     Manganese dioxide formed in situ was selected as coagulant and coagulant aid to investigate the organic removal in micro-polluted water and the technical parameters were fixed. Results showed that UV254 and TOC were removed as high as 40% and 20% respectively. Organics were mainly removed in the process of fast mixing. While UV254 and TOC can be improved more than 20% as the manganese dioxide formed in situ enhanced the coagulation of aluminum sulfate.
     Tannic acid was selected as a reproducible surrogate for NOM because it is present in natural waters and it resembles humic substances in some properties such as adsorption, color, and complex formation. Tannic acid also contains both saccharide and aromatic acid components that are significant in surface waters. The adsorption results showed that the removal efficiency for tannic acid adsorbed by manganese dioxide formed in situ is higher than benzoic acid. Calcium can accelerate tannic acid removed by manganese dioxide formed in situ. This means that the adsorption of organic acid by manganese dioxide formed in situ is correlated with the value of its molecule weight. The dose of KMnO4 is not the essential factor for tannic acid removal, while the adsorption of newly formed MnO2 is the most important factor for tannic acid removal.
     UV254 and TOC removal percentage were 40% and 20% respectively as 10mg·L-1 manganese dioxide formed in situ was added to treat micro-polluted Songhua River. But the residual turbidity and soluble manganese of disposed water are higher than the standard of drinking water. As manganese dioxide formed in situ was added with a dose of 1.37mg·L-1 to enhance the coagulation by aluminum sulfate (10mg·L-1), UV254 and TOC can be increased more than 20% and 10% respectively. The turbidity, soluble manganese and soluble aluminum of treated water were all satisfied the standard of drinking water. Results of coagulation on the water of Songhua River with standard materials showed that manganese dioxide can remove nitrobenzene, phenol and aniline in the Songhua River and the organic removal efficiency is more than 20%. Benzonic acid can not adsorb by manganese dioxide formed in situ no matter in distilled water or in Songhua River. Ca2+ existed in Songhua River has less effect on the adsorption of manganese dioxide formed in situ than in distlled water. Manganese dioxide formed in situ has higher TOC adsorption capacity for natural water than distilled water.
引文
1李晓东,蔡国庆,马军.水中有机成分及其对饮用水水质的影响.给水排水. 1999, 25(5):12-14
    2张坤民. 21世纪中国环境面临的挑战与对策.环境保护. 1999, (1):33-35
    3 E. S. Hall, R. F. Packham. Coagulation of Organic Color with Hydrolyzing Coagulant. J. Am. Water Works Assoc.. 1965, 57(9):33-38
    4王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社, 2002:21-23
    5 G. R. Aiken, J. Leenheer. Isolation and Chemical Characterization of Dissolved and Colloidal Organic Matter. Chem. Ecol. 1993, 8:135-151
