TiSi纳米线/硅化钛薄膜一体结构的制备、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅化钛具有低电阻率、较高的热稳定性以及化学稳定性等诸多优异的性能,且由于其可以与硅工艺兼容而具有重要的研究价值。自1991年碳纳米管发现以来,一维纳米材料的研究引起了人们广泛的关注,硅化钛纳米线的制备、性能及应用研究也逐渐开展起来。本文使用SiH4和TiCl4为前驱体,N2为稀释气体和载气,通过常压化学气相沉积在玻璃基板及硅基板上制备了硅化钛薄膜及硅化钛纳米线,并将这种硅化钛纳米线/硅化钛薄膜一体结构用作场发射的阴极以及电介质薄膜的底电极进行研究,探索了其形成过程、场发射性能以及作为电介质薄膜电极的应用前景。具体内容如下:
     1.研究了各种沉积条件对硅化钛薄膜形成及其导电性的影响。结果表明,低TiCl4下形成的是Ti5Si3薄膜,而高SiH4/TiCl4下形成的是面心正交的TiSi2薄膜,所形成的晶相种类均不随其他沉积条件的变化而变化。当SiH4/TiCl4处于中间位置时,高温下形成的是Ti5Si3薄膜,低温下形成的是TiSi2薄膜。热力学自由能的变化在不同薄膜的形成中起了关键作用。
     2.研究了Ti5Si3薄膜、TiSi2薄膜及两种相的混合相薄膜上TiSi (?)内米线、纳米钉及火箭状纳米线的形成及形成机理。结果表明,TiSi (?)目的各向异性生长造成了纳米线的形成。纳米线的形态、直径及密度受沉积温度,源气体浓度等的影响。纳米线的形成还极大的受薄膜种类、结晶程度等的影响,结晶程度越高,纳米线越容易形核。TiSi2薄膜上形成的纳米线的直径小于Ti5Si3上的。纳米线能否形成极大的取决于沉积条件,而不依赖于基板,纳米线相对基板的准直性与其下薄膜的平整度等相关性较大。
     3.研究了各种不同形貌的硅化钛纳米线/硅化钛薄膜一体结构的场发射性能,并研究了薄膜成分、纳米线直径、纳米线分布、纳米线形态以及电极间距等对硅化钛纳米线/硅化钛薄膜场发射性能的影响。结果表明,TiSi火箭状纳米线/TiSi2薄膜场发射开关电场可低至2.33V/μm(电流密度超过10μA/cm2时的电场),最大电流密度可达917.43μA/cm2(电场强度为4.18V/μm)。纳米线直径越小,则其尖端电场越强;与火箭状纳米线及普通纳米线相比,钉状纳米线的尖端场强更强;束状分布的纳米线具有更高的尖端场强及更大的场发射体密度。纳米线尖端的场强越强,尖端数量越多,则其开关电场越低,场发射电流密度越大。TiSi纳米线/TiSi2薄膜具有比TiSi纳米线/Ti5Si3薄膜更低的开关电场及更大的场发射电流密度。
     4.使用溶胶-凝胶及射频-磁控溅射法,在Ti5Si3薄膜、TiSi纳米线/Ti5Si3薄膜、TiSi纳米线/Ti5Si3+TiSi2薄膜及ITO上制备了BT、BST及PST等电介质薄膜,研究了硅化钛薄膜及纳米线上电介质薄膜的介电性能。结果表明,与ITO基板相比,Ti5Si3薄膜、TiSi (?)内米线/Ti5Si3薄膜、TiSi纳米线/Ti5Si3+TiSi2薄膜上形成的电介质薄膜的结晶性更好,电容更大,损耗更低,且电容和损耗对频率的依赖性更低;与Ti5Si3薄膜相比,纳米线上形成的电介质薄膜的电容更大,损耗更低;与TiSi纳米线/Ti5Si3薄膜相比,TiSi纳米线/Ti5Si3+TiSi2薄膜上形成的电介质薄膜的电容更大,损耗更低。非氧化物硅化钛相的存在使得硅化钛薄膜上制备的电容相较ITO具有更低的频率依赖性。纳米线极大的比表面积及其周围局域增强电场的存在引起了硅化钛纳米线/硅化钛薄膜及上制备的电介质薄膜更大的电容,更低的损耗以及电容和损耗对频率的更低依赖性。
Titanium silicide has received great interests due to its low resistivity, high thermal and chemical stability as well as high compatibility with Si technology. One-dimentional nanostructures have been given great concerns since CNT was reported in 1991. Titanium silicide nanowires thus receive great developments in its preparation, properties and applications. In this paper, titanium silicide thin films and nanowires are prepared on glass and Si substrates with APCVD method by using SiH4 and TiCl4 as precursors of Si and Ti, respectively, and N2 as diluted gas and carrier gas. The field emission properties of the titanium silicide thin films and nanowires are investigated. The titanium silicide thin films and nanowires as-prepared are also used as electrode substrates for preparing dielectric thin films. The formation and the field emission property of the thin films and the nanowires as well as the applications for it being used as electrodes in dielectric thin films are investitated. The paper mainly focuses on the following aspects.
     1. Preparation and the electrical properties of the titanium silicide thin films at different deposition conditions. It shows that the Ti5Si3 crystalline phases with hexagonal structure are formed at lower SiH4/TiCl4 while TiSi2 crystalline phases with face-centered orthorhombic structure are formed at higher SiH4/TiCl4. Species of the phases as-prepared are independence on the others deposition conditions in these cases. However, species of the phases in the thin films can be adjusted by the others deposition conditions, such as the deposition temperature, with a moderate SiH4/TiCl4. A higher temperature favors the formation of the Ti5Si3 phases while a lower temperature favors the formation of the TiSi2 phases. The thermodynamics is critical in forming the phases.
