川东南地区上震旦统灯影组热液白云岩特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以川东南地区上震旦统灯影组白云岩为研究对象,在对区域沉积构造演化、研究区灯影组白云岩岩性特征、沉积特征的解读后,从岩石学特征、地球化学特征角度综合论证了灯影组热液蚀变白云岩的存在。同时,总结了热液白云岩储层岩石学特征及物性特征、地球化学特征,分析了热液白云岩主要成岩作用特征及成岩演化序列,并提出热液白云岩储层形成与演化过程。取得了以下的主要研究成果:
     川东南地区自晋宁运动基底形成后,其沉积构造演化可以分为五个阶段:①南华大冰期阶段(Nh);②被动陆缘-隆拗演化阶段(Z-S);③峨眉地裂运动阶段(D-P);④前陆隆起演化阶段(T-K1);⑤褶皱隆升阶段(K2-Q)。期间,发生过2期重要的构造-热液事件——“兴凯地裂运动”及“峨眉地裂运动”,为深部流体上涌提供了条件。
     晚震旦世灯影期,上扬子区为陆表海局限台地沉积,川东南地区沉积了一套潮坪-泻湖相白云岩。灯影组白云岩以原生白云岩为主,同生期-准同生期白云石化为次。川东南地区震旦系灯影组岩石类型主要为微-粗晶晶粒白云岩和藻白云岩。藻白云岩是灯影组特征岩石类型,包括藻粘结白云岩、藻纹层白云岩、藻叠层白云岩、凝块石白云岩等,偶见核形石白云岩。由于成岩改造,发育雪花状白云岩、硅化白云岩及热液白云岩。
     灯影组白云岩在后期成岩演化过程中,曾遭受热液蚀变,发育热液白云岩储层相。热液白云岩岩石学特征明显:广泛发育具热液指示意义的马鞍状白云石;由马鞍状白云石充填的各种热液特征组构,包括斑马状白云岩、由马鞍状白云石镶边的近水平片状晶洞、由马鞍状白云石胶结的角砾状构造等;临近热液蚀变的灯影组白云岩围岩常出现热褪色现象。由于热液蚀变,热液白云岩常呈斑杂色,遭受风化后显黄褐色;研究区还发育与热液白云岩具有成因联系的MVT型铅锌矿及重晶石-萤石矿等热液矿床。
     林1井热液白云岩发育段溶蚀孔洞相对发育,具有显著的测井响应。特别是不整合面之下约46m,热液活动强烈,显示出不整合面作为热液优势通道的有利条件。热液蚀变致使灯影组白云岩储集性得到改善。基质白云岩孔隙度、渗透率数据表明热液白云岩段孔渗性优于未受热液影响的层段。而且这些孔隙度、渗透率并未包含溶蚀孔洞及马鞍状白云石晶洞,而后者才是热液白云岩储集空间的主体。热液白云岩中广泛存在的沥青表明热液白云岩曾是油气良好的储集空间。由热液蚀变形成的油气储集空间包括溶蚀孔洞、晶洞、热液重结晶作用形成的晶间孔等。
     研究区灯影组白云岩中脉体或晶洞充填物与围岩的碳δ13C、氧δ18O、87Sr/86Sr同位素值相比,具有碳δ13C值偏小、氧δ18O值偏小、87Sr/86Sr值偏大的特征。碳、氧、同位素值特征表明灯影组白云岩已遭受成岩蚀变,且这种成岩流体为外源富流体。87Sr/86Sr比值特征表明这种成岩流体可能是沿断层上涌的热液,来自于下部南华系莲沱组或晋宁运动形成的风化壳(基底)。这种解释得到了包裹体数据和岩石学特征的支持。
     岩芯、岩石薄片观察和地球化学分析表明,研究区热液白云岩储层的形成主要出现以下成岩作用:白云石化作用、压实压溶作用、硅化作用、胶结作用、溶蚀作用(表生溶蚀及埋藏溶蚀)、重结晶作用、热液蚀变、构造破裂等。对储层孔隙发育产生重要影响的成岩作用是各种溶蚀作用、热液蚀变作用、重结晶作用和破裂作用。而且由于早期形成的溶蚀孔洞缝,在后期成岩阶段几乎被完全充填,最有意义的溶蚀作用应该为热液溶蚀及更晚期的深埋溶蚀作用。热液蚀变的关键时刻可能为早二叠世,是峨眉地裂运动在川东南地区的响应。
This paper focuses on hydrothermal dolomite of Upper Sinian Dengying Formation in southeast Sichuan basin. After a detailed observation of regional tectonic evolution, lithology and sedimentary features of Dengying dolomite in study area, His conclusion from petrological and geochemical aspects are that some hydrothermal alteration occurred in Dengying dolomite. At the same time, this paper sums up reservoir petrography and geochemical charecteristics of hydrothermal dolomite, and points out main diagenetic features in reservoir formation. Finally, reservoir formation and evolution of hydrothermal dolomite is presented. Through these processes, the paper finally gets some significant results below:
     After formation of the basement due to Jingning Movement, the sedimentary and tectonic evolution of study area can be divided into five stages:①Nanhua glacial period(Nh);②passive continental margin and uplift/depression formation stage(Z-S);③Emei Taphrogeny period(D-P);④foreland evolution stage(T-K1);⑤folding and uplifting stage(K2-Q). During this evolution history, two important structurally controlled hydrothermal events took place—Xingkai Taphrogeny and Emei Taphtogeny, which formed upward conduits for deep hydrothermal fluids.
