几种半导体纳米材料表面电子结构和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪七十年代,石英光导纤维和GaAs激光器的出现,促进了光纤通讯的发展,使人类进入了信息时代。如今,纳米材料和纳米技术的发展,使人类从纳米水平上控制强大的新型器件,势必深刻的影响着世界政治,经济格局和军事对抗形式,彻底改变人类的生活方式。随着纳米材料尺寸的持续减小,表面效应变得愈发显著,对材料的电子结构和磁性产生了重要的影响。本论文基于密度泛函理论的第一性原理计算方法,针对具有应用前景的III-V族半导体GaAs,InSb纳米线以及氧化物半导体SnO2量子点的电子结构和磁性展开研究,获得了一些有意义的结果:
     模拟了裁剪(Ga,Mn)As薄膜成为纳米条带提高体系居里温度的实验结果。通过计算了Mn间隙原子在不同形状,不同方向,不同表面原子和不同尺寸纳米结构中的形成能,发现Mn间隙原子处在最外层由四个As原子组成的四面体间隙位,形成能最低。形成能的大小与纳米结构形状和取向无关,而与尺寸有关,随着尺寸减小形成能逐渐变大。结果表明通过纳米工程技术提高纳米结构比表面积,能够使Mn间隙原子扩散出去,降低Mn间隙含量,从而提高(Ga,Mn)As稀磁半导体的居里温度,合理的解释了实验现象。
     研究了表面钝化效应对(Ga,Mn)As纳米线磁性的影响,发现在裸纳米线和卤素钝化的纳米线中,Mn取代原子在表面位置形成能最小;赝氢钝化纳米线以后,Mn取代原子在纳米线内部位置形成能最小。研究还发现纳米线的铁磁性与晶体结构和表面钝化有关,闪锌矿型裸纳米线中存在铁磁性和反铁磁性,当纳米线表面被钝化后,出现了反铁磁性到铁磁性的翻转;然而在纤锌矿型纳米线中,无论其表面钝化还是非钝化,体系都将保持铁磁性,且表面钝化能够增强体系的铁磁稳定性。
     研究了表面钝化效应对InSb纳米线电子结构的调制作用,发现采用不同种类材料钝化InSb纳米线表面悬挂键,与表面原子发生电荷补偿,消除带隙中的表面态,不仅使InSb纳米线表现出其本质的半导体性质,而且能够提高InSb纳米线载流子迁移率,相比于赝氢钝化,卤素钝化效果更显著。
     研究了单轴应力对InSb纳米线电子结构的影响。通过压缩或者拉伸,发现不同晶体结构,不同尺寸InSb纳米线的电子结构得到了有效地调制。当压力作用在纳米线轴向上,可使闪锌矿型沿[111]方向生长的InSb纳米线电子结构从直接带隙向间接带隙发生转变,而纤锌矿型沿[0001]方向生长的纳米线从半导体向金属发生转变。研究结果还表明载流子的有效质量能够通过应力效应进行有效地调控;在闪锌矿型纳米线中,拉力能够降低空穴和电子的有效质量,压力能够增加空穴和电子的有效质量;在纤锌矿型纳米线中,拉力和压力能够增加空穴和电子的有效质量。
     研究了表面悬挂键对SnO2量子点磁性的影响,发现纳米结构表面悬挂键态密度的自旋劈裂是导致d0铁磁性的原因之一。阴离子悬挂键表面态主要出现在价带顶附近,类似于浅受主能级提供空穴;阳离子悬挂键表面态主要出现在导带底带隙中,类似于施主能级提供电子。采用带有分数电荷的赝氢原子来钝化体系的悬挂键,表面自旋态消失。过渡金属Co和Ni的3d态也出现在带隙中,当量子点表面存在悬挂键时,阴阳离子的悬挂键分别起受主和施主能级的作用,表面态与Co-和Ni-3d态相互耦合。悬挂键的出现使得SnO2量子点表现出丰富的磁特性,磁矩的变化采用载流子调制模型得到解释。
The emergence of quartz optical fiber and GaAs laser promote the developmentof the fiber-optic communications and make our passage into the information ageduring the1970s. The development of nano material and nanotechnology, whichmakes people contral the new devices from the nano-level, has a profound effect onthe political, economic and military, and changes people life in the most radical ways.With the reduction of nano-material size, the surface effect of nano-materials resultsin the importance of surface characteristics in determining the physical porperties ofnano-materials, such as electrical, magnetism etc. In this dissertation, usingfirst-principles calculations, we have studied the electronic structures and magneticproperties of III-V semiconductor nanowires and oxide semiconductor quantum dot,such as GaAs, InSb nanowires and SnO2quantum dot, which have wide applicationprospects, and get some meaningful results.
     We have simulated a experimental result, which is that a consistent increase inCurie temperature (Tc) with decreasing (Ga,Mn)As wire width was observed in theexperiment. We calculate the formation energy of Mn interstitials located at differentsites in the GaAs nanostructure with different shapes, orientations, surface atoms andsizes. We nd that the Mn atom is located at the outmost tetrahedral interstitial site andthe As atoms occupy this tetrahedral outside surface, the formation energy is thesmallest regardless of the shape and orientation, but it increases with reducing size ofthe nanowire. Therefore, increasing the free surface by nanostructure engineeringallows the Mn interstitials to diffuse out at the sidewalls. Reducing theself-compensating Mn interstitials will effectively increase the Tcof the (Ga,Mn)Asmagnetic semiconductor, which gives a reasonable explanation to the previousexperimental observation.
     We have investigated the effect of surface passivation on the magnetic propertiesin (Ga,Mn)As nanowires. We find that the Mn atom prefers to stay near the surface in anonpassivated and halogen passivated GaAs nanowire. The Mn atom can stay close tothe center when the nanowire is passivated by pseudo-hydrogen (PH) atoms. Themagnetic coupling in the nanowires depend on the crystallographic structure andsurface passivation. The nonpassivated nanowire with zinc-blend structue has theferromagnetic and antiferromagnetic coupling. After the zinc-blend nanowire is passivated, the antiferromagnetic coupling is translated into ferromagnetic coupling.Both nonpassivated and passivated nanowire with wurtzite structure has theferromagnetic coupling, which is strengthened by surface passivation.