     2. Formation of the TiSi nanowires with morphologies of nanowires, nanopins and rocket nanowires, on different thin films of the Ti5Si3, the TiSi2, and the mixture of them. It shows that the TiSi nanowires are formed due to its anisotropic growth of the TiSi crystal planes. The nucleation and growth of the nanowires depend not only on the deposition temperature, the concentration of the source gases, but also on the properties of the thin films underneath the nanowires. The higher the contents of the crystalline phase in the thin films, the easier the nucleation of the nanowires is. The formation of the nanowires depends seriously on the deposition conditions in the CVD process other than the substrates. The verticality of the nanowires to the substrate depends mainly on the properties of the thin films underbeneath.
     3. Field emission properties of the titanium silicide thin films and TiSi nanowires. Effects of the thicknesses, morphologies and the distribution of the nanowires as well as the species of the thin films on the field emission properties of the TiSi nanowires/titanium silicide thin films were investigated. It shows that the turn on voltage of the TiSi rocket nanowire with thin films underneath is as low as 2.33V/μm (when the current density larger than 10μA/cm2) and the current density is 917.43μA/cm2 as the electric field reaches 4.18V/μm. The lower the thickness of the nanowires is, the stronger the intensity of the electric field at the tip is. Intensity of the electric field at the tip of the nanopins is larger compared with that of normal nanowires and rocket nanowires. The bunch nanowires have the lower screening effect of the electric field and thus can get both lower turn on voltage and larger current density. The turn on voltage of the nanowires prepared on TiSi2 thin film is lower than that of Ti5Si3 thin film and the current density of the former is also larger than that the latter.
     4. Ti5Si3 thin films, TiSi nanowire/Ti5Si3 thin films and TiSi nanowire/Ti5Si3 and TiSi2 thin films were used as electrodes and substrates for preparing BT, BST and PST thin films by Sol-gel method and RF-sputtering method respectively. The dielectric properties of the BT, BST and PST thin films as-prepared were also investigated. It shows that the dielectric thin films formed on the titanium silicide thin films with nanowires have higher crystallinity, higher capacitance, low dielectric loss and lower dependence of the capacitance and dielectric loss on the frequency than that of ITO. Furthermore, the capacitance of the dielectric thin films formed on the titanium silicide thin films with nanowires is larger than that on titanium silicide thin films without nanowires. The capacitance of the dielectric thin films formed on the TiSi nanowire/Ti5Si3 and TiSi2 thin films is larger than that of Ti5Si3 thin films. Nonoxide titanium silicide gives the dielectric thin films prepared on the titanium silicide thin films the lower dependence of the dielectric properties on the frequency than that of ITO while the large surface area of the nanowires and large electric field around the nanowires give the higher capacitance and lower dependence of the dielectric properties on the frequency of the titanium silicide thin films with nanowires than the titanium silicide thin films without nanowires.
引文
[1]. 张立德,牟季美,“纳米材料与纳米结构”科学出版社,(2001)
    [2]. Clemens Burda, Xiaobo Chen, Radha Narayanan, and Mostafa A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev.,2005,105:1025-1102.
    [3]. Qilong Liao, Rina Tannenbaum, and Zhong Lin Wang. Synthesis of FeNi3 Alloyed Nanoparticles by Hydrothermal Reduction. J. Phys. Chem. B,2006,110:14262-14265.
    [4]. A. P. Alivisatos.Semiconductor clusters, nanocrystals, and quantum dots. Science,1996, 271 (5251):933-937.
    [5]. Jiangtao Hu, Min Ouyang, Peidong Yang & Charles M. Lieber. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature,1999,399:48-51.
    [6]. N. Wang a, Y. Cai, R.Q. Zhang. Growth of nanowires. Materials Science and Engineering R,2008,60:1-51.
    [7]. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, S.T. Lee. One-dimensional growth mechanism of crystalline silicon nanowires. Journal of Crystal Growth, 1999,197:136-140.
    [8]. Xiangfeng Duan and Charles M. Lieber. General Synthesis of Compound Semiconductor Nanowires. Adv. Mater.,2000,12(4):298-302.
    [9]. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chemical Physics Letters,2002,358:83-86.
    [10]. Pu Xian Gao, Chang Shi Lao, Yong Ding, and Zhong Lin Wang. Metal/Semiconductor Core/Shell Nanodisks and Nanotubes. Adv. Funct. Mater.,2006,16,53-62.
    [11]. Yan Li and Jie Liu, Yongqian Wang and Zhong Lin Wang. Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes. Chem. Mater.,2001,13,1008-1014.
    [12]. Xiaogang Wen, Weixin Zhang, and Shihe Yang, Zu Rong Dai and Zhong Lin Wang. Solution Phase Synthesis of Cu(OH)2 Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors. Nano Lett.,2002,2(12):1397-1401.
    [13]. Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang. Nanobelts of Semiconducting Oxides. Science,2001,291:1947-1949.
    [14]. Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang& Charles M. Lieber. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature.2002.420(7):57-61.
    [15]. Changfeng Wu, Weiping Qin, Guanshi Qin, Dan Zhao, Jisen Zhang, Wu Xu, Haiyan Lin. Spontaneous growth and luminescence of Si/SiOx core-shell nanowires. Chemical Physics Letters,2003,378:368-373.
    [16]. Shih-Chin Lin, San-Yuan Chen, Yun-Tien Chen, Syh-Yuh Cheng. Electrochemical fabrication and magnetic properties of highly ordered silver-nickel core-shell nanowires. Journal of Alloys and Compounds,2008,449:232-236.
    [17]. Shufeng Si, Chunhui Li, Xun Wang, Qing Peng, Yadong Li. Fe2O3/ZnO core-shell nanorods for gas sensors. Sensors and Actuators B,2006,119:52-56.
