砷代谢相关酶基因多态性及其mRNA表达与砷中毒易感性、砷甲基化关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究砷代谢相关酶AS3MTG35991A、PNP第二外显子密码子20、密码子51、密码子57、GSTO1A140D、MTHFRA222V位点多态性与砷中毒易感性的关系;研究砷代谢相关酶AS3MTG35991A、PNP第二外显子密码子20、密码子51、密码子57、GSTO1A140D、MTHFRA222V位点多态性与砷甲基化水平的关系;研究砷代谢相关酶AS3MT、PNP、GSTO1、MTHFR基因mRNA相对表达与砷甲基化水平的关系,为探讨饮水型砷中毒的发病机制提供参考依据。
     方法:
     1.应用现场流行病学调查方法,对内蒙古自治区土左旗、托克托县、山西省山阴县、新疆生产建设兵团123团、131团砷中毒患者、病区对照人群和非病区对照人群进行流行病学调查;
     2.采用PCR-RFLP、PCR-CTPP方法检测了AS3MTG35991A、PNP第二外显子密码子20、密码子51、密码子57、GSTO1A140D、MTHFRA222V位点多态性;
     3.采用RT-PCR检测了外周血淋巴细胞AS3MT、PNP、GSTO1、MTHFR mRNA相对表达;
     4.采用高效液相色谱原子荧光法测定iAs~Ⅲ、iAs~Ⅴ、MMA、DMA 4种形态的砷含量,并计算iAs%、MMA%、DMA%、PMI、SMI等砷甲基化水平指标;
     5.采用秩和检验、t检验、logistic回归、多重线性回归分析砷代谢相关酶基因多态性及其mRNA表达与砷甲基化水平和砷中毒易感性的关系,采用Pearson相关法分析砷代谢相关酶mRNA表达与砷甲基化水平的关系。
     结果:
     1.砷代谢相关酶基因多态性与砷中毒易感性的关系
     (1)重度组、中度组、轻度组、病区对照和非病区对照组之间在PNP密码子51处G/G、G/A、A/A三种基因型频率分布差异有统计学意义,重度组、中度组携带G/A和A/A基因型频率显著高于非病区对照组和病区对照组;
     (2)性别对患砷中毒具有一定的影响作用,女性患砷中毒的危险约是男性的0.5倍;年龄对是否患砷中毒具有一定的影响作用,与20岁组相比,50岁组和60-70岁组患砷中毒的风险分别是其1.110(95CI%:1.023-1.522)倍和1.231(95CI%:1.072-1.739)倍;PNP密码子51位点多态性对是否患砷中毒有影响,携带G/A和A/A突变基因型人群患砷中毒的危险是携带G/G基因型人群的1.797倍(95CI%:1.198-4.049):
     (3)在调整年龄、性别、吸烟、饮酒因素后PNP密码子51位点多态性与砷中毒发病具有显著关联性,携带G/A和A/A基因型人群发生砷中毒的风险是携带G/G基因型人群的1.484倍(95CI%:1.197-5.189);
     (4)在调整性别、年龄、吸烟、饮酒因素后,携带PNP密码子51和GSTO1A140D的联合突变基因型(G/A+C/A或A/A+C/A)人群患砷中毒的风险是携带(G/G+C/C或G/G+C/A或G/A+C/C或A/A+C/C)基因型人群的2.694倍(95%CI:1.258-5.867):
     (5)在调整性别、年龄、吸烟、饮酒因素后,携带PNP密码子51和MTHFRA222V位点的突变基因型(G/A+C/T或G/A+T/T或A/A+C/T或A/A+T/T)人群患砷中毒的风险是携带(G/G+C/C或G/G+C/T或G/G+T/T或G/A+C/C或A/A+C/C)基因型人群的3.730倍(95%CI:1.352-6.515);
     2.砷代谢相关酶基因多态性与砷甲基化水平的关系
     (1)男性MMA%、PMI显著高于女性(t=2.909,P=0.004,t=2.461,P=0.015),DMA%显著低于女性(t=2.140,P=0.034);经多重线性回归分析可见,年龄对DMA%具有负向影响作用;
     (2)吸烟者MMA%、PMI显著高于不吸烟者(t=2.376,P=0.019,t=3.506,P=0.001),DMA%显著低于不吸烟者(t=2.776,P=0.006);饮酒者iAs%、MMA%、PMI显著高于不饮酒者(t=2.046,P=0.042,t=2.058,P=0.041,t=2.349,P=0.020);
     (3)重度组、中度组人群MMA%、PMI显著高于非病区对照和病区对照组;重度组人群DMA%水平显著低于病区对照和非病区对照组人群;
     (4)经秩和检验可见,AS3MTG35991A位点携带G/G和G/A基因型人群尿中iAs、MMA、DMA、TAs、iAs%、MMA%、DMA%、PMI、SMI差异无统计学意义;
     (5)PNP基因密码子51的G/G、G/A、A/A三种基因型人群相比,携带A/A、G/A变异基因型人群的尿MMA%显著高于携带G/G基因型人群;DMA%、SMI显著低于G/G基因型人群;PNP基因密码子20和密码子57的C/C、C/T、T/T三种基因型人群之间的iAs、MMA、DMA、TAs、iAs%、MMA%、DMA%、PMI、SMI差别无统计学意义;多重线性回归分析可见,PNP密码子51位点多态性对MMA%有正向影响作用;
     (6)GSTO1密码子140的C/C、C/A两种基因型人群尿中iAs、MMA、DMA、TAs、iAs%、MMA%、DMA%、PMI、SMI差别无统计学意义;多重线性回归分析可见,GSTO1A140D位点多态性对MMA%具有正向影响作用;
     (7)MTHFRA222V位点C/C、C/T、T/T三种基因型人群尿中iAs、MMA、DMA、TAs、MMA%、PMI、SMI差别无统计学意义;携带C/T、T/T基因型人群的iAs%显著高于携带C/C基因型人群,DMA%显著低于携带C/C基因型人群;经过多重线性回归分析可见,MTHFRA222V位点多态性对iAs%具有正向影响作用,对DMA%、PMI具有负向影响作用;
     (8)经秩和检验可见,重度组、中度组MMA%,PMI水平显著高于病区对照组和非病区对照组人群(χ~2=28.83,P<0.001;χ~2=4.698,P=0.021),而DMA%水平显著低于病区对照组和非病区对照组人群(χ~2=5.519,P<0.001)。
     3.砷代谢相关酶基因mRNA表达与砷甲基化水平的关系