     We have investigated the surface passivation effects on the electronic propertiesof InSb nanowires. We find that surface passivation effects can make InSb nanowireexhibit intrinsic electronic properties. The band gap modulation is base on chargecompensation between passivation atoms and surface atoms, which is eliminating thesurface states. Surface passivation effects can enhance the carrier mobilities of InSbnanowires. Comparing with the PH passivation, halogen passivation is more distinct.
     We have studied the uniaxial strain effects on the electronic properties of InSbnanowires, We find that applying strain (compression or tension) can effectivelymodulate the electronic properties of nanowires with various size, direction and crystalstrucutre. After the compression is applied on the growth axie of nanowire, the bandgap of InSb zinc-blend(ZB) nanowires grown along the [111] direction experiences adirect-to-indirect transition, the band gap of InSb wurtzite(WZ) nanowires grownalong the [0001] direction experience a transition from semiconductor to metal.Effective mass of carriers in InSb nanowire can be modulated by strain. Tension canreduce the effective mass of holes and electrons and the compression can increase theeffective mass of holes and electrons in ZB nanowires. Both tension and compressioncan increase the effective mass of holes and electrons in WZ nanowires.
     The effect of surface dangling bonds on the magnetism of a SnO2quantum dot hasbeen investigated. We find that the spin splitting states of surface dangling bonds is asource of d0magnetism. The anionic surface states mainly are distributed above the topof valence band and are similar to accepter level providing holes, the cationic surfacestates mainly are distributed below the bottom of conduction band and are similar todonor level providing electrons. After the surface dangling bonds are fully passivatedby PH, the surface spin states are eliminated. Co-and Ni-3d states appear in band gap,and the surface states arising from dangling bonds also appear in the band gap. Thesestates couple with each other, and induce a large magnetic moment so that the SnO2quantum dot shows very abundant variation of the magnetic properties. The changes ofmagnetic moments can be explained well by a carrier modulation model.
引文
[1] Oppo S, Fiorentini V, Scheffler M. Theory of adsorption and surfactant effect of9Sb on Ag(111). Phys. Rev. Lett.,1993,71(15):2437-2440
    [2] Munekata H, Ohna H, Von S, et al. Diluted Magnetic III-V Semiconductors.Phys. Rev. Lett.,1989,63(17):1849-1852
    [3] Ohno H, Shen A, Matsukura F, et al.(Ga,Mn)As: A new diluted magneticsemiconductor based on GaAs. Appl. Phys. Lett.,1996,69(3):363-365
    [4] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetismin zinc-blende magnetic semiconductors. Science,2000,287(5455):1019-1022
    [5] Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors ofheavily Mn-doped (Ga,Mn)As films with high ferromagnetic transitiontemperature. Appl. Phys. Lett.,2009,95(18):182505-182507
    [6] Chen L, Yang X, Yang F, et al. Enhancing the Curie Temperature ofFerromagnetic Semiconductor (Ga,Mn)As to200K via NanostructureEnginerring. Nano Lett.,2011,11:2584-2589
    [7] Fiederling R, Keim M, Reusher G, et al. Injection and detection of aspin-polarized current in a light-emitting diode. Nature,1999,402:787-790
    [8] Chiba D, Akiba N, Matsukura F, et a1. Magnetoresistance effect and interlayercoupling of (Ga,Mn)As trilayer structures. Appl. Phys. Lett.,2000,77(12):1873-1875
    [9] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-Vcompound semiconductors and their alloys. J. Appl. Phys.,2001,89(11):5815-5875
    [10] Rode D L. Electron Transport in InSb, InAs, and InP. Phys. Rev. B,1971,3(10):3287-3299
    [11] Yang Y W, Li L, Huang X H, et al. Transport properties of InSb nanowirearrays. Appl. Phys. A,2006,84:7-9
    [12] Bjok M, Ohlsson B, Thelander C, et al. Nanowire resonant tunnelling diodes.Appl. Phys. Lett.,2002,81(23):4458-4460
    [13] Thelander C, Martensson T, Bjork M, et al. Single-electron transistors inheterostructure nanowires. Appl. Phys. Lett.,2003,83(23):2052-2054
    [14] Seol J H, Moore A L, Saha S K, et al. Measurement and analysis of themopowerand electrical conductivity of an indium antimonide nanowire from avapour-liquid-solid method. J. Appl. Phys.,2007,101(2):023706-023711
    [15] Philipose U, Sapkota G, Salfi J, et al. Influence of growth temperature on thestichiometry of InSb nanowires grown by vapour phase transport. Semicond. Sci.Technol.,2010,25(7):075004-075009
    [16] Yao H, Gunel H Y, Blomers C, et al. Phase coherent transport in InSbnanowires. Appl. Phys. Lett.,2012,101(8):082103-082106
    [17] Nilsson H A, Caroff P, Thelander C, et al. Temperature dependent properties ofInSb and InAs nanowire field-effect transistor. Appl. Phys. Lett.,2010,96(15):153505-153507
    [18] Paul R K, Badhulika S, Mulchandani A. Room temperature detection of NO2using InSb nanowire. Appl. Phys. Lett.,2011,99(3):033103-033105