    6 D. M. McKnight, G. R. Aiken. Sources and Age of Aquatic Humic.In: D. O. Hessen, L. J. Tranvik (Eds.). Aquatic Humic Substances: Ecology and Biogeochemistry. Ecological Studies. 1998, 133: 9-39
    7 T. A. Bellar, J. J. Lichtenberg, R. C. Kroner. The Occurrence of Organohalides in Chlorinated Drinking Water. J. Am. Water Works Assoc. 1974, 66: 703-706
    8 D. A. Reckhow, P. C. Singer, R. L. Malcolm. Chlorination of Humic Materials: By-product Formation and Chemical Interpretations. Environ. Sci. Technol. 1990, 24: 1655-1664
    9 J. L. Oxenford. Disinfection By-products: Current Practices and Future Directions. In: R. A. Minear, G. L. Amy (Eds.). Disinfection By-products in Water Treatment: The Chemistry of Their Formation and Control. Lewis Publishers, 1996, 3-16
    10沈耀良.氯化消毒副产物的形成及其控制.污染防治技术. 1995, 8(2): 65-68
    11 A. M. El-Rehaili, W. J. Weber. Correlation of Humic Substance Trihalomethane Formation Potential and Adsorption Behavior to Molecular Weight Distribution in Raw and Chemically Treated Waters. Water Res. 1987, 21:573-582
    12 K. Gray, F. Bernazeau, C. Hubele. Direct Filtration on the Seine River: the Importance of Chemistry. Influence and Removal of Organics in DrinkingWater Treatment, J. L. Mallevialle, I. H. Su.et, and U.S. Chan. Lewis, Boca Raton, FL, 1992
    13 B. Gu, J. Schmitt, Z. Chen. Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models. Environ. Sci. Technol. 1994, 28: 38-46
    14 Guidelines for Drinking-water Quality. Second Edition, Geneva World Health Organization. 1993
    15 M. C. Carter, J. R. Weber. Modeling Adsorption of TCE by Activated Carbon Preloaded by Background Organic Matter. Environ. Sci. Technol. 1994, 28:614-623
    16 D. R. U. Knappe, Y. Matsui, V. L. Snoeyink, et al. Predicting the Capacity of Powdered Activated Carbon for Trace Organic Compounds in Natural Waters. Environ. Sci. Technol. 1998, 32: 1694-1698
    17 R. S. Summers, P. V. Roberts. Activated Carbon Adsorption of Humic Substances II. Size Exclusion and Electrostatic Interactions. J. Colloid Interface Sci. 1988, 122: 382-397
    18 P. H. Chen. Adsorption of Organic Compounds in Water Using a Synthetic Adsorbent. Environment International. 1997, 23(1): 63-73
    19郏其庚.活性炭的应用.华东理工大学出版社, 2002: 8
    20姜成春,马军.高锰酸钾与粉末活性炭联用处理微污染源水.中国给水排水. 2001, 17 (3): 12-15
    21钱庆玲,范瑾初.微污染源水净化技术综述.公共科技. 1995, 11(3): 30-33
    22王占生.水中有机污染物与饮用水处理工艺.给水深度处理技术交流会,日本,1988
    23 K. N. Donald. Evaluating Treatment Processes with the Ames Mutagenicity Assay. J. Am. Water Works Assoc. 1989, 81:87-94
    24王宝贞,王琳.水与废水的深度氧化处理技术.河海大学出版社, 2000: 100-102
    25邓志光.生物预处理在给水处理中的应用.中国给水排水. 1991, 7(5): 41-43
    26 J. Chang. Membrane Bioprocesses for the Denitrification of Dringking Water Supplies. J. Membrane Sci. 1993, 80: 233-239
    27张绍园.反渗透组合工艺去除水中致突变有机物.中国给水排水. 2001, 17(3): 4-7
    28徐荣安.膜技术在饮用水深度处理中的应用.水处理技术. 1999, 25(5): 249-251