     The Upper Yangtze region was a restricted platform during Late Sinian. The study area is comprised dolomite deposited in tidal flat and lagoon environment. This dolomite is interpreted to be mostly primary in origin, little of it could be produced by dolomitization. Crystalline dolomite from fine to coarse crystalline and algal dolomite are the main types of the rocks. Algal dolomite is critical for Dengying Formation. It’s including algal bindstone, algal stratifera, algal stromatolite, algal thrombolite and seldom algal oncolite. In addition, snowflake dolomite, silicified dolomite and hydrothermal dolomite formed during diagenesis are also important.
     Hydrothermal dolomite reservoir was generated when Dengying dolomite was subjected to hydrothermal alteration during late diagenesis. Hydrothermal alteration may produce a range of dissolution and precipitation features, and may have variable impact on Dengying reservoir characteristics. For instance, it is common to see saddle dolomite, a critical indicator of hydrothermal setting, and many distinct rock fabrics including zebra textured dolomite, subhorizontal sheet vugs lined or infilled by saddle dolomite dilational, floating clast dolomite breccia cemented by massive saddle dolomite; Thermal discoloration occours on wall rock of hydrothermal dolomite. Because of hydrothermal alteration, Dengying dolomite appears to be mottled; There are also MVT deposits and barite-fluorite ores, which are suggested to have genetic link to hydrothermal dolomite.
     Hydrothermal dolomite in Lin One well has abundant solution pores, giving good log response. Especially, within 46m from the disconformity between Cambrian and Sinian, where hydrothermal fluid were particularly active. This may indicate that the unconformity was a advantage fluid passage. The fact that hydrothermal alteration enhances porosity of Dengying dolomite is demonstrated by porosity and permeability experimental data of Lin One well. These data show matrix porosity, don’t include vug porosity which is the main contributor to reservoir. Abundant bitumen is found in pores of hydrothermal dolomite implicating that hydrothermal dolomite once was good hydrocarbon reservoir. Hydrothermal dolomite porosity includes solution pores, vugs and intercrystalline pores.
     In comparison to wall rock(original Dengying dolomite), dolomites in veins or/and vugs show lowerδ13C andδ18O values, higher 87Sr/86Sr values.δ13C,δ18O and 87Sr/86Sr values imply that Dengying dolomite was subjected to diagenetic alteration, and that the diagenetic fluid was from outside source. 87Sr/86Sr values indicate this diagenetic fluid may be hydrothermal fluid flowing up via active fault, from Liantuo Formation of Nanhua System below or basement. This conclusion is supported by homogenization fluid-inclusion temperature data and petrographical characteristics.
     By core and thin section examination and geochemical analysis, it’s concluded that the following main diagenetic events in hydrothermal dolomite reservoir of study area are: dolomitization, compaction and pressure solution, silicification, cementation, dissolution, recrystallization, hydrothermal alteration, tectonic fracturing and so on. Among them, dissolution, hydrothermal alteration, recrystallization and tectonic fracturing have important control on reservoir porosity. Because early formed porosity is infilled during late diagenesis, the most significant dissolution is supposed to be the hydrothermal dissolution and deep-burial dissolution. Hydrothermal alteration ocourred during the Early Permian, and could be reflection of Emei Taphrogeny in southeast Sichuan basin.