    [19] Berg J W G, Nadj S, Pribiag V S, et al. Fast Spin-Orbit Qubit in an IndiumAntimonide Nanowire. Phys. Rev. Lett.,2013,110(6):066806-066811
    [20] Ogale S B, Choudhary R J, Buban J P, et al. High Temperature Ferromagnetismwith a Giant Magnetic Momentin Transparent Co-doped SnO2-δ, Phys. Rev.Lett.,2003,91(7):077205-077208
    [21] Punnoose A, Hays J, Gopal V, Shutthanandan V. Room-temperatureferromagnetism in chemically synthesized Sn1-xCoxO2powders. Appl. Phys.Lett.,2004,85(9):1559-1561
    [22] Bouaine A, Brihi N, Schmerber G, et al. Structural, Optical, and magneticProperties of Co-doped SnO2Powders Synthesized by the CoprecipitationTechnique. J. Phys. Chem. C,2007,111:2924-2928
    [23] Liu X F, Yu R H. Mediation of room temperature ferromagnetism in Co-dopedSnO2nanocrystalline films by structural defects. J. Appl. Phys.,2007,102(8):083917-083920
    [24] Chen W B, Li J B. Magnetic and electronic structure properties of Co-dopedSnO2nanoparticles synthesized by the sol-gel-hydrothermal technique. J. Appl.Phys.,2011,109(8):083930-083933
    [25] Fitzgerald C B, Venkatesan M, Dorneles L S, et al. Magnetism in dilutemagnetic oxide thin films based on SnO2. Phys. Rev. B,2206,74(11):115307-115316
    [26] Sharma A, Varshney M, Kumar S, et al. Magnetic Properties of Fe and NiDoped SnO2Nanoparticles. Nanomater. Nanotechnol.,2011,1(1):29-33
    [27] Archer P I, Radovanovic P V, Heald S M, et al. Low-Temperature Activationand Deactivation of High-Curie-Temperature Ferromagnetism in a New DilutedMagnetic Semiconductor: Ni2+-Doped SnO2. J. Am. Chem. Soc.,2005,127:14479-14487
    [28] Hong N H, Ruyter A, Prellier W, et al. Magnetism in Ni-doped SnO2thin films.J. Phys.: Condens. Matter,2005,17:6533-6538
    [29] Hong N H, Sakai J, Huong N T, Poirot N, et al. Role of defects in tuningferromagnetism in diluted magnetic oxide thin films. Phys. Rev.B,2005,72:(4)045336-045340
    [30] Hong N H. Ferromagnetism in transition-metal-doped semiconducting oxidethin films. J. Magn. Magn. Mater.,2006,303:338-343
    [31] Komen C Van, Thurber A, Reddy K M, et al. Structure-magnetic propertyrelationship in transition metal (M=V, Cr, Mn, Fe, Co, Ni) doped SnO2nanopartiles. J. Appl. Phys.,2008,103(7):07D141-07D143
    [32] Archer P I, Gamelin D R. Controlled grain-boundary defect formation and itsrole in the high-Tc ferromagnetism of Ni2+:SnO2. J. Appl. Phys.,2006,99:08M107-08M109
    [33] Ford A C, Ho J C, Chueh Y L, et al. Diameter-Dependent Electron Mobility ofInAs Nanowires. Nano Lett.,2009,9(1):360-365
    [34] Hang Q, Wang F, Carpenter P D, et al. Role of Molecular Surface Passivation inElectrical Transport Properties of InAs Nanowires. Nano Lett.,2008,8(1):49-55
    [35] Guo C S, Luo L B, Yuan G D, et al. Surface passivation and transfer doping ofsilicon nanowires. Angew. Chem. Int. Ed.,2009,48(52):9896-9900
    [36] Haick H, Hurley P T, Hochbaum A I, et al. Electrical Characteristics andChemical Stability of Non-Oxidized Methyl-Terminated Silicon Nanowires. J.Am. Chem. Soc.,2006,128:8990-8991
    [37] Bashouti M Y, Stelzner T, Berger A, et al. Chemical Passivation of SiliconNanowires with C1-C6Alkyl Chains Through Covalent Si-C Bonds. J. Phys.Chem. C.,2008,112:19168-19172
    [38] Bashouti M Y, Paska Y, Puniredd S R, et al. Silicon nanowires terminated withmethyl functionalities exhibit stronger Si-C bonds than equivalent2d surface.Phys. Chem. Chem. Phys.,2009,11(20):3845-3852
    [39] Shen X, Sun B, Yan F, et al. Hig-performance photoelectrochemical cells fromionic liquid electrolyte in methyl-terminated silicon nanowire arrays. ACS nano.,2010,4(10):5869-5876
    [40] Collins G, Fleming P, Barth S, et al. Alkane and Alkanethiol Passivation ofHalogenated Ge Nanowires. Chem. Mater.,2010,22(23):6370-6377
    [41] Shu H B, Liang P, Wang L, et al. Tailoring electronic properties of InAsnanowires by surface functionalization. J. Appl. Phys.,2011,110(10):103713-103718
    [42] Zhuo K, Chou M. Surface passivation and orientation dependence in theelectronic properties of silicon nanowires. J. Phys.: Condens. Matter,2013,25:154501-145511
    [43] Fang D Q, Rosa A L, Frauenheim T, et al. Band gap enginerring of GaNnanowires by surface functionalization. Appl. Phys. Lett.,2009,94(7):073116-073118
    [44] Peng H, Li J, Li S S, et al. First-Principle Study on Rutile TiO2Quantum Dots. J.Phys. Chem. C,2008,112:13964-13969
    [45] Deng H X, Li S S, Li J B, et al. Effect of hydrogen passivation on the electronicstructure of ionic semiconductor nanostructures. Phys. Rev. B,2012,85(19):195328-195332
    [46] Ng M F, Sim L Y, Da H, et al. Modulation of the work function of siliconnanowire by chemical surface passivation: a DFT study. Theor. Chem. Acc,2010,127:689-695
    [47] Tahir N, Karim A, Persson K A, et al. Surface Defects: Possible Source ofRoom Temperature Ferromagentism in Co-Doped ZnO Nanorods. J. Phys. Chem.C,2013,117:8968-8973