    29 S. J. Xia, J. Nan, R. P. Liu, et al. Study of Drinking Water Treatment by Ultrafiltration of Surface Water and Its Application to China. Desalination. 2004, 170:41-47
    30邵刚.膜法水处理技术(第二版).北京.冶金工业出版社, 2000:1
    31 K. E. Shull. Operating Experiences at Philadelphia Suburban Treatment Plants. J. Am. Water Works Assoc.1962, 54(10): 1232-1234
    32 T. Hundt, C. O’melia. Aluminum-Fulvic Acid Interactioons: Mechanisms and Applicatiooons. J. Am. Water Works Assoc.1988, 4: 176-186
    33 P. M. Bertsch. Aqueous Polynuclear Aluminum Species. In the Environmental Chemistry of Aluminum. G. Sposito (Eds) Boca Raton: CRC Press. 1989, 87-115
    34 H. D. Hek, R. J. Stol, P. L. De Bruyn. Hydrolysis-precipitation Studies of Aluminum Solutions. 3. The Role of the Sulfate Ion. J. Colloid Interface Sci. 1978, 64(1): 72-79
    35 J. Davis. Aadsorptioon of Natural Dissolved Organic Matter at the Oxide/Water Interface. Geochmica et Cosmochimica Acta. 1982, 46: 2381
    36 T. Tsen, D. Brad. Segal, M. Edwards. Increasing Alkalinity to Reduce Turbidity. J. Am. Water Works Assoc. 1998, 92(6): 284-297
    37 K. Juli, Morris, W. R. Knocke. Temperature Effects on the Rse of Metal-Ion Coagulants for Water Treatment. J. Am. Water Works Assoc. 1984, (3): 876-884
    38 G. P. Hanna, A. J. Rubin. Effect of Sulfate and Other Ions in Coagulation with Aluminum. J. Am. Water Works Assoc. 1970, 62(5): 315-326
    39张颖,余新晓,谢宝元.水资源合理配置研究现状与发展趋势.中国水土保持科学. 2004, 2(4): 91-97
    40邱慎初.化学强化一级处理(CEPT)技术.中国给水排水. 2000, 16(1): 26-29
    41姜应和,李玲玲.混凝法强化城市污水厂一级处理的试验研究.中国给水排水. 2000, 1(3): 12-15
    42李伟英.“混凝”新释义及混凝技术.工业用水与废水. 2001, 32(2): 37-39
    43 J. G. Jacangelo, O. J, Demar, D. M. Owan, et al. Selected Progress for Removal NOM; an overview. J. Am. Water Works Assoc. 1995, 87(1): 64-77
    44 .C. C. Robert, W. K. Stuart, F. G. James, et al. Enhanced Coagulation: Apreliminary Evaluation. J. Am. Water Works Assoc. 1995, 87(2): 91-103
    45 V. Christian. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and its Biodegradable Fracton in Drinking Water Res. 2000, 66(10): 3247-3257
    46 B. A. Kimberly. Conventional and Optimized Coagulation for NOM Removal. J. Am. Water Works Assoc. 2000, 92(10): 47-58
    47金星国,国长理.论我国水资源现状及保护对策.林业勘查设计. 2004, 3: 13-14
    48庞鹏沙,董仁杰.浅议中国水资源现状与对策.水利科技与经济. 2004, 10(5): 267
    49 P. L. Hayden, A. J. Rubin. Systematic Investigation of the Hydrolysis and Precipitaion of Aluminum (Ⅲ), Chapter 9. Aqueous-Environmental Chemistry of Metals (A.J.Rubin, editor). Ann. Arbor Science, Ann Arbor, Mich. 1974, 268
    50康文通.按照市场规律办事充分利用现有水源.科技情报开发与经济. 2005, 15(1): 79-80
    51沈耀良.氯化消毒副产物的形成及其控制.污染防治技术. 1995, 8 (2): 65-68
    52李君文.氯化消毒时三卤甲烷的形成.环境保护科学. 1994, 20(1): 5-8
    53 P. C. Singer, S. D. Chang. Correlations between Trihalomethanes and Total Organic Halides Formed during Water Treatment. J. Am. Water Works Assoc. 1989, 81: 61-5