    [18].李新勇,张桂兰,汤国庆,陈文驹,“纳米晶体材料研究进展”,化学进展,1996.8:231-239.
    [19]. Iijima,S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [20]. Yanhe Xiao, Liang Li, Yan Li,Ming Fang and Lide Zhang. Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology,2005,16: 671-674.
    [21]. Yun-Ju Lee,Thomas L. Sounart, Jun Liu.Erik D. Spoerke, Bonnie B. McKenzie,Julia W. P. Hsu, and James A. Voigt. Tunable Arrays of ZnO Nanorods and Nanoneedles via Seed Layer and Solution Chemistry. Crystal Growth & Design,2008,8(6):2036-2040.
    [22]. Pu Xian Gao, Yong Ding1 Wenjie Mai, William L. Hughes,Changshi Lao, Zhong Lin Wang. Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science,2005,309:1700-1704.
    [23]. Xudong Wang, Christopher J. Summers, and Zhong Lin Wang. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett 2004.,4(3):423-426.
    [24]. Yanhe Xiaol, Liang Li, Yan Li,Ming Fang and Lide Zhang. Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology,2005,16: 671-674.
    [25]. J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B,1997,15(3):554-557.
    [26]. Nong M. Hwang, Woo S. Cheong, Duk Y. Yoon, Doh-Y. Kim. Growth of silicon nanowires by chemical vapor deposition:approach by charged cluster model. Journal of Crystal Growth,2000,218:33-39.
    [27]. T. I. Kamins, R. Stanley Williams, Y. Chen, Y.-L. Chang, and Y. A. Chang. Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Appl. Phys. Lett., 2000,76(5):562-564.
    [28]. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee. Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett.,1998,72(15): 1835-1837.
    [29]. D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Zanotti,E. Comini, G. Sberveglieri. Nucleation and growth of SnO2 nanowires. Journal of Crystal Growth, 2005,275:2083-2087.
    [30]. Y.X. Chen, L.J. Campbell, W.L. Zhou. Self-catalytic branch growth of SnO2 nanowire junctions. Journal of Crystal Growth,2004,270:505-510.
    [31]. Ming-Ru Yang, Sheng-Yuan Chua, Ren-Chuan Chang. Synthesis and study of the SnO2 nanowires growth. Sensors and Actuators B.2007,122:269-273.
    [32]. Huaqiang Cao, Liduo Wang, Yong Qiu and Lei Zhang. Synthesis and Ⅰ-Ⅴ properties of aligned copper nanowires. Nanotechnology,2006,17:1736-1739.
    [33]. E. J. MENKE, M. A. THOMPSON, C. XIANG, L. C. YANG AND R. M. PENNER. Lithographically patterned nanowire electrodeposition. Nature materials,2006, 5:914-919.
    [34]. Younan Xia,Peidong Yang,Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim and Haoquan Yan. One-Dimensional Nanostructrues: Synthesi,Characterization, and Applications. Adv.Mater.,2003,15(5):353-389.
    [35]. Alfredo M. Morales and Charles M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.Science,1998,279(9):208-211.
    [36]. Brent A. Wacaser, Kimberly A. Dick, Jonas Johansson,Magnus T. Borgstrom, Knut Deppert, and Lars Samuelson. Preferential Interface Nucleation:An Expansion of the VLS Growth Mechanism for Nanowires. Adv. Mater.,2009,21,153-165.
    [37]. Zhuo Chen and Chuanbao Cao. Effect of size in nanowires grown by the vapor-liquid-solid mechanism. Appl. Phys. Lett.,2006,88,143118.
    [38]. Maher Soueidan, Gabriel Ferro, Olivier Kim-Hak, Francois Cauwet, and Bilal Nsouli. Vapor-Liquid-Solid Growth of 3C-SiC on r-SiC Substrates.1.Growth Mechanism. Crystal Growth & Design,2008,8(3):1044-1050.
    [39]. Seu Yi Li1, Chia Ying Lee, Pang Lin1 and Tseung Yuen Tseng. Low temperature synthesized Sn doped indium oxide nanowires. Nanotechnology,2005,16:451-457.
    [40]. Y. Su et al., Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays, Mater. Lett.,(2007), doi:10.1016/j.matlet.2007.07.034.
    [41]. R.S.Wagner and W.C.Ellis.Vapor-liquid-solid mechanism of single crystal growth. Appl.Phys.,1964,4(5):89-90.
    [42]. Niravun Pavenayotin, M. D. Stewart, Jr., and James M. Valles, Jr, Aijun Yin and J. M. Xu. Spontaneous formation of ordered nanocrystal arrays in films evaporated onto nanopore array substrates.Applied Physics Letters,2005,87:193111.
    [43]. Hui Xua, Dong-Huan Qin, Zhi Yang, Hu-Lin Li. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Materials Chemistry and Physics,2003,80:524-528.
    [44]. Rui-Qin Zhang,Yeshayahu Lifshitz and Shuit-Tong Lee.Oxide-Assisted Growth of Semiconducting Nanowires.Adv.Mater.,2003,15(7-8):635-640.
    [45]. N. Wang, K.K. Fung, S. Wang, S. Yang. Oxide-assisted nucleation and growth of copper sulphide nanowire arrays. Journal of Crystal Growth,2001,233:226-232.
    [46]. Yung-Jung Hsu and Shih-Yuan Lu. Vapor-Solid Growth of Sn Nanowires:Growth Mechanism and Superconductivity. J. Phys. Chem. B,2005,109,4398-4403.
    [47]. Xiangfeng Duan, Chunming Niu, Vijendra Sahi, Jian Chen,J. Wallace Parce, Stephen Empedocle2 & Jay L. Goldman. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature,2003,425:274-278.