    [48] Schoenhalz A L, Arantes J T, Fazzio A, et al. Surface magnetization innon-doped ZnO nanostructures. Appl. Phys. Lett.,2009,94(16):162503-162505
    [49] Schmidt. Surface effects on the energetic and spintonic properties of InPnanowires diluted with Mn: First-principle calculations. Phys. Rev. B,2008,77:(8):085325-085330
    [50] Tsogbardrakh N, Choi E A, Lee W J, et al. Hole doping effect onferromagnetism in Mn-doped ZnO nanowires. Cur. Appl. Phys.,2011,11:236-240
    [51] Cahn J W.Surface stress and the chemical equilibrium of small crystals:I.Thecase ofthe isotropic surface. Acta Metallurgica,1980,28:1333-1338
    [52] Cahn J W, Larche E. Surface stress and the chemical equilibrium of smallcrystals: II. Solid particles embedded in a solid matrix. Aeta Metallurgiea.1982,30:51-56
    [53] Cammarata R C. Surface and interface stress effects in thin films. Progress inSurface Science,1994,46(1): l-38
    [54] Kosevich Y A. Capillary phenomena andmacroscopic dynamics of complex twodimensional defects in crystals. Progress in Surface Science,1997,55(1):1-57
    [55] Ibach H. The role of surface stress in reconstruction, epitaxial growth andstabilization of mesoseopie struetures. Surface Seieneo Reports,1997,29(5):193-263
    [56] Rusanev A I. Surfaeo thermodynamics revisited. Surface Science Reports.2005,58:111-239
    [57] Miller R E, Shenoy V B. Size dependent elastic properties of nanosizedstructural elements. Nanotechnology,2000,11:139-147
    [58] He J, Lilley C M. Surfaeo effect on the elastic behavior of static bendingnanowires. Nano. Lett.,2008,8(7):1798-1802
    [59] Ma J, Wei S H, Neale N R, et al. Effect of surface passivation on dopantdistribution in Si quantum dots: The case of B and P doping. Appl. Phys. Lett.,2011,98(17):173103-173105
    [60] Shu H, Cao D, Liang P, et al. Effect of Molecular Passivation on the DopingInAs Nanowires. J. Phys. Chem. C,2012,116:17928-17933
    [61] Awschalom D D, Flatté M E. Challenges for semiconductor spintronics. NaturePhysics,2007,3:153-159
    [62] uti I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications.Rev. Mod. Phys.,2004,76(2):323-410
    [63] Schmidt G. Concepts for spin injection into semiconductors-a review. J.Phys.D:Appl. Phys.,2005,38(7): R107-R122
    [64] Baibich Mato N, Broto J M, Fert A, et al. Giant Magnetoresistance of(001)Fe/(001)Cr Magnetic Superlattices. Phy. Rev. Lett.,1988,61(21):2472-2475
    [65] Janisch R, Gopal P, Spaldin N A. Transition metal-doped TiO2and ZnO-presentstatus of the field. J. Phys.: Condens Matter,2005,17(27): R657-6R89
    [66] Coey J M D. d0Ferromagnetism. Solid State Sciences,2005,7(6):660-667
    [67] Yang K, Wu R, Shen L, et al. Origin of d0magnetism in II-VI and III-Vsemiconductors by substitutional doping at anion site. Phys. Rev. B,2010,81(12):125211-125215
    [68] Von Molnár S, and Read D. New Materials for Semiconductor Spin-Electronics.Proceedings of the IEEE,2003,91(5):715-726
    [69] Ahn K Y, and Shafer M W. Relationship Between Stoichiometry and Propertiesof EuO Films. J. Appl. Phys.,1970,41(3):1260-1262
    [70] Ahn K, Pecharsky A O, Gschneidner K A, et al. Preparation, heat capacity,magnetic properties, and the magnetocaloric effect of EuO. J. Appl. Phys.,2004,97(6):063901-063905
    [71] Ott H, Heise S, Sutarto R, et al. Soft x-ray magnetic circular dichroism study onGa-doped EuO thin films. Phys. Rev. B,2006,73(9):094407-094409
    [72] Berger S B, and Pinch H L. Ferromagnetic Resonance of Single Crystals ofCdCr2S4and CdCr2Se4. J. Appl. Phys.,1967,38(3):949-950
    [73] Park Y D, Hanbicki A T, Matt son J E, et al. Epitaxiax growth of an n-typeferromagnetic semiconductor CdCr2Se4on GaAs(001) and GaP(001). Appl.Phys. Lett.,2002,81(8):1471-1473
    [74] Furdyna J K. Diluted magnetic semiconductors. J. Appl. Phys.,1988,64(4):R29-R64
    [75] Ferrand D, Cibert J, Wasiela A, et al. Carrier-induced ferromagnetism inp-Zn1-xMnxTe. Phys. Rev. B,2001,63(18):085201-0852013
    [76] Saito H, Zayet S V, Yamagata S, et al. Room-Temperature Ferromagnetism in aII-VI Diluted Magnetic Semiconductor Zn1-xCrxTe. Phys. Rev. Lett.,2003,90(20):207202-207205
    [77] Oka Y, Takahashi N, Takabayashi K, et al. Exciton Dynamics in QuantumNanostructures of II-VI Diluted Magnetic Semiconductors. Phys. Stat. Sol (b),2000,221(1):495-498
    [78] Sugakov V I, and Vert simakha A V. Magnetic Field Dependence of ExcitonLevels in Diluted Magnetic Semiconductor Quantum Wires. Phys. Stat. Sol (b),2000,217(2):841-846
    [79] Munekata H, Ohno H, von Molnár S, et al. Diluted Magnetic III-VSemiconductors. Phys. Rev. Lett.,1989,63(17):1849-1852
    [80] Hayashi T, Hashimoto Y, Katsumoto S, et al. Effect of low-temperatureannealing on transport and magnetism of diluted magnetic semiconductor(Ga,Mn)As. Appl. Phys. Lett.,2001,78(12):1691-1693
    [81] Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in aferromagnetic semiconductor heterostructure. Nature,1999,402:790-792
    [82] Ohno H, Chiba D, Mat sukura F, et al. Electric-field control of ferromagnetism.Nature,2000,408:944-946