     (1)对砷代谢相关酶mRNA表达分析可见,中重度组人群AS3MT、PNP、MTHFR、GSTO1mRNA表达显著高于非病区对照组和病区对照组人群:
     (2)砷代谢相关酶mRNA表达与砷甲基化水平相关性分析可见,AS3MT mRNA表达与MMA%(r=0.485,P=0.041)和PMI(r=0.476,P=0.046)呈显著正相关关系;PNPmRNA表达与MMA%(r=0.649,P=0.022)呈显著正相关关系;MTHFRmRNA表达与MMA%(r=0.511,P=0.010)、PMI(r=0.419,P=0.041)呈显著正相关关系。在男性中,MTHFRmRNA表达还与SMI(r=0.530,P=0.008)呈显著正相关关系。GSTO1mRNA表达与砷甲基化水平无显著关联。
     (3)经过多重线性回归分析可见,对MMA%有正向影响作用的有病情、AS3MTmRNA表达、MTHFR mRNA表达,其他因素对MMA%影响不明显;对PMI有正向影响的有年龄、AS3MTmRNA表达;对SMI有负向影响的有AS3MTmRNA表达,其他因素对SMI影响不明显;对iAs%有负向影响作用的因素是吸烟,而AS3MT、PNP、MTHFR、GSTO1mRNA表达对iAs%影响不明显:
     结论:
     1.PNP第二外显子密码子51位点多态性与砷中毒的发生具有显著关联性,在砷暴露人群中携带G/A和A/A突变基因型人群发生砷中毒的风险显著增加;PNP密码子51与GSTO1A140D联合突变基因型即携带(G/A+C/A、MA+C/A)基因型比携带(G/G+C/C、G/G+C/A、G/A+C/C、A/A+C/C)基因型人群患砷中毒的风险显著增加;PNP密码子51与MTHFRA222V联合突变基因型即携带(G/A+C/T、G/A+T/T、A/A+C/T、A/A+T/T)基因型比携带(G/G+C/C、G/G+C/T、G/G+T/T、G/A+C/C、A/A+C/C)基因型患砷中毒的风险显著增加;AS3MTG35991A、PNP第二外显子密码子20和密码子57位点多态性与砷中毒发生无显著关联;
     2.砷甲基化水平除受到性别、年龄、吸烟、饮酒的影响作用外还受到PNP第二外显子密码子51位点多态性和MTHFRA222V位点多态性的影响。在PNP第二外显子密码子51位点携带G/A和A/A基因型的人群MMA%增高;在MTHFRA222V位点携带C/T、T/T基因型人群DMA%水平显著降低;而AS3MTG35991A、PNP第二外显子密码子20(CAC→CAT)、密码子57(CCC→CCT)位点多态性与砷甲基化水平无显著关联;GSTO1A140D位点多态性可能与MMA%水平增高有关;
     3.慢性砷暴露可能引起AS3MT、PNP、MTHFR、GSTO1mRNA表达增高;AS3MTmRNA表达增高可能促进PMI水平增高,导致MMA产生过多;PNP mRNA表达增高与MMA%增高有关;MTHFR mRNA表达增高可能促进PMI和SMI水平增高,促进砷在体内进行更有效的甲基化;GSTO1mRNA表达可能与砷甲基化水平无显著相关性;
     4.砷中毒发病机制与砷的一甲基化水平增高、二甲基化水平降低有关。
Objective:To investigate the correlation between the genetic polymorphisms of arsenic metabolic enzyme genes AS3MTG35991A,PNP codon 21,codon51,codon 57,GSTO1A140D,MTHFRA222V and the susceptibility of arsenic poisoning.To study on the relationship between the genetic polymorphisms of arsenic metabolic enzyme genes AS3MTG35991A,PNP codon 21,codon51,codon 57,GSTO1A140D, MTHFRA222V and the level of the arsenic methylation metabolism.To research on the association between the gene mRNA expression of AS3MT,PNP,MTHFR, GSTO1 and the level of the arsenic methylation metabolism.To provide reference for the mechanism of arsenic poisoning.
     Methods:
     1.The arsenisms,controls in arsenicosis district and controls in non-arsenicosis district were invested with the field epidemiology method in Innor Mongolia Autonomous Rigeon,Shan Xi Province and Xin Jiang Production and Construction Corps.
     2.The genetic polymorphisms of AS3MTG35991A,PNP codon 21,codon51,codon 57,GSTO1A140D,MTHFRA222V were detected by the PCR-RFLP and PCR-CTPP.
     3.The mRNA expression of AS3MT,PNP,GSTO1,MTHFR were detected by RT-PCR. v4.The concentration of the 4 forms of iAs~Ⅲ、iAs~Ⅴ、MMA、DMA in urine and water were detected by the high efficiency liquid chromatogram HG-AFS.The value of iAs%,MMA%,DMA%,PMI and SMI were calculated by the concentration of iAs~Ⅲ、iAs~Ⅴ、MMA、DMA in urine.