    54 D. A. Reckhow, P. C. Singer, R. R. Trussell. Ozone as a Coagulant Aid. Proceedings of the AWWA Seminar on Ozonation: Recent Advances and Research Needs. Denver, CO. 1986, 17-46
    55 D. M.Whitea, D. Sarah Garlandb, J. Narrb. Natural Organic Matter and DBP Formation Potential in Alaskan Water Supplies. Water Res.2003,37:939-947
    56 H. Selcuka, L. Rizzob, et al. DBPs Formation and Toxicity Monitoring in Different Origin Water Treated by Ozone and Alum/PAC Coagulation.Desalination. 2007, 210: 31-43
    57 B. G. Oliver. Effect of Temperature, pH and Bromide Concentration on the Trihalomethane Reaction of Chlorine with Aquatic Humic Material. In: R. L. Jolley, et al, Eds. Water Chlorination: Environmental Impact and Health Effects. Ann. Arbor. MI: Ann. Arbor. Sci. Publ. Inc. 1980
    58 J. K. Edzwald, C. B. William, L. W. Kevin. Surrogate Parameters for Monitoring Organic Matter and THM Precursors. J. Am. Water Works Assoc. 1985, 77 (4): 122-133
    59 J. J. Chen, H. H. Yeh. The Mechanisms of Potassium Permanganate on Algae Removal. Water Res. 2005, 39: 4420-4428
    60 G. P. Fitzgerald. Laboratory Evaluation of Potassium Permanganate as an Algicide for Water Reservoirs. J. South West Water Works Assn. 1964, 45:16-25
    61 G. P. Fitzgerald. Use of Potassium Permanganate for Control of Problem Algae. J. Am. Water Works Assoc. 1966, 59: 609-617
    62 B. Fetrusevski, A. N.V. Breemen, G. Alaerts. Effect of Permanganate Pre-treatment and Coagulation with dual Coagulants on Algae Removal in Direct Filtration. J. Water SRT-Aqua.1996, 45: 316-326
    63陈卫.高锰酸钾复合药剂强化混凝去除太湖蓝藻等污染物质研究.哈尔滨工业大学博士学位论文. 2001, 44-75
    64 A. K. Cherry. Rx for Tastes and Odors-KMnO4 and Activated Carbon. Water Works Eng. 1962, (3): 182-185
    65陈忠林,杨艳玲,余敏.高锰酸钾复合药剂处理臭味污染水源水的试验研究.哈尔滨建筑大学学学报. 1999, 32 (6):78-81
    66陈忠林.高锰酸钾复合药剂强化混凝除浊除臭研究.哈尔滨建筑大学博士论文. 1997, 68-70
    67 Humphrey. Iron and Manganese Removal Using KMnO4. Water and Sewage. 1962, (10):176-180
    68马军,李圭白.高锰酸钾的氧化助凝效能研究.中国给水排水. 1992, (8): 4-7
    69许国仁,马军,陈忠林.高锰酸钾复合剂助凝生产性试验.给水排水. 1995, 21(9): 8-13
    70 J. Ma, N. Graham, G. B. Li. Effectiveness of Permanganate Preoxidation inEnhancing the Coagulation of Surface Waters-Laboratory Case Studies. J Water SRT-Aqua. 1997, 46:1-11
    71 R. G. Spicher, R. T. Skrinde. Potassium Permanganate Oxidation of Organic Contaminants in water Supplies. J. Am. Water Works Assoc. 1963, (9): 1157-1163
    72 B. Moyer, J. S. Wu. Removal Organic Precursors by Permanganate Oxidation and Alum Coagulation. Water Res.1985, 19(3): 309-316
    73李圭白,林生,曲久辉.用高锰酸钾去除饮用水中微量有机物.给水排水. 1989, 15(3): 7-11
    74 J. J. Chen, H. H. Yeh. The Mechanism of Potassium Permanganate on Algae Removal. Water Res. 2005, 39: 4420-4428
    75李圭白,马军.高锰酸钾氧化法去除饮用水中微量丙烯酰胺.给水排水. 1989, (2): 8-12
    76马军,李圭白.高锰酸钾预处理对饮用水氯化消毒过程中氯仿生成量的影响.哈尔滨建筑大学学报. 1990, 91: 102-105
    77马军,李圭白.高锰酸钾复合药剂预处理控制氯化消毒副产物及致突变活性.给水排水. 1994, (3): 5-9
    78徐贤泽,王汉敏,何谦.高锰酸钾杀菌效果的试验观察.中国消毒学杂志. 1995, 12(4): 251-253