    [48]. Jie Xiang, Wei Lu, Yongjie Hu, Yue Wu, Hao Yan & Charles M. Lieber. Ge/Si nanowire heterostructures as highperformance field-effect transistors. Nature,2006,441:489-493.
    [49]. Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber. High Performance Silicon Nanowire Field Effect Transistors. Nano Lett.,2003,3(2):149-152.
    [50]. Yat Li, Fang Qian, Jie Xiang, and Charles M. Lieber. Nanowire electronic and optoelectronic devices.Materials today.,2006,9(10):18-27.
    [51]. H. M. Kim, T. W. Kang and K. S. Chung, Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods, Adv. Mater.,15 (2003) 567-569.
    [52]. Chun Li, Guojia Fang, Su Sheng, Zhiqiang Chen, Jianbo Wang,Shuang Ma, Xingzhong Zhao. Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays. Physica E,2005,30:169-173.
    [53]. Hongliang Yan, Lan Zhang, Jiaoyan Shen, Zhaojia Chen,Gaoquan Shil, and Binglin Zhang. Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires. Nanotechnology,2006,17:3446-3450.
    [54]. Jose K. Abraham, Hargsoon Yoon, Vijay Varadan,Ritesh Chintakuntla. Nanowire integrated microelectrode arrays for lab-on-a-chip applications. Proc. of SPIE Vol.6528, 652800, (2007)0277-786X/07/$18·doi:10.1117/12.717662.
    [55]. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 2001,292:1897-1899.
    [56]. Xiangfeng Duan, Yu Huang, Ritesh Agarwal & Charles M. Lieber. Single-nanowire electrically driven lasers. Nature,2003,421:241-245.
    [57]. Massood Z. Atashbar, Srikanth Singamaneni. Room temperature gas sensor based on metallic nanowires. Sensors and Actuators B,2005,111-112:13-21.
    [58]. Xing-Jiu Huang, Yang-Kyu Choi. Chemical sensors based on nanostructured materials. Sensors and Actuators B,2007,122:659-671.
    [59]. E.comini, G.faglia, M.ferroni, G.sberveglieri. Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation. Appl. Phys. A,2007,88:45-48.
    [60]. Yi Cui and Charles M. Lieber. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks.Science,2001291:851-853.
    [61]. Xiangfeng Duan, Chunming Niu, Vijendra Sahi, Jian Chen,J. Wallace Parce, Stephen Empedocles & Jay L. Goldman. High-performance thin-film transistors using semiconductor nanowires and nanoribbons.Nature,2003,425:274-278.
    [62]. Xing-Jiu Huang, Yang-Kyu Choi. Chemical sensors based on nanostructured materials. Sensors and Actuators B,2007,122:659-671.
    [63]. Andrea Ponzoni, Elisabetta Comini, and Giorgio Sberveglieri, Jun Zhou, Shao Zhi Deng, and Ning Sheng Xu, Yong Ding and Zhong Lin Wang. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett.. 2006,88:203101.
    [64]. Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2001,293:1289-1292.
    [65]. E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science, 2005,307:1942-1945.
    [66]. C.L. Yeh, H.J. Wang, W.H. Chen, A comparative study on combustion synthesis of Ti-Si compounds. Journal of Alloys and Compounds,2008,450:200-207.
    [67]. Alfeu Saraiva Ramos, Carlos Angelo Nunes, Gilberto Carvalho Coelho. On the peritectoid Ti3Si formation in Ti-Si alloys. Materials Characterization,2006,56:107-111.
    [68]. D. Szwagierczak. Thick film compositions based on titanium silicides for surge resistors. Ceramics International,2004,30:757-764.
    [69]. Daniel Rhinow, Werner Ku hlbrandt. Electron cryo-microscopy of biological specimens on conductive titanium-silicon metal glass films. Ultramicroscopy,2008,108:698-705.
    [70]. K. Nikawa, T. Saiki, S. Inoue, M. Ohtsu. Imaging of current paths and defects in Al and TiSi interconnects on very-large-scale integrated-circuit chips using near-field optical-probe stimulation and resulting resistance change. Appl. Phys. Lett.,1999, 74(7):1048-1050.
    [71]. Jun Du, Piyi Du, Ming Xu, Peng Hao, Yanfei Huang, Gaorong Han, Chenlu Song,Wenjian Weng, Jianxun Wang, and Ge Shen. Nucleation and growth of TiSi2 thin films deposited on glass by atmospheric pressure chemical vapor deposition. J. Appl. Phys.,2007,101:033539.
    [72]. S. Ilango, G. Raghavan, S. Kalavathi, B. K. Panigrahi, and A. K. Tyagi. On the role of oxygen in the catalysis of C54 titanium disilicide by Ti5Si3 phase. J. Appl. Phys.,2005,98:073503.
    [73]. J.A. Kittl, Q.Z. Hong, H. Yang, N. Yu, S.B. Samavedam, M.A. Gribelyuk.Advanced salicides for 0.10μm CMOS:Co salicide processes with low diode leakage and Ti salicide processes with direct formation of low resistivity C54.Thin Solid Films,1998, 332(1-2):404-411.
    [74]. Hung-Ming Chuang, Kong-Beng Thei, Sheng-Fu Tsai, Chun-Tsen Lu, Xin-Da Liao, Kuan-Ming Lee, Hon-Rung Chen, Wen-Chau Liu. A comprehensive study of polysilicon resistors for CMOS ULSI applications. Superlattices and Microstructures,2003, 33(4):193-208.
    [75]. G Badenes, L Deferm. Integration challenges in sub-0.25μm CMOS-based technologies. Microelectronics Journal.2000,31(11-12):861-871.
    [76]. J.A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D.P. Brunco. Silicides and germanides for nano-CMOS applications.Materials Science and Engineering:B, 2008,154-155:144-154.
    [77]. Aliette Mouroux and Shi-Li Zhang. Alternative pathway for the formation of C54 TiSi2. J. Appl. Phys.,1999,86(1):704-706.