引文
[1] White, D. E., Thermal waters of volcanic origin[J]. geological society of America bulletin, 1957, v. 68, p. 1637-1658.
    [2] Davies, G. R., Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11):1641–1690.
    [3]刘树根,马永生,黄文明,等.四川盆地上震旦统灯影组储集层致密化过程研究[J].天然气地球科学,2007,18(4):485–496.
    [4]芮宗瑶,叶锦华,张立生.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质,2004,31 (4) : 339-346.
    [5]张长青,余金杰,毛景文.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,2009,28(2):195-210
    [6] Machel, H.G. and J. Lonnee. Hydrothermal dolomite—A product of poor definition and imagination[J]. Sedimentary Geology, 2002, v. 152, p. 163–171.
    [7] Gregg, J. M.. On the formation and occurrence of saddle dolomite—Discussion[J]. Journal of Sedimentary Petrology, 1983,v. 53,p. 1025–1033.
    [8] Barber, D. J., R. J. Reeder, and D. J. Smith. A TEM microstructural study of dolomite with curved faces (saddle dolomite) [J].Contributions to Mineralogy and Petrology, 1985, v. 91, p. 82–92.
    [9] Kretz, R.. Carousel model for the crystallization of saddle dolomite[J].Journal of Sedimentary Petrology, 1992,v. 62, no. 2, p. 190–195.
    [10] Jeff Lonnee, Hans G.Machel. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada[J]. AAPG Bulletin, 2006, 90(11):1739–1761.
    [11] Machel, H.G., 1987. Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology 15, 936– 940.
    [12] Searl, A..Saddle dolomite: A new view of its nature and origin[J]. Mineralogical Magazine, 1989,v. 53, p. 547–555.
    [13] Davies, G. R., T. Boreen, and L. Smith, 2005, Hydrothermal dolomite and leached limestone reservoirs: Representative core fabrics and facies (abs.): AAPG Annual Meeting Program,v. 14, p. A32, and extended abstract.
    [14] M. Boni. Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan ?uid ?ow event[J].sedimentary geology, 131(2000)181-200.
    [15] Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in north Gaspe-Matapedia(Quebec) : Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology, 2004, 52 (3) : 256 - 269.
    [16]康义昌.川中古隆起的形成、发展及其油气远景[J].石油实验地质,1988,10(1) : 12-23.
    [17]罗启后.乐山-龙女寺古隆起震旦寒武奥陶系与上三叠统含气性评价研究[R].内部资料,1990.
    [18]梅冥相,周鹏,张海,等.上扬子区震旦系层序地层格架及其形成的古地理背景[J].古地理学报,2006.8(2):219-231.
    [19]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002.
    [20]张声瑜,唐创基.四川盆地灯影组区域地质条件及含气远景[J].天然气工业,1986,6(1):3-9.
    [21]侯方浩,方少仙,王兴志,等.四川盆地灯影组天然气藏储渗体再认识.石油学报[J],1999,20(6):16-21.
    [22]王兴志,穆曙光,方少仙,等.四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J].沉积学报,2000,18(4):549-554.
    [23]罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.
    [24]徐世琦,李天生.四川盆地加里东隆起震旦系古岩溶型储层的分布特征[J].天然气勘探与开发,1993,22(1):14-19.
    [25]宋文海,等.乐山-龙女寺古隆起大中型气田成藏条件研究[R],四川石油管理局.1995.
    [26]罗志立,刘顺,徐世琦.四川盆地震旦系含气层中有利勘探区块的选择[J].石油学报,1998 ,19 (4):1-7
    [27]徐世琦.加里东古隆起震旦系—寒武系成藏条件[J].天然气工业,1999,19 (4):7-10
    [28]李国辉,李翔,杨西南.四川盆地加里东古隆起震旦系气藏成藏控制因素[J].石油与天然气地质,2000 ,21 (1):80-82
    [29]王兴志,侯方浩,刘仲宣,等.资阳地区灯影组层状白云岩储集层研究[J].石油勘探与开发,1997,24(2):37-40.
    [30]王兴志,穆曙光,方少仙,等.四川资阳地区灯影组滩相沉积及储集性研究.沉积学报[J],1999,17(4):578-583.
    [31]黄文明.四川盆地震旦系储层特征及其形成机制研究[D].成都理工大学, 2008.