    [83] Schallenberg T, and Munekata H. Preparation of ferromagnetic (In,Mn)As witha high Curie temperature of90K. Appl. Phys. Lett.,2006,89(4):042507-042509
    [84] Chen L, Yang X, Yang F H, et al. Enhancing the Curie Temperature ofFerromagnetic Semiconductor (Ga,Mn)As to200K via NanostructureEngineering. Nano Lett.,2011,11:2584-2589
    [85] Matsumoto Y, Murakami M, Shono T, et al. Room-TemperatureFerromagnetism in Transport Transition Metal-Doped Titanium Dioxide.Science,2001,291:854-856
    [86] Dai N, Luo H, Zhang F C, et al. Spin Superlattice Formation in ZnSe/Zn1-xMnxMultilayers. Phys. Rev. Lett,1991,67(27):3824-3827
    [87] Aronov A G, Hikami S, Larkin A I. Zeeman Effect on Magnetoresistance inHigh-Temperature Superconductors. Phys. Rev. Lett.,1989,62(8):965-968
    [88] Chai J W, Pan J S, Wang S J, et al. Annealing temperature dependence offerromagnetism of rutile Co-TiO2(100). Appl. Phys. Lett.,2005,86(22):222505-222507
    [89] Wang J, Gu Z B, Liu M H, et al. Giant magnetoresistance intransition-metal-doped ZnO films. Appl. Phys. Lett.,2006,88(25):252110-252112
    [90] Anderson P W. Antiferromagnetism theory of superexchange Interaction. Phys.Rev.,1950,19(2):350-356
    [91] Zener C. Interaction between the d-Shells in the transition metals. II.Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev.,1951,82(3):403-405
    [92] Akai H. Ferromagnetism and Its Stability in the Diluted MagneticSemiconductor (In,Mn)As. Phys. Rev. Lett.,1998,81(14):3002-3005
    [93] Ruderman M A, Kittel C. Indirect Exchange Coupling of Nuclear MagneticMoments by Conduction Electrons. Phys. Rev.,1954,96(1):99-1025
    [94] Yosida K. Magnetic properties of Cu-Mn Alloys. Phys. Rev.,1957,106(5):893-898
    [95] Dietl T, Ohno H, Matsukura E. Zener model description of ferromagnetism inzinc-blende magnetic semiconductors. Science,2000,287:1019-1022
    [96] Dietl T, Ohno H, Matsukura E. Hole-mediated ferromagnetism in tetrahedrallycoordinated semiconductor. Phys. Rev. B,2001,63(19):195205-195215
    [97] Pearton S J, Abernathy C R, Overberg M E, et al. Wide band gap ferromagneticsemiconductors and oxides. J. Appl. Phys.,2003,93(1):1-13
    [98] Liu X F, Sun Y, and Yu R H. Role of oxygen vacancies in tuning magneticproperties of Co-doped SnO2insulating films. J. Appl. Phys.,2007,101(12):123907-123912
    [99] Martin R M. electronic structure: basic theory and practical methods.Cambridge University Press, Cambridge,2004,123-125
    [100] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev.,1964,136(3B):B864-871
    [101] Thomas H. The calculation of atomic fields. Mathematical Proceedings of theCambridge Philosophical Society,1927,23(5):542-548
    [102] Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rendiconti Lincel Mathematica E Applicazioni,1927,6:602-607
    [103] Kohn W, Sham L J. Self-consistent equations including exchange andcorrelation effects. Phys. Rev.,1965,140(4A): A1133-A1138
    [104] Perdew J P, Chevary J A, Vosko S H, et al. C. Atoms, molecules, solids, andsurfaces: applications of the generalized gradient approximation for exchangeand correlation. Phys. Chem. B,1992,46:6671-6687
    [105] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for theexchange-correlation hole of a many-electron system. Phys. Chem. B,1996,54:16533-16539
    [106] Filatov M, Thiel W. A new gradient-corrected exchange-correlation densityfunctional. Molecular Physics,1997,91(5):847-859
    [107] Laming G J, Termath V, Handy N C. A general purpose exchange-correlationenergy functional. The Journal of Chemical Physics,1993,99:8765-8773
    [108] Becke A D. Density functional calculations of molecular-bond energies. TheJournal of Chemical Physics,1986,84:4524-4529
    [109] Perdew J P, Wang Y. Accurate and simple density functional for the electronicexchange energy: Generalied gradient approximation. Phys. Rev. B,1986,33:8800-8802
    [110] Lacks D J, Gordon R G. Pair interactions of rare-gas atoms as a test ofexchange-energy-density functionals in regions of large density gradient. Phys.Rev. A,1993,47:4681-4690
    [111] Perdew J P, Burke K, Ernzerh M. Generalized Gradient Approximation MadeSimple. Phys. Rev. Lett.,1996,77(18):3865-3868
    [112] Beck A D. A new mixing of Hartree-Fock and local density-functional theories.J. Chem. Phys.,1993,98:1372-1377
    [113] Beck A D. The role of Exact Exchange. J. Chem. Phys.,1993,98:5648-5652
    [114] Stevens P J, Devlin J F, Chabalowski C F, et al. Ab Initio calculation ofvibrational absorption and circular dichroism spectra using Density FunctionalForce Field. J. Phys. Chem.,1994,98(45):11623-11627
    [115] Becke A D. A new dynamical correlation functional and implications forexact-exchange mixing. J. Chem. Phys.,1995,104:1040-1046
    [116] Becke A D. Systematic optimization of exchange-correlation functionals. J.Chem. Phys.,1997,107:8554-8560
    [117] Beck A D. A new inhomogeneity parameter in density functional theory. J.Chem. Phys.,1998,109:2092-2098