    79 S. Lalezary. Oxidation of Five Earthy-Musty Taste and Odor Compounds. J. Am. Water Works Assoc. 1986, 78(3): 62-65
    80 P. C. Singer. The Effects of Permanganate Pretreatment on Trihalomthane Formation in Drinking Water. J. Am. Water Works Assoc. 1980, 72(10): 573
    81 J. M. Chlthurst, P. C. Singer. Removing Trihalomethane Precursors by Permanganate Oxidation and Manganese Dioxide Adsorption. J. Am. Water Works Assoc. 1982, 74(2): 78-83
    82马军.饮用水中若干有机污染物的去除.哈尔滨建筑工程学院硕士学位论文. 1985, 79-81
    83李圭白,马军.用高锰酸钾去除和控制受污染水源水中的致突变物质.给水排水. 1992, (2): 15-18
    84马军.高锰酸钾去除与控制饮用水中有机污染物的效能与机理.哈尔滨建筑工程学院博士学位论文.1990, 63-65
    85马军,李圭白,李晓东.高锰酸钾除微污染效能-GC/MS分析.中国给水排水. 1999, 15(5): 13-15
    86何孟常,季海冰,赵承易.锑(III)在合成性δ态-MnO2表面的氧化机理.环境科学学报. 2003, 23(4): 483-487
    87 E. F. Scott, J. Robert. Chromium (III) Oxidation byδ-MnO2 1. Characterization. Environ. Sci. Technol. 1992, 26(1): 79-85
    88 M. Crimi. Particle Genesis and Effects on Metals in the Subsurface during in situ Chemical Oxidation Using Permanganate. Ph.D dissertation. Colorado School of Mines. 2002
    89 M. Tuncay, Yüce, B. A. Arlkan. Kinetic Study of the Reaction between Colliodal Manganese Dioxide and Formic Acid in Aqueous Perchloric Acid Solution in the Presence of Surface Active Agents. J. Colloid Interface Sci. 1999, 149: 279-284
    90 T. D. Waite, I. C. Wrgley. Photoassited Dissolution of a Colliodal Manganese Oxide in the Presence of Fulvic Acid. Environ. Sci. Technol. 1998, 22(7): 778-785
    91 Ottó, Horváth, S. Katalin. Photoassited Dissolution of Collioidal Manganese Dioxide in the presence of phenol. Journal of Photochemistry and Photobiology A: Chemistry. 1998, 116(4): 69-73
    92 A. T. Stone, J. J. Morgan. Reduction and Dissolution of Manganese (IV) Oxides by Organics: 2. Survey of the Reactivity of Organids. Environ. Sci. Technol. 1984, 18: 617-624
    93徐崇泉,强亮生.工科大学化学.高等教育出版社, 2003: 375-376
    94 A. T. Stone, J. J. Morgan. Reductionand Dissolution of Manganese (III) and Manganese (IV) Oxides by Organics: 1. Reaction with Hydroquinone. Environ. Sci. Technol. 1984, 18: 450-456
    95 A. T. Stone. Reduction and Dissolution of Manganese (III) Oxides by Substituted Phenols. Environ. Sci. Technol. 1987, 21(10): 979-988
    96 H. J. Ulrich, A. T. Stone. Oxidation of Chlorophenols Adsorbed to Manganese Oxide Surfaces. Environ. Sci. Technol. 1989, 23(4): 421-428
    97 A. T. Stone. Dissolution of Manganese (III/IV) Oxides by Substituted Phenols. Environ. Sci. Technol. 1987, 21(10): 979-987
    98刘瑞霞,汤鸿霄.不同染料化合物在天然锰矿界面的脱色特性.环境化学. 2000, 19(4):341-346
    99 R. X. Liu, H. X Tang. Oxidative Decolorization of Direct Light Red F3B Dye at Natural Surface.Water Res. 2000, 34(16): 4029-4035
    100 T. Matsunaga, T. Ohyama, K. Kuma, et al. Photo Reduction of Manganese Dioxide in Seawater by Organic Substances under Ultraviolet or Sunlight. Water Res. 1995, 29(2): 757-759