    [78]. F. Mammoliti and M. G. Grimaldi.,F. La Via. Electrical resistivity and Hall coefficient of C49, C40, and C54 TiSi, thin-film phases. J. Appl. Phys.,2002,92(6):3147-3151.
    [79]. H Inui, M Moriwaki, N Okamoto, M Yamaguchi. Plastic deformation of single crystals of TiSi2 with the C54 structure Original Research Article. Acta Materialia,2003, 51(5):1409-1420.
    [80]. K.A. Valiev, A.G. Vasiliev, A.L. Vasiliev, N.A. Kiselev, A.A. Orlikovsky, A.E. Sedelnikov. Structure and properties of TiSi2 thin films and TiSi2-Si(111) interfaces. Surface and Coatings Technology,1991,45(1-3):281-291.
    [81]. R. A. Roy,L. A. Clevenger, C. Cabral, Jr., K. L. Saenger, S. Brauer, J. Jordan-Sweet. G. Morales and K. F. Ludwig, Jr. In situ x-ray diffraction analysis of the C49-C54 titanium silicide phasen transformation in narrow lines. Appl. Phys. Lett.,1995,66 (14):1732-1734.
    [82]. G. J. Huang and L. J. Chen. Investigation of the oxidation kinetics of C54-TiSi2 on (001)Si by transmission electron microscopy. J. Appl. Phys.,1992,72 (7):3143-3149.
    [83]. Zhihong Tang, Jason J. Williams, Andrew J. Thom, Mufit Akinc. High temperature oxidation behavior of Ti5Si3-based intermetallics. Intermetallics,2008,16:1118-1124.
    [84]. Naresh N Thadhani, S Namjoshi, P.J Counihan, A Crawford. Shock-assisted synthesis of Ti5Si3 intermetallic compound. Journal of Materials Processing Technology,1999, 85(1-3):74-78.
    [85]. J.M. Cordoba, M.D. Alcala, M.J. Sayagues, M.A. Aviles, C. Real, F.J. Gotor. Nitriding study of titanium silicide intermetallics obtained by mechanical alloying. Intermetallics, 2008,16(8):948-954.
    [86]. Yonglai Liu, Jixin Chen, Yanchun Zhou. Effect of Ti5Si3 on wear properties of Ti3Si(Al)C2. Journal of the European Ceramic Society,2009,29(16):3379-3385.
    [87]. L. Zhang and J. Wu. Ti5Si3 and Ti5Si3-based alloys:alloying behavior, microstructure and mechanical property evaluation. Acta mater.,1998,46(10):3535-3546.
    [88]. Osama A. Fouad, Masaaki Yamazato, Masamitsu Nagano. Investigation of RF power effect on the deposition and properties of PECVD TiSi2 thin film. Applied Surface Science,2002,195:130-136.
    [89]. O.A. Fouad, M. Yamazato, A. Hiroshi, M. Era, M. Nagano. Formation of titanium silicide thin films on Si(100) substrate by RF plasma CVD. Surface and Coatings Technology,2003,169-170:632-635.
    [90]. Shyam P. Murarka. Silicide thin films and their applications in microelectronics. Intermetallics,1995,3:173-186.
    [91]. An Steegen, Karen Maex. Silicide-induced stress in Si:origin and consequences for MOS technologies. Materials Science and Engineering:R:Reports,2002,38, (1):1-53.
    [92]. M. Bhaskaran, S. Sriram, A.S. Holland, P.J. Evans. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.Micron,2009,40(1):99-103.
    [93]. L.W. Cheng, H.M. Lo. S.L. Cheng, L.J. Chen, C.J. Tsai. Effects of stress on the formation and growth of nickel silicides in Ni thin films on (001)Si.Materials Science and Engineering:A,2005,409(1-2):217-222.
    [94]. J.P.Gambino, E.G.Colgan. Silicides and ohmic contancts. Materials chemistry and physics.1998,52:99-146.
    [95]. C. Wen, A. Kato, T. Nonomura, H. Tatsuoka. Phase selection during calcium silicide formation for layered and powder growth J. Alloys Compd.,2011,509(13):4583-4587.
    [96]. Krishna shenai. Novel Refractory Contact and Interconnect Metallizations for High-Voltage and Smart-Power Applications. IEEE Transactions on Electron Devices.,1990,37(10):2207-2220.
    [97]. Henryk M. Przewlocki. Theory and applications of internal photoemission in the MOS system at low electric fields. Solid-State Electronics,2001,45(8):1241-1250.
    [98]. Milan Tapajna, Ladislav Harmatha. Determining the generation lifetime in a MOS capacitor using linear sweep techniques. Solid-State Electronics,2004, 48(12):2339-2342.
    [99]. Viranjay M. Srivastava, K.S. Yadav, G. Singh. Design and performance analysis of double-gate MOSFET over single-gate MOSFET for RF switch. Microelectronics Journal,2011,42(3):527-534.
    [100]. Munawar A. Riyadi, Ismail Saad, Razali Ismail. Investigation of pillar thickness variation effect on oblique rotating implantation (ORI)-based vertical double gate MOSFET. Microelectronics Journal,2010,41(12):827-833.
    [101]. Fumio Horiguchi Advanced memory concepts for DRAM and nonvolatile memories.Solid-State Electronics,2006,50(4):545-550.
    [102]. Myoung Jin Lee, Chang-Ki Baek, Sooyoung Park, In-Young Chung, Young June Park. A comparative study of the DRAM leakage mechanism for planar and recessed channel MOSFETs. Solid-State Electronics,2009,53(9):998-1000.
    [103]. Jun Amano,K.Nauka, M.P.Scott, and J.R.Turner, Rick Tsai. Junction leakage in titanium self-aligned silicide devices.Appl.Phys.Lett.,1986,49(12):737-739.