     5.The noparamatric test,t test,logistic regression model,multiple linear regression model were used to analyze the relationship between the genetic polymorphisms of the arsenic metabolic genes,the level of the arsenic methylation metabolism and the susceptibility of the arsenic poisoning.The Pearson correlation methods were used to elucidate the association between the mRNA expression of arsenic metabolic genes and the level of the arsenic methylation metabolism.
     Results:
     Ⅰ.The correlation between the genetic polymorphisms of the arsenic metabolic enzymes and the suceptibiliy of arsenism
     (1) There was a significant difference on the genotypes frequences distribution of PNP codon51 among the groups of the arsenism with sever,moderate,slight symptoms and the control groups in arsenism district and the nonarsenism district. The frequencies of the genotype G/A,A/A of PNP codon 51 of the arsenism group with sever and moderate symptoms were significant higher than the controls in arsenism district and nonarsenism district.
     (2) The gender could affect the susceptibility of arsenic poisoning.Female was significantly easier to be arsenic poisoning than male(OR=0.5,95%CI:0.251-0.996). The age also was an affecting factor for the susceptibility of arsenism.Compared with 20-yeare-old group,the possibility of the 50-,60-70 group were much higer (OR=1.110,95%CI:1.023-1.522,OR=1.231,95%CI:1.072-1.739).Individuals who carried with the genotypes of G/A,A/A of PNP codon 51 got much possibility than that of those who carried with the genotype of G/G(OR=,95%CI:1.198-4.049).
     (3) Under control of age,gender,smoking,alcohol using,the genetic polymorphisms of PNP codon 51 had a significant association with the susceptibility of arsenism.The hazard of individuals who carried with the genotypes of G/A,A/A was 1.484 times of those who carried with the genotype of G/G of PNP codon 51(OR=1.484,95%CI:1.197-5.189).
     (4) After controling the factors of gender,age,smoking,alcohol using,the results of gene combination analysis of logistic indicated that the individuals who carried with the genotype of(G/A+C/A or A/A+C/A) of PNP codon 51 and GSTO1 codon 140 had higher hazard of being arsenic poisoning than those who carried with the genotype of(G/G + C/C or G/G+C/A or G/A+C/C or A/A+C/C)(OR=2.694,95%CI: 1.258-5.867).
     (5) Under adjusting the gender,age,smoking,alcohol using,the logistic regression results indicated that individuals who carried with the genotypes of(G/A+C/T or G/A+T/T or A/A+C/T or A/A+T/T) of PNP codon 51 and MTHFRA222V had significant risk of being arsenic poisoning than those who carried with the genotype of(G/G+C/C or G/G+T/T or G/A+C/C or G/A+C/C or A/A+C/C)(OR=3.730, 95%CI:1.352-6.515).
     Ⅱ.The correlation between the genetic polimorphisms of the enzymes related with arsenic metabolism and the level of arsenic metabolism
     (1) The level of MMA%and PMI in urine of male were significantly higher than that of female(t=2.909,P=0.004;t=2.461,P=0.015),while the level of DMA%was significantly lower than that of female(t=2.140,P=0.034);According to the multiple linear regeression,age played a negative role of the level of DMA%.
     (2) The level of MMA%,PMI in urine of the smoking population were significantly higher than that of nonsmoking population(t=2.376,P=0.019;t=3.506,P=0.001), while the level of DMA%in urine was significantly lower than that of nonsmoking population(t=2.776,P=0.006).The level of iAs%,MMA%,PMI in urine of the alcohol using population were significantly higher than that of nonalcohol using population(t=2.046,P=0.042;t=2.058,P=0.041;t=2.349,P=0.020).
     (3) The level of MMA%,PMI in urine of arsenism with sever and moderate symptoms were significantly higher than that of the control population in arsenic poisoning district and nonarsenic poisoning district.The level of DMA%in urine of the sever arsenic poisoning population was significantly lower than that of the control population in arsenic poisoning district and nonarsenic poisoning district.
     (4) According to the nonparametric test,the level of iAs,MMA,DMA,TAs,iAs%, MMA%,DMA%,PMI,SMI in urine of individuals who carried with the genotype G/G were not significantly different from that of the ones who carried with the genetype G/A ofAS3MTG35991A.
     (5) The level of MMA%in urine of the population who carried with the genotypes G/A,A/A was much higher than that of the population who carried with the genotype G/G of PNP codon 51.While the level of iAs,MMA,DMA,TAs,iAs%, MMA%,DMA%,PMI,SMI were not significantly different among the three groups who carried with the three genotypes C/C,C/T,T/T of PNP codon 20 and codon 57. According to the multiple linear regeression,the genetic polymorphisms of PNP codon 51 impacted the level of the MMA%positively.
     (6) There were no significant difference between the two genotype groups who carried with C/C,C/A of GSTO1 codon 140 on the level of iAs,MMA,DMA,TAs, iAs%,MMA%,DMA%,PMI,SMI in urine.According to the multiple linear regeression,the genetic polymorphisms of GSTO1A140D impacted the level of the MMA%positively.
     (7) Compared with the group who carried with C/C of MTHFRA222V,the genotypes of C/T,T/T groups had significantly higher iAs in urine and lower DMA%. While there was no significant difference on the level of iAs,MMA,DMA,TAs, MMA%,PMI,SMI in urine among the three genotypes groups.According to the multiple linear regeression,the genetic polymorphisms of MTHFRA222V impacted the level of iAs%negatively,while the level of MMA%,PMI positively.
     (8) According to the rank test,the level of MMA%,PMI of the arsnicisms with sever and moderate symptoms were significantly higher than those controls in arsenism district and nonarsenism distrit(χ~2=28.83,P<0.001χ~2=4.698,P=0.021),while the level of DMA%was significantly lower(χ~2=5.519,P<0.001).
     Ⅲ.The correlation between the mRNA expression of the arsenic metabolic enzymes and the level of the arsenic metabolism.