    [118] Adamo C, Barone V. Toward reliable density functional methods withoutadjustable parameters: The PBE0model. J. Chem. Phys.,1999,110:6158-6170
    [119] Edmonds K W, Laan G van der, Farley N R S, et al. Magnetic Linear Dichroismin the Angular Dependence of Core-Level Photoemission from (Ga,Mn)AsUsing Hard X Rays. Phys. Rev. Lett.,2011,107(19):197601-197605
    [120] Galicka M, Buczko R, Kacman P. Structure-Dependent Ferromagnetism inMn-Doped III-V Nanowires. Nano Lett,2011,11:3319-3323
    [121] Bombeck M, Salasyuk A S, Glavin B A, et al. Excitation of spin waves inferromagnetic (Ga,Mn)As layers by picosecond strain pulses. Phys. Rev. B,2012,85(19):195324-193333
    [122] Proselkov O, Sztenkiel D, Stefanowicz W, et al. Thickness dependent magneticproperties of (Ga,Mn)As ultrathin films. Appl. Phys. Lett.,2012,100(26):262405-262408
    [123] Al-Qadi B, Nishizawa N, Nishibayashi K, et al. Thickness dependence ofmagneto-optical effects in (Ga,Mn)As epitaxial layers. Appl. Phys. Lett.,2012,100(22):222410-222414
    [124] Danilov Yu A, Kudrin A V, Vikhrova O V, et al. Ferromagnetic semiconductorInMnAs layers grown by pulsed laser deposition on GaAs. J. Phys. D: Appl.Phys.,2009,42(3):035006-035010
    [125] Stolichnov I, Riester S W E, Mikheev E, et al. Enhanced Curie temperature andnonvolatile switching of ferromagnetism in ultrathin (Ga,Mn)As channels. Phys.Rev. B,2011,83(11):115203-15207
    [126] Dobrowolska M, Tivakornsasithorn K, Liu X, et al. Controlling the Curietemperature in (Ga,Mn)As through location of the Fermi level within theimpurity band. Nature Mater,2012,11:444-449
    [127] Wang M, Campion R P, Rushforth A W, et al. Achieving high Curie temperaturein (Ga,Mn)As. Appl. Phys. Lett.,2008,93(13):132103-132105
    [128] Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors ofheavily Mn-doped (Ga,Mn)As films with high ferromagnetic transitiontemperature. Appl. Phys. Lett.,2009,95(18):182505-182507
    [129] Yu X, Wang H, Pan D, et al. All Zinc-Blend GaAs/(Ga,Mn)As Core-ShellNanowires with Ferromagnetic Ordering. Nano Lett.,2013,13:1572-1577
    [130] Ohno H, Shen A, Matsukura F, et al.(Ga,Mn)As: A new diluted magneticsemiconductor based on GaAs. Appl. Phys. Lett.,1996,69(3):363-366
    [131] Ohno H. Properties of ferromagnetic III-V semiconductors. J. Magn. Magn.Mater.,1999,200:110-129
    [132] Edmonds K W, Bogus awski P, Wang K Y, et al. Mn Interstitial Diffusion in(Ga,Mn)As. Phys. Rev. Lett.,2004,92(3):037201-037204
    [133] Sato K, Bergqvist L, Kudrnovsky J, et al. First-principles theory of dilutemagnetic semiconductors. Rev. Mod. Phys.,2010,82(2):1633-1690
    [134] Geballe T H, Marezio M. Enhanced superconductivity in Sr2CuO4-v. Physica C,2009,469:680-684
    [135] Poccia N, Ricci A, Campi G, et al. Optimum inhomogeneity of local latticedistortions in La2CuO4+y. PNAS,2012,109(39):15685-15690
    [136] Bergqvist L, Sato K, Katayama-Yoshida H, et al. Computational materialsdesign for high-Tc (Ga, Mn)As with Li codoping. Phys. Rev. B,2011,83(16):165201-165206
    [137] Kresse G, Furthm uller J. Ef cient iterative schemes for ab initio total-energycalculations using a plane-wave basis set. Phys. Rev. B,1996,54(16):11169-11186
    [138] Kresse G, Hafner J. Ab. initio molecular dynamics for liquid metals. Phys. Rev.B,1996,47(1):558-561
    [139] Rosini M, Magri R. Surface Effects on the Atomic and Electronic Structure ofUnpassivated GaAs Nanowires. ACS Nano,2010,4(10):6021-6031
    [140] Bl och P E. Projector augmented-wave method. Phys. Rev. B,1994,50(24):17953-17979
    [141] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projectoraugmented-wave method. Phys. Rev. B,1999,1758(18):1758-1775
    [142] Monkhorst H J, Pack J D. Special points for Brillonin-zone integrations*. Phys.Rev. B,1976,13(12):5188-5192
    [143] Zhang S B, Cohen M L. High-pressure phases of III-V zinc-blendesemiconductors. Phys. Rev. B,2007,90(16):163103-163106
    [144] Wei S H. Overcoming the doping bottleneck in semiconductors. Comput. Mater.Sci.,2004,30:337-348
    [145] Ossicini S, Degoli E, Lori F, et al. Simultaneously B-and P-doped siliconnanoclusters: Formation energies and electronic properties. Appl. Phys. Lett.,2005,87(17):173120-173122
    [146] Peelaers H, Partoens B, Peeters F M. Properties of B and P doped Ge nanowires.Appl. Phys. Lett.,2007,90(26):263103-163106
    [147] Wang Z T, Chen S Y, Duan X M, et al. Strain effect on the diffusion ofinterstitial Mn in GaAs. J. Phys.: Condens. Matter,2012,24:215801-215804
    [148] Patriarche G, Glas F, Tchernycheva, et al. Wurtzite to Zinc Blend PhaseTransition in GaAs Nanowires induced by Epitaxial Burying. Nano Lett.2008,8(6):1638-1643
    [149] Dalpian G M, Chelikowsky J R. Self-Puri cation in SemiconductorNanocrystals. Phys. Rev. Lett.,2006,96(22):226802-226804
    [150] Zhou J, Wu M M, Zhou X, Sun Q. Tuning electronic and magnetic properties ofgraphene by surface modification. Appl. Phys. Lett.2009,95(10):103108-103110