    [104]. O. V. Hul'ko, R. Boukherroub, and G. P. Lopinski. Chemical and thermal stability of titanium disilicide contacts on silicon. J. Appl. Phys.,2001,90(3):1655-1659.
    [105]. Yan Zhu, Bei Li, and Jianlin Liu. Fabrication and characterization of TiSi2/Si heteronanocrystal metal-oxidesemiconductor Memories. J. Appl. Phys., 2007,101:063702.
    [106]. C.L. Gan, K.L. Pey, W.K. Chim, S.Y. Siah. Effects of high current conduction in sub-micron Ti-silicided films. Solid-State Electronics,2000,44:1837-1845.
    [107]. N.S. Xu, S. Ejaz Huq. Novel cold cathode materials and applications.Materials Science and Engineering:R:Reports,2005,48(2-5):47-189.
    [108]. Seong S. Choi, M. Y. Jung, M. S. Joo, D. W. Kim,M. J. Park,S. B. Kim and H. T. Jeon. Field emission study of titanium silicide array. Surf. Interface Anal.,2004,36:435-438.
    [109]. Moo-Sup Lim, Cheol-Min Park, and Min-Koo Han, Yearn-Ik Choi. Investigation of field emission characteristics for Si-base materials:Titanium silicide, poly-Si, and single crystal Si. J. Vac. Sci. Technol. B.1999,17(2):635-637.
    [110]. M.J.H.Krmper and P.H.Oosting, Crystallization and resistivity of amorphous titanium silicide films deposited by covaporation,J.Appl.Phys.,1982,53(9) 6214-6219.
    [111]. Richard S.Rosler.George M.Engle. Plasma-enhanced CVD of titanium silicide. J.Vac.Sci.Technol.B,1984,2(4):733-737.
    [112]. O.A. Fouad, M. Yamazato, A. Hiroshi, M. Era, M. Nagano. Formation of titanium silicide thin films on Si(100) substrate by RF plasma CVD. Surface and Coatings Technology,2003:169-170:632-635.
    [113]. G.J.Reynolds,C.B.Cooper and P.K.Gaczi.Selective titanium disilicide by low-pressure chemical vapor deposition.J.Appl.Phys.,1988,65(8)3212-3218.
    [114]. B. Chenevier, O. Chaix-Pluchery, I. Matko, R. Madar, F. La Via. Origin of the C49-C54 volume anomaly in TiSi2 thin films:an in-situ XRD and TEM analysis.Microelectronic Engineering,2002,64(1-4):181-187.
    [115]. Yong Chen, Douglas A. A. Ohlberg, Gilberto Medeiros-Ribeiro, Y.Austin Chang, Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001), Applied Physics Letters 2000,76(26):4004-4006.
    [116]. H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa and P. A. Bennett, In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110), Applied Physics Letters,2005,86:233108.
    [117]. Zhian He, P. A. Bennett,Endotaxial Silicide Nanowires, Physical Review Letters,2004, 93:256102.
    [118]. B Z Liu and J Nogami:Growth of parallel rare-earth silicide nanowire arrays on vicinal Si(001). Nanotechnology 2003,14:873-877.
    [119]. C. Bonet,. M. Scott, D. J. Spence, and S. P. Tear, Trends and strain in the structures of two-dimensional rare-earth silicides studied using medium-energy ion scattering, Physical Review B,2005,72:165407.
    [120]. C. Preinesberger, G. Pruskil, S. K. Becker, and M. Dahne, D. V. Vyalikh, S. L. Molodtsov, and C. Laubschat, F. Schiller, Structure and electronic properties of dysprosium-silicide nanowires on vicinal Si(001), Applied Physics Letters. 2005,87:083107.
    [121]. H.W. Yeom, Y. K. Kim, E.Y. Lee, K.-D. Ryang, and P. G. Kang, Robust One-Dimensional Metallic Band Structure of Silicide Nanowires, Physical Review Letters,2005,95:205504.
    [122]. Jun Luo,Lu Zhang and Jing Zhu:Novel synthesis of Pt6Si5 nanowires and nanowire heterojunctions by using polycrystalline Pt nanowires as templates, Adv. Mater., 2003,15(7-8)579-581.
    [123]. S. Y. Chen and L. J. Chen:Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si.Applied Physics Letters,2005,87:253111.
    [124]. Fu-Hsiang Ko, Zen-Hou Yeh. Chun-Chi Chen, and Tzeng-Feng Liu:Self-aligned platinum -silicide nanowires for biomolecule sensing, J. Vac. Sci. Technol. B, 2005,236:3000-3005.
    [125]. Chi-Pui Li, Ning Wang, Sai-Peng Wong, Chun-Sing Lee,and Shuit-Tong Lee:Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation, Adv. Mater., 2002,14(3):218-221.
    [126]. Y. Chen, D. A. A. Ohlberg and R. S. Williams, Epitaxial growth of erbium silicide nanowires on silicon (001), Materials Science and Engineering B,2001,87:222-226.
    [127]. R. Ragana, Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro and R. S. Williams, Ordered arrays of rare-earth silicide nanowires on Si (001). Journal of Crystal Growth, 2003,251:657-661.
    [128]. M. Kuzmin, P. Laukkanen, R. E. Perala, R. L. Vaara and I. J. Vayrynen, Formation of ytterbium silicide nanowires on Si (001), Applied Surface Science,2004,222:394-398.
    [129]. Z. He, J. D. Smith, and P. A. Bennett, Epitaxial DySi2 nanowire formation on stepped Si(111). Applied Physics Letters,2005,86(14):143110.
    [130]. J. H. Lee, Wirelike growth of self-assembled hafnium silicides:oxide mediated epitaxy, Applied Surface Science,2005,239:268-272.