     (1) According to the analysis of mRNA expression of the arsenic metabolic eczymes, The mRNA expression of AS3MT,PNP,MTHFR,GSTO1 of arsenism with moderate and sever symptoms were significantly higher than that of the controls group in arsenism district and nonarsenism district.
     (2) Based on the correlation analysis between the mRNA expression of arsenic metabolic enzymes and the arsenic methylation level,There was a significant positive correlation between the mRNA expression of AS3MT and the level of MMA% (r=0.485,P=0.041),PMI(r=0.476,P=0.046) in urine.There was a positive correlation between the mRNA expression of PNP and MMA%(r=0.649,P=0.022) in urine.There was a positive correlation between the mRNA expression of MTHFR and the level of MMA%(r=0.511,P=0.010),PMI(r=0.419,P=0.041) in urine.The positive correlation between the mRNA expression of MTHFR and SMI(r=0.530,P=0.008) was found only in males.The positive association between the mRNA expression of GSTO1(r=0.606,P=0.037) and PMI was also observed in males.
     (3) According to the multiple linear regression,smoking is an affecting factor to the level of iAs in urine,while the mRNA expression ofAS3MT,PNP,MTHFR,GSTO1 were not significant affecting factors to the level of iAs.The severity of the arsenism, the mRNA expression ofAS3MT,MTHFR were significant positive affecting factors to the level of MMA%,age,the mRNA expression of AS3MT were significant positive affecting factors.The mRNA expression of AS3MT and alcohol using were significant negative affecting factors to the level of SMI;
     Conclusions:
     1.The level of arsenic methylation was affected by the following factors:gender,age, smoking,alcohol using,the genetic polymorphisms of PNP codon 51 and MTHFRA222V.The level of MMA%in urine of the individuals who carried with the genotype of G/A,A/A of PNP codon 51 was significantly higher than those who carried with the genotype of G/G.The level of DMA%in urine of the individuals who carried with the genotype of C/T,T/T of MTHFRA222V was significantly lower than those who carried with the genotype of G/G.There were no significant association between the genetic polymorphisms of AS3MTG35991A,PNP codon 20,PNPcodon 57 and the level of arsenic methylation.The genetic polymorphisms of GSTO1A140D was possiblely related with the increase of MMA%,it needs further research.
     2.Chronic arsenic exposure could induce the overexpression of mRNA of AS3MT, PNP,MTHFR,GSTO1.The overexpression of mRNA of AS3MT possibly improve the increasing of the level of PMI,then induce the overcomposed MMA.The overexpression of mRNA of PNP also could induce the overcompose of MMA in urine.The overexpression of MTHFR could increase both the leve of PMI and SMI, which promoted the much effiency arsenic methylation.While there was no significant correlation between the expression of mRNA of GSTO1 and the level of arsenic methylation.
     3.The genetic polymorphisms of PNP codon 51 was significantly associated with the susceptibility of arsenism.With the exposure of arsenic,the individuals who carried with the genotypes of G/A,A/A had significantly higher hazard of arsenism than those who carried with the genotype of G/G of PNP codon 51.The combination of genes also could increase the susceptibility of arsenism.The combination of the genetic polymorphisms of PNPcodon 51 and GSTO1A140D,PNP codon51 and MTHFRA222V could significantly increase the susceptibility of arsenic poisoning.
     4.The arsenism was possibly associated with the increasing of the level of primary methylation and the decreasing level of second methylation of the arsenic.The severity of arsenism could affect the level of arsenic methylation in body.
引文
[1]王连方.地方性砷中毒与乌脚病[M].乌鲁木齐:新疆卫生出版社,1997:1-4
    [2]Pauline L Smedley,David Gkinniburgh.Source and Behaviour of arsenic in natural water.United Nations Synthesis Report on Arsenic in Drinking Water.United Nations Administrative Committee on Cooperation Sub-Committee on Water Resources with participation of UNICEF,UNIDO,IAEA and the World Bank.http://www.who.int/water_sanitation_health/dwq /arsenic3/en/
    [3]WHO.Arsenic and Arsenic Compounds.Environmental Health Criteria(2nd Edition).Genera,World Health Organization In Press.http://www.who.int/ipcs/publications/ehc /ehc 224/en/
    [4]Korte NE & Fernando Q.A review of arsenic(Ⅲ)in groundwater.CRC Crit Rev Environ Control.1991,21(1):1-39
    [5]Kurttio P,Komulainen H,Hakala E etal.Urinary excretion of arsenic species after exposure to arsenic present in drinking water[J].Arch Environ Contam Toxicol.1998,34:297-305
    [6]Del Razo LM,Arellano MA &Cebrian Me.The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico[J].Environ Pollut,64(2):143-153
    [7]Chatterjee,A.Das,D & Chakraborti,D.A study of groundwater contaminiation by arsenic in the residential area of Vehala,Calcutta due to industrial pollution[J].Environ.Pollut.1993,80:57-65
    [8]Dhar RK,Biswas BK,Samanta G etal.Groundwater arsenic calamity in Bangladesh[J].Current Science.1997,73(1):48 -59.
    [9]WHO.Arsenic in drinking water.Fact sheet.WHO.2001.http://www.who.int/mediacentre/fact sheets/fs210/en/
    [10]金银龙,梁超轲,何公理等.中国地方性砷中毒分布调查(总报告)[J].卫生研究.2003(32):519-540
    [11]Regional Committee.Arsenic contamination in groundwater affecting some countries in the south-east Asia Region.WHO SEA/RC54/8.2001:1-10
    [12]陈贤义.在全国防治地方性氟中毒(砷中毒)改水工作经验交流会闭幕式上的讲话[J].中国地方病杂志.2001,20(4):244-248
    [13]李冰,孙贵范,皮静波等.集中式改水防治地方性砷中毒的近期效果评价[J].中国公共卫生.2004,20(9):1099-1010
    [14]孙殿军,高彦辉,于光前.中国”十一五”地方砷中毒防治与研究任务的探析[J].中国地方病杂志.2006,25(1):3-5
    [15]刘开泰.我国控制地方性砷中毒面临的机遇与挑战[J].中国地方病学杂志.2007,26(1):4-5
    [16]Chakraborti D,Rahman MM,Paul K,et al.Arsenic calamity in the Indian subcontinent:what lessons have been learned?[J].Talanta.2002,58:3-22.