    [32]敖明冲,吕延智,胡南方,等.川东南地区丁山1井震旦系灯影组岩性特征及与邻区的对比[J].南方油气.2006, 19(2-3):5-9.
    [33]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究[J].沉积学报,1992,10(2):69-78.
    [34]王士峰,向芳.资阳地区震旦系灯影组白云岩成因研究[J].岩相古地理,1999,19(3):21–29.
    [35]袁海锋.四川盆地震旦系-下古生界油气成藏机理[D].成都理工大学,2008.
    [36]杨暹和陈远德.西南地区地层总结《震旦系》[M].地质部成都地质矿产研究所,1981.
    [37]梅冥相,聂瑞贞,张海.上扬子区震旦系层序地层划分[J].现代地质,2006,20(1):1-12.
    [38]罗志立.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响[J].四川省地质学报,1981,2(1):1-22.
    [39]罗志立,刘树根,刘顺,等.峨眉地幔柱对扬子板块和塔里木板块的离散作用及其找矿意义[J].地球学报,2004,25(5),515-522.
    [40]刘树根,黄文明,陈翠华.四川盆地震旦系-古生界热液作用及其成藏成矿效应初探[J].矿物岩石,2008,28(3): 41–50.
    [41]彭军,田景春,伊海生,等.扬子板块东南大陆边缘晚前寒武纪热水沉积作用[J].沉积学报,2000,18(1):107-113.
    [42]周永章,刘建明,陈多福.华南古海洋热水沉积作用研究概述及若干认识[J].矿物岩石地球化学通报,2000,19(2):114-118.
    [43]罗志立,赵锡奎,刘树根,等.“中国地裂运动观”的创建和发展[J].石油实验地质,2001,23(2):232-241.
    [44]张长青,毛景文,吴锁平,等.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质,2005,24(3):336-348.
    [45]沈苏,金明霞.西昌—滇中地区主要矿产成矿规律及找矿方向[M].重庆:重庆出版社,1988.
    [46]林方成.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J].地质学报,2005,79(4):540-558.
    [47]骆耀南,傅德明,何虹.峨眉山地幔柱活动的成矿作用及其成矿系列--峨眉山地幔柱与资源环境效应学术研讨会文集[C].成都,2003, 99-100.
    [48]黄智龙,陈进,刘从强,等.峨眉山玄武岩与铅锌成矿关系初探—以云南会泽铅锌矿为例[J].矿物学报,2001, 21(4):681-688.
    [49]王士峰,向芳.资阳地区震旦系灯影组白云岩成因研究[J].岩相古地理,1999,19(3):21-29.
    [50]陈明,许效松,万方,等.上扬子台地晚震旦世灯影组中葡萄状-雪花状白云岩的成因意义[J].矿物岩石,2002,22(4):33-37.
    [51]王勇.“白云岩问题”与“前寒武纪之谜”研究进展[J].地球科学进展,2006,21(8):857-862.
    [52]陈洪德,庞林,倪新锋等.中上扬子地区海相油气勘探前景[J].石油实验地质,2007,29(1):13-18.
    [53]方少仙,侯方浩,董兆雄.上震旦统灯影组中非叠层石生态系兰细菌白云岩[J].沉积学报,2003,21(1):96-105.
    [54] Sibley, D.F. and Gregg, J.M. Classification of dolomite rock texture [J]. Journal of sedimentary Petrology, 1987, 57(6):967-975.
    [55] R. Swennen, V. Vandeginste, R. Ellam. Genesis of zebra dolomite(Cathedral Formation:Canadian Cordillera Fold and Thrust Belt, British Columbia) [J]. Journal of Geochemical Exploration, 78-79(2003):571-577.
    [56] S.F. Diehl, A.H. Hofstra, A.E. Koenig, et al. Brine migration and formation of hydrothermal zebra dolomite, sedex, and Pb-Zn deposits along the Paleozoic carbonate platform of the Great Basin, Nevada and Utah [J]. Geological Society of America, 2007,39(6):537.
    [57]金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响.地质学报[J],.2006 ,80(2):245-253.
    [58]罗素娟,黄思静,孙治雷,等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J]. 2005, 32(6):568-575.
    [59] Luczaj, J.A., Evidence against the Dorag (mixing-zone)model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis [J]. AAPG Bulletin, 2006, v. 90, p. 1719–1738.