    [131]. P. A. Bennett, B. Ashcroft, Z. He and R. M. Tromp, Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy. J. Vac. Sci. Technol. B,2002,20(6):2500-2504.
    [132]. Schmitt, Andrew L., Zhu Lei, Schmeisser Dieter, Himpsel F. J., Jin Song. Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. Journal of Physical Chemistry B,2006,110(37):18142-18146.
    [133]. Jing Hui Zeng, Yong Lin Yu, Ye Feng Wang, Tian Jun Lou. High-density arrays of low-defect-concentration zinc oxide nanowire grown on transparent conducting oxide glass substrate by chemical vapor deposition. Acta Materialia,2009,57:1813-1820.
    [134]. Song Yipu, Schmitt Andrew L., Jin Song. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Letters,2007,7(4):965-969.
    [135]. Seo Kwanyong, Varadwaj Kumar S. K., Cha Dongkyu, In Juneho, Kim Jiyoung, Park Jeunghee, Kim Bongsoo. Synthesis and electrical properties of single crystalline CrSi2 nanowires. Journal of Physical Chemistry C,2007,111(26):9072-9076.
    [136]. Cheol-Joo Kim, Kibum Kang, Yun Sung Woo, Kyung-Guk Ryu, Heesung Moon, Jae-Myung Kim, Dong-Sik Zang, and Moon-Ho Jo. Spontaneous Chemical Vapor Growth of NiSi Nanowires and Their Metallic Properties. Adv. Mater.,2007.19, 3637-3642.
    [137]. Kang Kibum; Kim Sung-Kyu; Kim Cheol-Joo, Jo Moon-Ho. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Letters,2008,8(2): 431-436.
    [138]. Iriarte G. F. Growth of nickel disilicide nanowires by CVD. Journal of Non-crystalline Solids,2010,356(23-24):1135-1144.
    [139]. Tsai Chun-I,Yeh Ping-Hung, Wang Chiu-Yen, Wu Han-Wei, Chen Uei-Shin, Lu Ming-Yen, Wu Wen-Wei, Chen Lih-Juann, Wang Zhong-Lin. Cobalt Silicide Nanostructures:Synthesis, Electron Transport, and Field Emission Properties. Crystal Growth & Design,2009, (10):4514-4518.
    [140]. Ji Ting, Song Junqiang, Zhou Wei, Cai Qun. Si growth effects on the formation of Er silicide nanostructures. Applied Surface Science,2007,253 (6):3184-3189.
    [141]. Kim J, Anderson WA. Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films,2005,483(1-2):60-65.
    [142]. K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim and J. J. Kim, Anomalous growth and characterization of carbon-coated nickel silicide nanowires, Chemical Physics Letters,2004,384:215-218.
    [143]. Jeremy T. Robinson, Fulvio Ratto, Oussama Moutanabbir, Stefan Heun, Andrea Locatelli, T. Onur Mentes, Lucia Aballe, and Oscar D. Dubon. Gold-Catalyzed Oxide Nanopatterns for the Directed Assembly of Ge Island Arrays on Si. Nano Lett..2007,7(9):2655-2659.
    [144]. J. B. Hannon, S. Kodambaka, F. M. Ross & R. M. Tromp., The influence of the surface migration of gold on the growth of silicon nanowires.,Nature,440,2006:69-71.
    [145]. Joshi Rakesh K., Yoshimura Masamishi, Tanaka Kei, Ueda Kazuyuki, Kumar Ashok, Ramgir Niranjan. Synthesis of vertically aligned Pd2Si nanowires in microwave plasma enhanced chemical vapor deposition system. Journal of Physical Chemistry C,2008, 112(36):13901-13904.
    [146]. M. Lei, Q.R. Hu, S.L. Wang, W.H. Tang. Catalytic-free growth of ZnGa2O4 nanowires on amorphous carbon layers. Materials Letters,2009,63:1928-1930.
    [147]. Sreeram Vaddiraju, Aditya Mohite, Alan Chin,M. Meyyappan,Gamini Sumanasekera, Bruce W. Alphenaar,and Mahendra K. Sunkara. Mechanisms of 1D Crystal Growth in Reactive Vapor Transport:Indium Nitride Nanowires. Nano Lett.,2005,5(8):1625-1631.
    [148]. Kumar S. K. Varadwaj, Kwanyong Seo, Juneho In,Paritosh Mohanty,Jeunghee Park, and Bongsoo Kim. Phase-Controlled Growth of Metastable Fe5Si3 Nanowires by a Vapor Transport Method. J. AM. CHEM. SOC.,2007,129,8594-8599.
    [149]. Hiroyuki Okino, Iwao Matsud, Rei Hobar, Yoshikazu Hosomur, and Shuji Hasegaw, P. A. Bennett. In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110). Appl. Phys. Lett.,2005,86:233108.
    [150]. Kyung Sun Lee, Young Hwan Mo, Kee Suk Nahm a, Hyun Wook Shim b,Eun Kyung Suh, Jae Ryoung Kim, Ju Jin Kim. Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chemical Physics Letters,2004,384:215-218.
    [151]. B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, Synthesis and field emission properties of TiSi2 nanowires, Appl. Phys. Lett.,2005,86:243103.
    [152]. Che-Ming Chang, Yu-Cheng Chang, Chung-Yang Lee, Ping-Hung Yeh, Wei-Fan Lee, and Lih-Juann Chen. Ti5Si4Nanobats with Excellent Field Emission Properties. J. Phys. Chem. C,2009,113,9153-9156.
    [153]. Huang-Kai Lin, Yu-Fen Tzeng, Chia-Hsin Wang,Nyan-Hwa Tai, I-Nan Lin,Chi-Young Lee, and Hsin-Tien Chiu. Ti5Si3 Nanowire and Its Field Emission Property. Chem. Mater., 2008,20,2429-2431.