    [17]Yu RC,Hsu KH,Chen CJ,et al.Arsenic methylation capacity and skin cancer[J].Cancer Epidemiol Biomarkers Prev.2000,9:1259-1262.
    [18]MAZUMDER d n,STEINMAUS C,BHATTACHARYA P,et al.Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water[J].Epidemiology.2005,16:760-765.
    [19]Thomas D J,Li JX,Stephen B,et al.Arsenic(+3 oxidation state) methyltransferase and the methylation of arsenicals[J].Exp Biol Med(Maywood).2007,232(1):3-13.
    [20]VAHTER M.Mechanisms of arsenic biotransformation[J].Toxicology,2002,118-182:211-217.
    [21]HAYAKAWA T,KOVYAHI Y,CUI X,et al.A new metabolic pathway of arsenite:arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19[J].Arch Toxicol,2005,79:183 - 191.
    [22]NARANMANDURA H,SUZUKI N,SUZUKI K T.Trivalent arsenicals are bound to proteins during reductive methylation[J].Chem Res Toxicol,2006,19:1010-1018.
    [23]KLIGERMAN A D,TENNANT A.Insights into the carcinogenic mode of action of arsenic[J].Toxicol Appl Pharmacol,2006,10:10-16.
    [24]APOSHIAN H V,ZHENG B,APOSHIAN M M,et al.DMPS-arsenic challenge test.Ⅱ.Modulation of arsenic species,including monomethylarsonous acid(MMAIII),excreted in human urine[J].Toxicol Appl Pharmacol,2000,165:74-83.
    [25]Drobna Z,Jaspers I,Thomas DJ,Styblo M.Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals[J].FASEB J,2003,17:67-69.
    [26]Thomas DJ,Styblo M,Lin S.The cellular metabolism and systemic toxicity of arsenic[J].Toxicol ApplPharmacol,2001,176:127-144.
    [27]MASS M J,TENNANT A,ROOP B C,etal.Methylated trivalent arsenic species are genotoxic[J].Chem Res Toxicol,2001,14(4):355 -361.
    [28]Yamauchi H,Fowler BA.Toxicity and metabolism of inorganic and methylated arsenicals.In:Nriagu,J.O.(Ed.),Arsenic in the environment,Part Ⅱ:Human Health and Ecosystem Effects.1994;wiley,New York:35-43.
    [29]ENGSTR(O|¨)M K S,BROBERG K,CONCHA G,et al.Genetic polymorphisms influencing arsenic metabolism:Evidence from Argentina[J].Environ Health Perspect,2007,115:599-605.
    [30]Haque R,Mazumder DN,Samanta S,et al.Arsenic in drinking water and skin lesions:dose-response data from West Bengal India[J].Epidemiology.2003,14:174-182.
    [31]Guha Mazumder DN.2003.Chronic arsenic toxicity:clinical features,epidemiology,and treatment:experience in West Bengal[J].J Environ Sci Health A Tox Hazard Subst Environ Eng 38:141-163.
    [32]Thirumaran RK,Bermejo JL,Rudnail P,et al.Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin[J].Carcinogenesis.2006,27:1676-1681.
    [33]LIN S,SHI Q,NIX F B,et al.A novel Sadenosyl-L-methionine:As(Ⅲ) methyltransferase from rat liver cytosol[J].Biol Chem,2002,277:10795-10803.
    [34]Hsueh YM,Chiou HY,Huang YL,et al.Serum beta-carotene level,arsenicmethylation capability and indidenced of skin cancer.Cancer Epidemiolo Biomarkers Prev,1997,6:589-596.
    [35]Hsueh YM,Ko YF,Huang Yk,et al.Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin,Taiwan:arsenic and selenium exposure and alcohol consumption[J].Toxicol Lett.2003,137:49-63.
    [36]中华人民共和国卫生部.WS/T 211-201.地方性砷中毒临床诊断标准[S].北京:中国标准出版社,2001.
    [37]Buchet JP,Lauwerys R,Roels H.Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite,monomethylarsonate or dimethylarsinate in man[J].Int Arch Occup Environ Health.1981,48:71-79.
    [38]De Chaudhuri S,Mahata J,Das JK,et al.Association of specific p53 polymorphisms with keratosis in individuals exposed to arsenic through drinking water in West Bengal,India.Mutat Res.2006,601:102-112.
    [39]de Chaudhuri S,GHOSH P,SARMA N,et al.Genetic variants associated with arsenic susceptibility:study of purine nucleoside phosphorylase,arsenic(+3) methyltransferase,and glutathione-s-transferase omega genes[J].Environ Health Perspect,2008,116:501-505.
    [40]Yu L,KallaK,GutMeE,et al.Genetic variation in genes associated with arsenic metabolism:glutathiones- transferase omega-land Purine nucleoside PhosPhorylase Polymorphisms in Euro Peanandindi genous Americans[J].Environ Health PersPeet.2003,111(11):1421-1427
    [41]周爱儒.生物化学(6~(th)ed)[M].人民卫生出版社(北京).2006:436-457
    [42]梁冰,张爱华,奚绪光,等.GSTO基因多态性与燃煤污染型砷中毒易感性的关系[J].环境与职业医学,2007,24(2):129-132.
    [43]Tanaka-Kagawa T,Jinno H,Hasegawa T,et al.Functional characterization of two variant human Gstol-ls(Ala140Aspp and Thr 217Asn)[J].Biochem Biophys Res Commun.2003,301(2):516-520.