    101 E. F. Scott, J. Robert, Zasoskl. Chromium (III) Oxidation byδ- MnO2. 1. Characterization. Environ. Sci. Technol. 1992, 26(1): 79-85
    102 L. E. Edmond, R. Dhanpat. Kinetics of Chromium (III) Oxidation to Chromium (VI) by Reaction with Manganese Dioxide. Environ. Sci. Technol. 1987, 21: 1187-1193
    103 W. G. Driehuaus, S. Rerner, J. Martin. Oxidation of Arsente (III) with Manganese Oxide in Water Trentment. Water Res. 1995, 29(1): 297-305
    104陈红,叶兆杰,方士.不同状态MnO2对废水中As(III)的吸附研究.中国环境科学. 1998, 18(2): 126-130
    105 J. F. Perez-Benito. Reduction of Colloidal Manganese Dioxide by Manganese (II). J. Colloid Interface Sci. 2002, 248: 130-35
    106杨威.水合二氧化锰混凝去除水中微量金属镉.化学与黏合. 2007, 29 (4): 229-231
    107 J. W. Murray. The Interaction of Cobalt with Hydrous Manganese Dioxide. Geochim ica et Cosmochim ica acta. 1975, 39: 635-647
    108中国矿床编委会编著.中国矿床[M]中册.北京:地质出版社, 1994: 480
    109 S. R. Randall, D. M. Sherman, K. V. Ragnarsdottir. An Extended X-ray Absorption Fine Structure Spectroscopy Investigation of Cadmium Sorption on Cryptomelane (KMn8O16). Chemical Geology. 1998, 151: 95-106
    110 S. Chakravarty, V. Dureja, G. Bhattacharyya, et al. Removal of Arsenic from Groudwater Using Low Cost Ferruginous Manganese Ore. Water Res. 2002, 36: 625-632
    111郑红,汤鸿霄.几种天然矿物去除苯酚效果及日光光解效应评价.环境化学. 1998, 17(5): 473-479
    112郑红,汤鸿霄.天然矿物锰矿砂对苯酚的界面吸附与降解研究.环境科学学报. 1999, 19(6): 619-624
    113 L. Michelle, Crimi, L. Robert, et al. Association of Cadmium with MnO2 Particles Generated during Permanganate Oxidation. Water Res. 2004, 38:887-894
    114樊耀亭,吕秉玲,徐杰.水溶液中二氧化锰对铀的吸.环境科学. 1999, 19 (1): 42-46
    115 L. Axe, T. Tyson, P. Trivedi, et al. Local Structure Analysis of Strontium Sorption to Hydrous Manganese Oxide. J. Colloid Interface Sci. 2000, 224: 408-416
    116 M. Rashid, M. Ejaz. Adsorption Studies of Ultra-trace Concentrations of Zinc on Manganese Dioxide from Aqueous Solutions. International Journal of Radiation Application and Instrumentation. Part A. Applied Radiation and Isotopes. 1986, 37(6): 501-504
    117 Y. Al-Degs, M. A. M. Khraisheh, M. F. Tutunji. Sorption of Lead Ions on Diatomite and Manganese Oxides Modified Diatomite. Water Res. 2001, 35 (15): 3774-3728
    118 J. W. Murray, J. G. Dillard. The oxidation of Cobalt (III) Adsorbed on Manganese Dioxide. Geochim ica et Cosmochim ica acta.1979, 43: 781-789
    119 S. Bernard. P. Chazal. M. Mazet. Removal of Organic Compounds by Adsorption on Pyrolusite (β-MnO2). Water Res. 1997, 31(5): 1216-1222
    120刘锐平,杨艳玲,李圭白,等.腐殖酸在水合二氧化锰表面的吸附行为.环境科学学报. 2005, 25(3): 351-355
    121丛丽.新生态二氧化锰净水作用研究.工学博士学位论文.哈尔滨工业大学. 2002
    122张谨,李圭白,余敏.新生态水合二氧化锰对水中酚类化合物的吸附和氧化.水处理技术. 2002, 28(5): 263-265
    123蒋兰宏,刘淑芬,闫俊英.新生MnO2对苯酚吸附特性.城市环境与城市生态. 2002, 15(6): 29-30
    124马子川,蒋兰宏,董丽丽.新生MnO2对水中酸性媒介深黄GG的吸附脱色作用.环境污染与防治. 2002, 24(3): 157-158
    125马子川,蒋兰宏,董丽丽.新生二氧化锰吸附法去除水中直接大红染料.化工环保. 2002, 22(1): 38-41
    126马子川,董丽丽,胡章记.新生态MnO2对水溶性阴离子染料废水的脱色研究.环境科学与技术. 2004, 27(1): 85-86