    [151] Sofo J O, Chaudhari A S, Barber G D. Graphane: A two-dimensionalhydrocarbon. Phys. Rev. B,2007,75(15):153401-153404
    [152] Collins G, Holmes J. Chemical functionalisation of silicon and germaniumnanowires. J. Mater. Chem.,2011,21:11052-11069
    [153] Collins G, Fleming P, Barth S, et al. Alkane and Alkanethiol Passivation ofHalogenated Ge Nanowires. Chem. Mater.,2010,22:6370-6377
    [154] Lu P, Cao H, Zhang X, et al. Structural properties and energetics of GaAsnanowires. Physical E,2013,52:34-39
    [155] Dubrovskii V G, Sibirev N V, Harmand J C, et al. Growth kinetics and crystalstructure of semiconductor nanowires. Phys. Rev. B,2008,78(23):235301-235310
    [156] Hafner J. Ab-Initio Simulations of Materials Using VASP: Density-FunctionalTheory and Beyond. J. Comput. Chem.,2008,29:2044-2078
    [157] Shick A B, Kudrnovsky J, Drchal V. Coulomb correlation effects on theelectronic structure of III-V diluted magnetic semiconductors. Phys. Rev. B,2004,69(12):125207-125212
    [158] Huang X, Makmal A, Chelikowsky J R, et al. Size-Dependent SpintronicProperties of Dilute Magnetic Semidonductor Nanocrystals. Phys. Rev. Let.,2005,94:236801-236804
    [159] Li J, Gilbertson A. M, Litvinenko K L, et al. Observation of spin dependentphotocoductivity in InSb quantum well nanowires. Appl. Phys. Lett.,2012,101(15):152407-152410
    [160] Mohammad A, Das S R, Khan M R, et al. Wavelength-Dependent Absorption inStructurally Tailored Randomly Branched Vertical Arrays of InSb Nanowires.Nano Lett.,2012,12:6112-6118
    [161] Raul R K, Badhulika S, Mulchandani A. Room temperature detection of NO2using InSb nanowire. Appl. Phys. Lett.,2011,99(3):033103-033105
    [162] Pitanti A, Coquillat D, Ercolani D, et al. Terahetz detection by heterostructedInAs/InSb nanowire based field effect Transistors. Appl. Phys. Lett.,2012,101(14):141103-141105
    [163] Nadj-Perge S, Pribiag V S, van den Berg J W G, et al. Spectroscopy ofSpin-Orbit Quantum Bits in Indium Antimonide Nanowires. Phys. Rev. Lett.,2012,108(16):166801-166805
    [164] Copple A, Ralston N, Peng X. Engineering direct-indirect band gap transition inwurtzite GaAs nanowires through size and uniaxial strain. Appl. Phys. Lett.,2012,100(19):193108-193111
    [165] Persson M. P, Xu H Q. Electronic structure of nanometer-scale GaAs whiskers.Appl. Phys. Lett.,2002,81(7):1309-1311
    [166] Fang D Q, Rosa A L, Frauenheim T, et al. Band gap engineering of GaNnanowires by surface functionalization. Appl. Phys. Lett.,2009,94(7):073116-073118
    [167] Tajik N, Chia A C E, LaPierre R R. Improved conductivity and long-termstability of sulfur-passivated n-GaAs Nanowires. Appl. Phys. Lett.,2012,100(20):203122-203124
    [168] Hang Q, Wang F, Carpenter P D, et al. Role of Molecular Surface Passivation inElectrical Transport Properties of InAs Nanowires. Nano Lett.,2008,8(1):49-55
    [169] Bi iūnas A, Malevich Y V, Krotkus A. Excitation wavelength dependences ofterahertz emission from surfaces of InSb and InAs. Electron. Lett.,2011,47(21):1186-U45
    [170] Ghalamestani S G, Ek M, Ganjipour B, et al. Demonstration of Defect-Free andComposition Tunable GaxIn1xSb Nanowires. Nano Lett.,2012,12:4914-4919
    [171] Xu H Q, Lindefelt U. Electronic structure of neutral and charged vacancies inGaAs. Phys. Rev. B,1990,41(9):5979-5990
    [172] Peng H, Li J, Li S S, et al. First-Principles Study on Rutile TiO2Quantum Dots.J. Phys. Chem. C,2008,112:13964-13969
    [173] Gai Y, Peng H, Li J. Electronic Properties of Nonstoichiometric PbSe QuantumDots from First Principles. J. Phys. Chem. C,2009,113:21506-21511
    [174] Deng H X, Li S S, Li J B. Quantum Con nement Effects and ElectronicProperties of SnO2Quantum Wires and Dots. J. Phys. Chem. C,2010,114:4841-4845
    [175] Huang S P, Xu H, Bello I, et al. Tuning Electronic Structures of ZnO Nanowiresby Surface Functionalization: A First-Principles Study. J. Phys. Chem. C,2010,114:8861-8864
    [176] Shu H B, Liang P, Wang L, et al. Tailoring electronic properties of InAsnanowires by surface functionalization. J. Appl. Phys.,2011,110(10):103713-103718
    [177] De A, Pryor C E. Predicted band structures of III-V semiconductors in thewurtizite phase. Phys. Rev. B,2010,81(15):155210-155222
    [178] Shu H, Chen X, Ding Z, et al. First-principles study of the doping of InAsNanowires: Role of Surface Dangling bonds. J. Phys. Chem. C,2011,115:14449-14454
    [179] Li J B, Wang L W. Comparison between Quantum Confinement Effects ofQuantum Wires and Dots. Chem. Mater.,2004,16:4012-4015
    [180] Li J B, Wang L W. Band-structure-corrected local density approximation studyof semiconductor quantum dots and wires. Phys. Rev. B,2005,72(12):125325-125339
    [181] Kowalczyk S P, Cheung J T, Kraut E A, Grant R W. CdTe-Hg Te (111)Heterojunction Valence-Band Discontinuity:A Common-Anion-RuleContradiction. Phys. Rev. Lett.,1986,56(15):1605-1608
    [182] Tsukamoto S, Bhattacharya P, Chen Y C, et al. Transport properties ofInAsxSb1x (0≤x≤0.55) on InP grown by molecular beam epitaxy. J. Appl.Phys.,1990,67(11):6819-6822