    [44]Whitbread AK,Tetlow N,Eyre HJ,et al.Characterization of the human Omega class glutathione transferase genes and associated polymorphisms[J].Pharmacogenetics.2003,13:131- 144.
    [45]Hirakawa M,Tanaka T,Hasimoto Y,et al.JSNP:a database of common gene variations in the Japanese population[J].Nucleic Acid Res.2002,30:158-162.
    [46]陈丽,郭新彪,邓芙蓉,等.5,102亚甲基四氢叶酸还原酶基因C677T位点突变与地方性砷中毒皮肤病变发生关系的研究[J].卫生研究.2005,34(2):146-148.
    [47]WHO.Arsenic in Drinking Water and Resulting Arsenic Toxicity in India & Bangladesh.Geneva:Wrold Health Organation.http://www.searo.who.int/EN/Section314_4291.htm.
    [48]IARC.Monographs on the evaluation of the carcinogenic risk of chemicals to humans,overall evaluations of carcinogenicity:an updating of IARC monoo'aphs[M].Lyon:IARC,1987:100-106.
    [49]CaNKY I,Fewfua Z.Species variations in the biliary and urinary excretion of arsenate,arsenite and their metabolites.Comp Biochem Ohysiol C Toxicol Oharmacol.2002;131(3):355-365.
    [50]Sakurai T,Himeno S.Endocrine disruptive effects of inorganic arsenicals.Envriron Sci.2006,13(2):101-106.
    [51]Vahter M,Concha G.Role of metabolism in arsenic toxicity.Pharmacol.Toxicol.2001,89:1-5.
    [52]Kenzo Yamanaka,Koichi Kato,Mutsumi Mizoi,et al.The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis Toxicology and Applied Pharmacology.2004,198:385-393.
    [53]Miroslav Styblo,Zuzana Drobna,Ilona Jaspers,et al.The role of Biomethylation in toxicity and carcinogenicity of Arsenic:A Research Update.Environmental Health Perspectives.2002,110(5):767-771.
    [54]Styblo M,Del Razo LM,Vega L,Germolec DR,Le Cluyse EL,Hamilton GA,Reed W,Wang C,Cullen WR,Thomas DJ:Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Arch Toxicol.2000,74:289-299.
    [55]Meza M M,Yu L Z,Yelitza Y,et al.Developmentally restricted genetic determinants of human arsenic metabolism:association between urinary methylated arsenic and CYT19 polymorphisms in children[J].Environ Health Perspect,2005,113(6):775-781.
    [56]Meza MM,Kopplin MJ,Burgess JL,et al.Arsenic drinking water exposure and urinary excretion among adults in the Ya qui Valley,Sonora,Mexico[J].Environ Res.2004;96(2):119-126.
    [57]Vahter M,Concha G,Nermell B,et al.Aunique metabolism of inorganic arsenic in native Andean women[J].Environ Toxicol Pharmacol Sec.1995,293:455-462.
    [58]Loffredo CA,Aposhian Hv,Cebrian Me,et al.Variability in human metabolism of arsenic.Environ Res.2003,92(2):85-91.
    [59]Kurttion P,Hsu KH,Chen CJ,et al.Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States[J].Occup Environ Med.2006,48:478-488.
    [60]Chowdhuryu K,Rahman MM,Sengupta MK,et al.Pattern of excretion of arsenic compounds [arsenite,arsenate,MMA(V),DMA(V)]in urine of children compared to adults from an arsenic exposed area in Bangladesh[J].Arch Environ Conta Toxicol.1998,34:297-305.
    [61]Concha G,Nermell B,Vahter MV.Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina[J].Environ Health Perspect.1998,106:355-359.
    [62]Jiaxin Lia,Stephen B.Watersa,Zuzana Drobnab,etal.Arsenic(+3 oxidation state)methyltransferase and the inorganic arsenic methylation phenotype[J].Toxicol Appl Pharmacol.2005,15;204(2):164-169.
    [63]Hughes MF,Kenyon EM.Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration[J].Toxicol Environ Health A 1998,53:95-112.
    [64]Petrick JS,Ayala-Fierro F,Cullen WR,et al.Monomethylarsonous acid(MMA~(Ⅲ)) is more toxic than arsenite in Chang human hepatocytes[J].Toxicol Appl Pharmacol.2000,163:203-207.
    [65]Schwerdtle T,Walter I,Hartwig A.Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg[J].DNA Repair(Amst).2003,2:1449-1463.
    [66]Schwerdtle T,Walter I,Mackiw I,Hartwig A.Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA.Carcinogenesis.2003,24:967-974.
    [67]Vega L,Styblo M,Patterson R,Cullen W,Wang C,Germolec D.Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes[J].Toxicol Appl Pharmacol.2001,172:225-232.
    [68]Le XC,Ma M,Cullen WR,Aposhian HV,Lu X,Zheng B.2000.Determination of monomethylarsonous acid,a key arsenic methylation intermediate,in human urine[J].Environ Health Perspect.2001,108:1015-1018.
    [69]Mandal BK,Ogra Y,Suzuki KT.Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal,India[J].Chem Res Toxicol.2001,14:371-378.
    [70]Valenzuela OL,Borja-Aburto VH,Garcia-Vargas GG.et al.Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic[J].Environ Health Perspect.2005,113:250-254.
    [71]Chung JS,Kalman DA,Moore Le,et al.Family Correlations of Arsenc Methylation Patterns in Children and Parents Exposed to High Concentrations of Arsenic in Drinking Water.Environ Helath Perspect.2002,110(7):729-733.
    [72]徐苑苑,李昕,梁秀芬等.内蒙古不同浓度砷暴露人群尿砷代谢产物研究.中国公共卫生。2006,22(8);956-957.