    127董丽丽.新生态MnO2吸附法处理阳离子染料废水的研究.工业用水与废水. 2002, 33(2): 28-30
    128张素坤,马子川.新生二氧化锰吸附法处理造纸黑液.河北师范大学学报(自然科学版). 2002, 26(2): 165-166
    129梁慧锋,马子川,张杰.新生态MnO2对水中As(V)的吸附作用研究.安全与环境学报. 2005, 5(1): 50-53
    130梁慧锋,马子川,张杰.新生态二氧化锰对水中三价砷去除作用的研究.环境污染与防治. 2005, 27(3): 168-170
    131陈天虎,汪家权.天然锰矿物催化氧化法处理含硫废水研究.环境科学. 1993, 149(40): 58-61
    132刘会娟,曲久辉,雷鹏举.锰砂催化电化学方法对染料K2G脱色效果的研究.环境化学. 2002, 21(1): 68-71
    133 J. Ma. N. J. D Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influnce of Humic Substances. Water Res. 1999, 33(3): 785-793
    134 R. Andreozzi. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Applied Catalysis A: General. 1996, 138(2): 75-81
    135 R. Kaneko, S.Oguchi, S. Hara. Atomic Force Microscopy Coupled with an Optical Microscope. Ultramicroscopy. 1992, 42:1542-1543
    136 WET-SPM-9500J 3 Series in Instruction Manual. Shimadzu Corporation. 2003, 1:1-65
    137 G. Binning, C. F. Quate, C. Gerber. Atomic Force Microscope. Physics Review Letter. 1986, 4:930-933
    138 D. Q. Yang, E. Sacher, M. Meunier. The Early Stages of Silicon Surface Damage induced by Pulsed CO2 Laser Radiation: An AFM Study. Applied Surface Science. 2004, 4: 365-373
    139 A. Bruchet, C. Rousseau, J. Mallevialle. Pyrolysis-GC-MS for Investigating High Molecular Weight THM Precursors and other Refractory Organics. J. Am. Water Works Assoc. 1990, 82: 66-74
    140 R. S. Summers, B. Haist, J. Koehler, et al. The Influence of Background Organic Matter on GAC Adsorption. J. Am. Water Works Assoc. 1989, 81: 66-74
    141 T. V. Lahoussine, M. R. Wiesner, J. Y. Bottero, et al. Coagulation Pretreatment for Ultrafiltration of a Surface Water. J. Am. Water Works Assoc. 1990, 82: 76
    142 G. Cathalifaud, J. Ayele, M. Mazet. Etude de la Complexation des ions Aluminium Par Des Molecules Organiques: Constantes et Stoechiometrie des complexes. Application au traitement de potabilisation des eaux. Water Res. 1997, 31:689-698
    143 T. T. Par, J. D. Russell. Adsorption on Hydrous Oxides. IV. Mechanism of Adsorption of Various Ions on Goethite. J. Soil Sci. 1977, 28: 297-305
    144 E. Tipping. The Adsorption of Aquatic Humic Substances by Iron Oxides. Geochim. Cosmochim. Acta. 1981, 45: 191-199
    145 J. F. Perez-Benito. Coagulation of Colloidal Manganese Dioxide by Divalent Cations. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 145-152
    146 B. Gu, J. Schmitt, Z. Chen. Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models. Environ. Sci. Technol. 1994, 28:38-46
    147 J. K. Edzwald, C. B. William, L. W. Kevin. Surrogate Parameters for Monitoring Organic Matter and THM Precursors. J. Am. Water Works Assoc. 1985, 77(4) :122-133
    148郭瑾,马军,施雪华.原子力显微观测新生态水合二氧化锰与天然有机物的微观吸附形貌.环境科学. 2006, 27(5): 945-949
    149 M. A.安德森,A. J.鲁宾.水溶液吸附化学-无机物在固-液界面上的吸附作用.刘连生,张正斌,刘国盛(译).科学出版社, 1989
    150杨威,李星,杨艳玲,等.水合二氧化锰的制备及其混凝特性.中国给水排水. 2006, 22(15): 37-39