    [183] Willardson R K, Beer A C. Wiley J. D.: in: Semiconductors and Semimetals,New York and London,1975,58-60
    [184] Bader R F. Atoms in Molecules: A Quantum Theory, Oxford University Press,New York,1990,25-33
    [185] Henkelman G, Arnaldsson A, J nsson H. A fast and robust algorithm for Baderdecomposition of charge density. Comp. Mater. Sci.2006,36:354-360
    [186] Khayer M A, Lake R K. Performance of n-Type InSb and InAs NanowireField-Effect Transistors. IEEE Trans. Electron Devices,2008,55(11):2939-2945
    [187] Gallo E M, Chen G, Currie M, et al. Picosecond response times inGaAs/AlGaAs core/shell nanowire-based photodetectors. Appl. Phys. Lett.,2011,98(24):241113-241115
    [188] Mi Z, Chang Y L. III-V compound semiconductor nanostructures on silicon:epitaxial growth, properties, and applications in light emitting diodes and lasers.J. Nanaphoton.,2009,3(1):031602
    [189] Czaban J A, Thompson D A, Lapierre R R, et al. GaAs Core-Shell Nanowiresfor Photovoltaic Applications. Nano Lett.,2009,9(1):148-154
    [190] Patolsky F, Zheng G, Lieber C M. Nanowire sensors for medicine and the lifesciencs. Nanomedicine,2006,1(1):51-65
    [191] Logan P, Peng X. Strain-modulated electronic properties of Ge nanowires: Arst-principles study. Phys. Rev. B,2009,80(11):115322-115328
    [192] Huang L, Lu N, Yan J, et al. Size-and Strain-Dependent Electronic structures inH-Passivated Si [112] Nanowires. J. Phys. Chem C,2008,112:15680-15683
    [193] Sk M A, Ng M F, Huang L, et al. Modulating the electronic properties ofgermanium nanowires via applied strain and surface passivation. Phys. Chem.Chem. Phys.,2013,15(16):5927-5935
    [194] Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides.Nature Mater.2010,9:965-974
    [195] Ohno H. A window on the future of spintronics. Nature Mater.2010,9:952-954
    [196] Tang Z K, Tang L M, Wang D, et al. Shallow donor levels enhancedferromagnetism in the In2O3: Co nanocrystal. Europhys. Lett.2012,97:57006p1-p5
    [197] Kim H S, Bi L, Dionne G F, et al. Structure, magnetic and optical properties,and Hall effect of Co-and Fe-doped SnO2lms. Phys. Rev. B,2005,77(21):14436-214442
    [198] Mishra A K, Sinha T P, Bandyopadhyay S, et al. Structural and magneticproperties of nanocrystalline Fe-doped SnO2. Mater. Chem. Phys.,2011,125:2-256
    [199] Hays J, Punnoose A, Baldner R, et al. Relationship between the structural andmagnetic properties of Co-doped SnO2nanoparticles. Phys. Rev. B,2005,72(7):075203-075209
    [200] Wang C, Ge M, Jiang J Z. Magnetic behavior of SnO2nanosheets at roomtemperature. Appl. Phys. Lett.,2011,97(4):042510-042513
    [201] Chi J, Ge H, Wang J Y, et al. Synthesis and electrical and magnetic properties ofMn-doped SnO2nanowires. J. Appl. Phys.,2011,110(8):083907-083911
    [202] Aragón F H, Coaquira J A H, Hidalgo P, et al. Evidences of the evolution fromsolid solution to surface segregation in Ni-doped SnO2nanoparticles usingRaman spectroscopy. J. Raman Spectrosc.,2011,42:1081-1086
    [203] Punnoose A, Hays J, Thurber A, et al. Development of high-temperatureferromagnetism in SnO2and paramagnetism in SnO by Fe doping. Phys. Rev. B,2005,72(5):054402-054415
    [204] Wang H X, Yan Y, Du X B, et al. Origin of ferromagnetism in Ni-doped SnO2:First-principles calculation J. Appl. Phys.,2010,107(10):103923-103926
    [205] Rahman G, Garca V M, Hong S C. Vacancy-induced magnetism in SnO2: Adensity functional study. Phys. Rev. B,2008,78(18):184404-184408
    [206] Kahman G G, Ghosh S, Mandal K. Origin of room temperature d0ferromagnetism and characteristic photoluminescence in pristine SnO2nanowires: A correlation. J. Solid State Chem.,2010,186:278-282
    [207] Meng X Q, Tang L M, Li J B. Room-Temperature Ferromagnetism in Co-DopedIn2O3Nanocrystals. J. Phys. Chem. C,2010,114:17569-17573
    [208] Zhang C W, Wang P J, Li F. First-principles study on surface magnetism inCo-doped (110) SnO2thin lm. Solid State Sciences.2011,13:1608-1611
    [209] Wang X L, Dai Z X, Zeng Z. Search for ferromagnetism in SnO2doped withtransition metals (V, Mn, Fe, and Co). J. Phys.: Condens. Matter,2008,20:045214-045221
    [210] Peng H W, Xiang H, Wei S H, et al. Origin and Enhancement of Hole-InducedFerromagnetism in First-Row d0Semiconductors Phys. Rev. Lett.,2009,102(1),017201-017203
    [211] Zhou W, Tang X M, Xing P F, et al. Possible room-temperature ferromagnetismin SnO2nanocrystalline powders with nonmagnetic K doping. Phy. Lett. A,2012,376:203-206
    [212] Dalpian G M, Wei S H, Gong X G, et al. Phenomenological band structuremodel of magnetic coupling in semiconductors. Solid State Commun,2006,138:353-358
    [213] Zhang C W, Yan S S. Origin of ferromagnetism of Co-doped SnO2fromrst-principles calculations J. Appl. Phys.,2009,106(6):063709-063714
    [214] Dalpian G M, Wei S H. Carrier-mediated stabilization of ferromagnetism insemiconductors: holes and electrons. Phys. Stat. Sol.,2006,9:2170-2187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700