    [73]T Sakurai,C Kojima,Y Kobayashi,et al.Toxicity of a trivalent organic arsenic compound,dimethylarsinous glutathione in a rat liver cell line(TRL 1215)[J].British Journal of Pharmacology.2006,149:888-897.
    [74]Lin S,Shi Q,Nix FB,et al.A novel S-adenosyl-L-methionine:Arsenic(Ⅲ) methyyltransferase from rat liver cytosol.J Biol Chem.2002,277(13):10795-10803.
    [75]Schlawicke Engstrom K,Broberg K,Concha G,et al.Genetic polymorphisms influencing arenic metabolism:evidence from Argentina.Environ Health Perspect.2007,115(4):599-605.
    [76]Drobna Z,Waters SB,Devesa V,et al.Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic(+3 oxidation state)-methyltransferase[J].Toxicol Aool Pharmacol.2005,207(2):147-159.
    [77]Wood TC,Salavagionne OE,Mukherjee B Human.Human arsenic methyltransferase(AS3MT)Pharmacogenetics:Gene Resequencing and functional genomics studies[J].Biol Chem.2006,281(11):7364-7373.
    [78]付松波,孙殿军,等.中国16个人群砷甲基转移酶AS3MT基因5'-UTR区VNTR多态性研究. 中国地方病学杂志,2008,27(2):141-144.
    [79]Karin Schl(a|¨)wicke Engstr(o|¨)m,Karin Broberg,Gabriela Concha,et al.Genetic Polymorphisms Influencing Arsenic Metabolism:Evidence from Argentina[J].Environmental Health Perspectives.2007,115(4):599-605
    [80]NEMETI B,CSANAKY I,GREGUS Z.Arsenate reduction in human erythrocytes and rats--testing the role of purine nucleoside phosphorylase[J].Toxicol Sci,2003,74:22-31.
    [81]Mamell LL,Garcla-Vargas GG,ChowdhuryUK,et al.polymorphisms in the human monomethyl arsenieaeid(MMA~(v)):reduetase/hGSTOl gene and changes in urinary arsenic Profiles[J].Chem ResToxicol,2003,16(2):1507-1513.
    [82]Chiou HY,Hsueh YM,Hsieh LL,et al.Arsenic methylation capacity,body retention and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan[J].Mutation Research.1997,386:197-207.
    [83]Erica M,Schlnuek,Philip G.Board,Astrid K.Whitbread,et al.Charaeterization of the monomethyl arsonate reduetase and dehydroaseorbate reductase activities of Omega class glutathione transferase variants:implication for arsenic metabolism and theage-at-onset of Alzheimer's and Parkinson's diseases[J].Pharmacogenetic and Genomies.2005,157:493-501.
    [84]Anna-Lena Lindberg,Rajiv Kumar,Walter Goessler,et al.Metabolism of Low-Dose Inorganic Arsenic in a Central European Population:Influence of Sex and Genetic Polymorphisms[J].Environ Health Perspect.2007,115:1081-1086
    [85]National Center for Biotechnology Information.2007.Unigene.Available:http://www.ncbi.nlm.nih,gov/entrez/query.
    [86]Basu A,Ghosh P,Das JK,Banerjee A,Ray K,Giri AK.Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal,India:a comparative study in three cell types[J].Cancer Epidemiol Biomarkers Prev.2004,13:820-827.
    [87]ZAKHARYAN R A,SAMPAYO-REYES A,HEALY S M,et al.Human monomethylarsonic acid(MMAV) reductase is a member of the glutathione-Stransferase superfamily[J].Chem Res Toxicol,2001,14:1051-1257.
    [88]Zijuan Liu,Miroslav Styblo,Barry P.Rosen.Methylarsonous Acid Transport by Aqua glyceroporins[J].Environ Health Perspect.2006,114:527-531.
    [89]Drobna Z,Xing W B,Thomas DJ,et al.shRNA Silencing of AS3MT Expression Minimizes Arsenic Methylation Capacity of HepG2 Cells[J].Chem Res Toxicol,2006,19(7):894-898.
    [90]Gregusz,NemetiB.Purine nueleoside PhosPhorylase as a cytosolic arsenate reductase.Toxicol Sci.2002,70(1):13- 19.
    [91]Baum L,Wong KS,Ng HK,et al.Methylenetetra hydro folate reductase gene A222V polymorphism and risk of ischemic stroke[J].Clin Chem Lab Med.2004,42:1370-1376.
    [92]Goering PL,Aposhian HV,Mass MJ,et al.The enigma of arsenic carcinogenesis:role of metabolism[J].Toxical Sci,1999,49(1):5-12.
    [93]Chen YC,Xu LL,Leon Guo,et al.Genetic polymorphism in p53 codon 72 and skin cancer in southwestern Taiwan[J].J Environ Sci Health Part A-Toxic/Hazardous Substances Environ Engineer.2003,38(1):201-211.
    [94]Huang RN,Yeh HY,Chow LP,et al.The cyto toxicity and binding proteins of pentavalent arsenate[J].Chin J Public Health(Taipei).1999,18(6):163-169.
    [1]IARC.Monographs on the evaluation of the carcinogenic risk of chemicals to humans,overall evaluations of carcinogenicity:an updating of IARC monoo'aphs[M].Lyon:IARC,1987:100-106.
    [2]MAZUMDER d n,STEINMAUS C,BHATTACHARYA P,et al.Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water[J].Epidemiology.2005,16:760-765.
    [3]Thomas D J,Li JX,Stephen B,et al.Arsenic(+3 oxidation state) methyltransferase and the methylation of arsenicals[J].Exp Biol Med(Maywood).2007,232(1):3-13.
    [4]Meza M M,Yu L Z,Yelitza Y,et al.Developmentally restricted genetic determinants of human arsenic metabolism:association between urinary methylated arsenic and CYT19polymorphisms in children[J].Environ Health Perspect,2005,113(6):775-781.