    151梁慧锋,刘占牛,马子川.新生态MnO2悬浊液的制备及对三价砷氧化吸附机理的探讨.河北大学学报(自然科学版). 2005, 25 (5): 515-519
    152刘锐平,杨艳玲,夏圣骥.水合二氧化锰界面特性及其除污染效能.环境化学. 2005, 24 (3): 338-341
    153 T. G. Danis. Removal of Chlorinated Phenols from Aqueous Solutions by Adsorption on Alumina Pillared Clays and Mesoporous Alumina Aluminum Phosphates. Water Res. 1998, 32(2):295-302
    154 C. Miro, A. Lejandre, A. Fortuny, et al. A Fabregat. Aqueous Phase Catalytic Oxidation of Phenol in a Trickle Bed Reactor: Effect of the pH. Water Res. 1999, 33(4): 1005-1006
    155 S. S. Mangat, P. Elefsiniotis. Biodegration of the Jerbocode 2, 4-Dichlorophenoxyacetic Acid (2, 4-D) in Sequencing Batch Reactors. Water Res. 1999, 33(3): 861-865
    156 N. C. J. K. Bewtar, N. Biswas, K. E. Taylor. Removal of Phenolic Compounds from Synthetic Waste Water Using Soybean Peroxidase. 1999, 33(13): 3012-3014
    157张爱茜,魏东斌,王连生.用分子连接指数研究氯代芳香族化合物对绿藻毒性及QSAR分析.环境化学. 2000, 19(3): 220-223
    158陆光华,袁星.苯酚、苯胺及其衍生物对斜生栅列藻的急性毒性及OSAR研究.环境化学. 2000, 19(3): 226-228
    159李伟,徐桂清. 5-氨基水杨酸中对苯二酚和对苯醌的反相色谱法的分离和限度检查.河南师范大学学报. 2002, 20(1): 11-15
    160 W.斯塔姆, J. J.摩尔根著.水化学天然水体化学平衡导论.科学出版社, 1997: 465
    161汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理.中国环境科学出版社, 2000 (上卷): 24-28
    162 W. S. Yao, J. Frank, Millero. Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ. Sci. Technol, 1996, 30(2): 536-541
    163 Y. Yu, Q. X. Zhou. Adsorption Characteristics of Pesticides Methamidophos and Glyphosate by Two Soils. Chemosphere. 2005, 58: 811-816
    164 E. Erdem, N. Karapinar, R. Donat. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280: 309-314
    165马军,李圭白,范萃苓.高锰酸钾的氧化助凝效能研究.中国给水排水. 1992, 8(4): 4-7
    166杨威,杨艳玲,陈杰,等.水合二氧化锰混凝去除原水中的浊度物质.化学余黏合. 2006, 28 (6): 416-418
    167马军,翟学东,刘娟芳.高锰酸盐预臭氧化低温低浊水的效能.中国给水排水. 2004, 20(4): 9-12
    168周勤,肖锦.搅拌条件对强化混凝去除水中微细颗粒的影响研究.环境科学与技术. 2004, 27 (3): 18-19
    169 C. H. Lai, C. Y. Chen, B. H. Wei, et al. Cadmium Adsorption on Goethite-Coated Sand in the Presence of Humic Acid. Water Res. 2002, 36: 4943-4950
    170 M. E. Edwards, M. M. Benjamin, J. N. Ryan. Role of Organic Acidity in Sorption of Natural Organic Matter to Oxide Surfaces. Colloid Surf. A 1996, 107: 297
    171 Y. Chang, C. W. Li, M .M. Benjamin. Iron Oxide-Coated Media for NOM Sorption and Particulate Filtration J. Am. Water Works Assoc. 1997, 89: 100-113
    172 E. M. Virjenhouek. Removing Particles and THM Precursors by Enhanced Coagulation. J. Am. Water Works Assoc. 1998, 90(4): 139-150
    173 H. I. Yu, H. N. Kong. Counter Measures for Eutrophication in Closed Water Bodies Using Advanced Domestic Wastewater Treatment Systems. J. Am. Water Works Assoc.1998, 1-5
    174 T. Kobayashi, Y. Shimizu, K. Urano. Estimation of Adsorbed Amounts of Volatile Chlorinated Organic Compounds to Wet Soil Based on the Properties of the Compounds and Soils. The Totle Science of the Environment.2003, 301: 215-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700