    [60] Davies, G.R. Hydrothermal dolomite (HTD) reservoir facies: global perspectives on tectonic-structural and temporal linkage between MVT and Sedex Pb–Zn ore bodies, and subsurface HTD reservoir facies. Canadian Society of Petroleum Geologists Short Course Notes, 1997, 167 pp.
    [61]川东南地质调查大队. 1/20万区域地质矿产调查报告(桐梓幅)[R]. 1973.
    [62] Wilkinson, J.J. and Earls, G. A high-temperature hydrothermal origin for black dolomite matrix breccias in the Irish Zn-Pb orefield[J]. Mineralgical Magazine, December 2000, Vol. 64(6), pp. 1017-1036.
    [63]潘忠华,范德廉.川东南脉状萤石-重晶石矿床流体包裹体研究[J].矿物岩石,1994,14(4):9-16.
    [64]潘忠华,范德廉.川东南脉状萤石-重晶石矿床同位素地球化学[J].岩石学报,1996,12(1):127-136.
    [65]李国蓉,刘树根,宋来明,等.西昌盆地东吴期深部热液作用及其对志留系碳酸盐岩储层的改造[J].矿物岩石,2009,29(4):60-65.
    [66]王国芝,刘树根.海相碳酸盐岩区油气保存条件的古流体地球化学评价[J].成都理工大学学报,2009,36(6):631-644.
    [67] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications[J]. Precambrian Res. 1995, 73:27-49.
    [68]王自强,尹崇玉,高林志,等.湖北宜昌峡东地区震旦系层型剖面化学地层特征及其国际对比[J].地质论评,2002,48(4):408-415.
    [69] Shen Y. C-isotopic variations and palaeoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China[J]. Precambrian Research, 2002, 113(1~2):121~133.
    [70] Derry L A, Kaufaman A J and Jacobsen S B. Sedimentary cycling and environmental chang in the Late Proeterozoic:Evidence from stable and radiogenic isotopics[J]. Geochinmica Cosmochimica Acta, 1992, 56(3):1317-1329.
    [71]黄思静.上扬子台地区晚古生代海相碳酸盐岩的碳、同位素研究[J].地质学报,1997,71(1):45-53.
    [72]张同钢,储雪蕾,张启锐,等.扬子地台灯影组碳酸盐岩中的硫和碳同位素记录[J].岩石学报。2004,20(3):717~724.
    [73]王伟,松本良,王海峰,等.长江三峡地区上震旦统稳定同位素异常及地层意义[J].微体古生物学报,2002,19(4):382-388.
    [74]彭花明,朱志军,姜勇彪,等.浙江江山灯影组碳、氧同位素特征[J].岩石矿物学杂志,2006,25(6):499-504.
    [75]杨杰东,张俊明,陶仙聪,等.末元古系-寒武系底Sr、C同位素对比[J].高校地质学报,2000,6(4):532-545.
    [76]黄志诚,陈智娜,杨守业,等.中国南方灯影峡期海洋碳酸盐岩原始δ13C和δ18O组成及海水温度[J].古地理学报,1999,1(3):1-7.
    [77] Faure G. Principles of Isotope Geology[M]. New York: John Wiley Sons, 1977: 97 - 146.
    [78] Reinhardt E G, Blenkinsop J, Patrersonrt. Assessment of a Sr isotope (87Sr/86Sr) vital effect in marine taxa from Lee Stocking Island, Bahamas[J]. Geo Marine Letters, 1998, 18 (3) :241 - 246.
    [79] Veizer J, Alad, Azmy K, et al. 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater [J]. Chemical Geology, 1991, 161:59-88.
    [80] Halverson G P, Francis ?. Dudás, Maloof A C., et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(2007):103-129.
    [81] Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology 161(1999):37-57.
    [82]张自超.我国某些元古宙及早寒武世碳酸盐岩石的同位素组成[J].地质论评,1995,41(4):349-354.
    [83]胡作维,黄思静,王春梅,等.同位素方法在油气储层成岩作用研究中的应用[J].地质找矿论丛,2009,24(2):160-165.
    [84]陈先沛,高计元,陈多福,等.热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992,10(3):124-132.
    [85]杨海生,周永章,杨志军.湖南二叠系层状硅质岩的地球化学特征[J].矿产与地质,2003,17(5):622-626
    [86]徐国盛,袁海锋,马永生,等.川中-川东南地区震旦系-下古生界沥青来源及成烃演化[J].地质学报,2007,81(8):1143-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700