    [5]CHUNG J S,KALMAN D A,MOORE L E,et al.Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water[J].Environ Health Perspect,2002,110(7):729-733.
    [6]VAHTER M.Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity[J].Toxicol Lett,2000,112-113:209-217.
    [7]VAHTER M.Mechanisms of arsenic biotransformation[J].Toxicology,2002, 118-182:211-217.
    [8]HAYAKAWA T,KOVYAHI Y,CUI X,et al.A new metabolic pathway of arsenite:arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19[J].Arch Toxicol,2005,79:183-191.
    [9]NARANMANDURA H,SUZUKI N,SUZUKI K T.Trivalent arsenicals are bound to proteins during reductive methylation[J].Chem Res Toxicol,2006,19:1010-1018.
    [10]ENGSTR(O|¨)M K S,BROBERG K,CONCHA G,et al.Genetic polymorphisms influencing arsenic metabolism:Evidence from Argentina[J].Environ Health Perspect,2007,115:599-605.
    [11]KLIGERMAN A D,TENNANT A.Insights into the carcinogenic mode of action of arsenic[J].Toxicol Appl Pharmacol,2006,10:10-16.
    [12]APOSHIAN H V,ZHENG B,APOSHIAN M M,et al.DMPS-arsenic challenge test.Ⅱ.Modulation of arsenic species,including monomethylarsonous acid(MMAⅢ),excreted in human urine[J].Toxicol Appl Pharmacol,2000,165:74-83.
    [13]ZAKHARYAN R A,SAMPAYO-REYES A,HEALY S M,et al.Human monomethylarsonic acid(MMAV) reductase is a member of the glutathione-Stransferase superfamily[J].Chem Res Toxicol,2001,14:1051-1257.
    [14]MARNELL L L,GARCIA-VARGAS G G,CHOWDHURY U K,et al.Polymorphisms in the human monomethylarsonic acid(MMA V) reductase/hGSTO1 gene and changes in urinary arsenic profiles[J].Chem Res Toxicol,2003,16:1507-1513.
    [15]梁冰,张爱华,奚绪光,等.GSTO基因多态性与燃煤污染型砷中毒易感性的关系[J].环境与职业医学,2007,24(2):129-132.
    [16]de Chaudhuri S,GHOSH P,SARMA N,et al.Genetic variants associated with arsenic susceptibility:study of purine nucleoside phosphorylase,arsenic(+3) methyltransferase,and glutathione-s-transferase omega genes[J].Environ Health Perspect,2008,116:501-505.
    [17]LINDBERG A L,KUMAR R,GOESSLER W,et al.Metabolism of low-dose inorganic arsenic in a central european population:influence of sex and genetic polymorphisms[J].Environ Health Perspect,2007,115:1081-1086.
    [18]MARCOS R,MARTINEZ V,HERNANDEZ A,et al.Metabolic profile in workers occupationally exposed to arsenic:role of GST polymorphisms[J].Occup Environ Med,2006,48:334-341.
    [19]梁冰,张爱华,奚绪光,等.谷胱甘肽硫转移酶M1和T1基因多态性与燃煤型砷中毒发病的关系[J].中国地方病学杂志,2007,26(1):6-8.
    [20]DEVESA V,DEL RAZO L M,ADAIR B,et al.Comprehensive analysis of As metabolites by pH-specific hydride generation atomic absorptionspectrometry[J].Anal At Spectrom,2004,19:1460-1467.
    [21]LIN S,SHI Q,NIX F B,et al.A novel Sadenosyl-L-methionine:As(Ⅲ) methyltransferase from rat liver cytosol[J].Biol Chem,2002,277:10795-10803.
    [22]DROBNA Z,XING W,THOMAS D J,et al.shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells[J].Chem Res Toxicol,2006,19:894-898.
    [23]MARTIN J L,McMILLAN F M.SAM(dependent) I AM:the S-adenosylmethionine-dependent methyltransferase fold[J].Curr Opin Struct Biol,2002,12:783-793.
    [24]MEZA M M,YU L,RODRIGUEZ Y Y,et al.Developmentally restricted genetic determinants of human arsenic metabolism:association between urinary methylated arsenic and CYT19 polymorphisms in children[J].Environ Health Perspect,2005,113:775-781.
    [25]NEMETI B,CSANAKY I,GREGUS Z.Arsenate reduction in human erythrocytes and rats--testing the role of purine nucleoside phosphorylase[J].Toxicol Sci,2003,74:22-31.
    [26]陈丽,郭新彪,邓芙蓉,等.5,102亚甲基四氢叶酸还原酶基因C677T位点突变与地方性砷中毒皮肤病变发生关系的研究[J].卫生研究.2005,34(2):146-148.
    [27]AHSAN H,CHEN Y,KIBRIYA M G,et al.Susceptibility to arsenic- induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase[J].Cancer Lett,2003,201:57- 65.
    [28]CHEN Y C,XU L L,GUO Y L,et al.Genetic polymorphism in p53 codon 72 and skin cancer in southwestern Twiwan[J].Environ Sci Health Part A-Toxic Hazardous Substances Environ Engineer,2003,38(1):201- 211.
    [29]AHSAN H,CHEN Y,WANG Q,et al.DNA repair gene XPD and susceptibility to arsenicinduced hyperkeratosis[J].Toxicol Lett,2003,143:123-1311.
    [30]ROSSMAN T G,WANG Z.Expression cloning for arsenite-resistance resulted in isolation of tumor suppressor fan cDNA:possible involvement of the ubiquitin system in arsenic carcinogenesis[J].Carcinogenesis,1999,20(2):311-314.
    [31]卢光明,乌正赉,姚孝元,等.p16基因甲基化与地方性砷中毒发病关系的条件Logistic回归分析[J].中国地方病学杂志.2004,23(4):321-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700