    [154]. Sa Zhou, Xiaohua Liu, Yongjing Lin, and Dunwei Wang. Spontaneous Growth of Highly Conductive Two-Dimensional Single-Crystalline TiSi2 Nanonets. Angew. Chem. Int. Ed., 2008,47,7681-7684.
    [155]. Jun Du, Zhaodi Ren, Anhong Hu, Peng Hao, Yanfei Huang, Gaoling Zhao, Ge Shen, Gaorong Han, Wenjian Weng, and Piyi Du, Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition, Crystal Growth & Design, 2008,8(10):3543-3548.
    [156]. Jun Du, Piyi Du, Peng Hao, Yanfei Huang, Zhaodi Ren, Gaorong Han, Wenjian Weng and Gaoling Zhao, Self-induced preparation of TiSi nanopins by chemical vapor deposition, Nanotechnology,2007,18:345605.
    [157]. Jun Du, Piyi Du, Peng Hao, Yanfei Huang, Zhaodi Ren. Gaorong Han, Wenjian Weng and Gaoling Zhao, Growth mechanism of TiSi nanopins on Ti5Si3 by atmospheric pressure chemical vapor deposition, Journal of Physical Chemistry C, 2007,111:10814-10817.
    [158]. N.S Xu. Field emission from diamond and related films.Ultramicroscopy,1999,79(1-4): 59-72.
    [159]. Yongmei Zhao, Binglin Zhang, Ning Yao, Guosheng Sun, Jinmin Li. Improved field emission properties from metal-coated diamond films.Diamond and Related Materials, 2007,16(3):650-653.
    [160]. Chi-Lin Chen, Chau-Shu Chen, Juh-Tzeng Lue. Field emission characteristic studies of chemical vapor deposited diamond films.Solid-State Electronics,2000,44(10): 1733-1741.
    [161]. Changhui Ye,Yoshio Bando, Xiaosheng Fang, Guozhen Shen, and Dmitri Golberg. Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. J. Phys. Chem. C.,111(34):12673-12676.
    [162]. PengRui Shao, ShaoZhi Deng, Jun Chen, Jian Chen, and NingSheng Xu. Study of field emission, electrical transport, and their correlation of individual single CuO nanowires. J. Appl. Phys.2011,109:023710.
    [163]. Yong Sun, Hao Cui, Li Gong, Jian Chen,Juncong She, Yanming Ma,Peikang Shen, and Chengxin Wang. Carbon-in-Al4C3) Nanowire Superstructures for Field Emitters. ACS Nano.,2011,5(2):932-941.
    [164]. Huang-Kai Lin, Hsin-An Cheng,Chi-Young Lee, and Hsin-Tien Chiu. Chemical Vapor Deposition of TiSi Nanowires on C54 TiSi2 Thin Film:An Amorphous Titanium Silicide Interlayer Assisted Nanowire Growth. Chem. Mater.,2009,21,5388-5396.
    [165].徐乐.碳基薄膜材料的制备与场发射特性研究[博士学位论文].长春:吉林大学材料与科学工程学院,2009.
    [166]. S.C. Ray, U. Palnitkar, C.W. Pao, H.M. Tsai, W.F. Pong, I.-Nan Lin, P. Papakonstantinou, L.C. Chen, K.H. Chen. Enhancement of electron field emission of nitrogenated carbon nanotubes on chlorination.Diamond and Related Materials,2009,18, (2-3):457-460.
    [167]. Seong Chu Lim, Hee Jin Jeong, Keun Soo Kim, Im Bok Lee, Dong Jae Bae, Young Hee Lee. Extracting independently the work function and field enhancement factor from thermal-field emission of multi-walled carbon nanotube tips. Carbon,2005, 43(13):2801-2807.
    [168]. Jai Singh, Sandip S. Patil, Mahendra A. More, Dilip S. Joag, R.S. Tiwari, O.N. Srivastava. Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics. Applied Surface Science,2010,256(21): 6157-6163.
    [169]. G.N Fursey. Field emission in vacuum micro-electronics. Applied Surface Science,2003, 215, (1-4):113-134.
    [170]. Guang-Rui Gu, Toshimichi Ito. Field emission characteristics of thin-metal-coated nano-sheet carbon films.Applied Surface Science,2011,257(7):2455-2460.
    [171]. Liu Meidong, Wang Peiying, Wu Guoan, Rao Yunhua.The preparation of PbTiO3 thin films by sol-gel processing.Sensors and Actuators A:Physical,1993,35(3):259-263.
    [172]. Te-Yi Chen, Sheng-Yuan Chu, Ren-Chuan Chang, Chih-Kao Cheng, Cheng-Shong Hong, Hsiau-Hsian Nien.The characteristics of low-temperature sintered PbTiO3 based ceramics and its applications.Sensors and Actuators A:Physical,2007,134(2):452-456.
    [173]. S.Ezhilvalavan and Victor D. Samper. Ferroelectric properties of sol-gel derived Ca modified PbZr0.52Ti0.48O3 films Appl.Phys. Lett,2005,87:132902.
    [174]. Cheng-Chun Lee, G.Z. Cao, I.Y. Shen. Effects of residual stresses on lead-zirconate-titanate (PZT) thin-film membrane microactuators.Sensors and Actuators A:Physical,2010,159(1):88-95.
    [175]. Sylvia Gebhardt, Lutz Seffner, Falko Schlenkrich, Andreas Schonecker. PZT thick films for sensor and actuator applications.Journal of the European Ceramic Society,2007, 27(13-15):4177-4180.
    [176]. S.Brivio, C.Rinaldi, D.Petti, R. Bertacco, F. Sanchez. Epitaxial growth of Fe/BaTiO3 heterostructures. Thin Solid Films,2011,519(17):5804-5807.
    [177]. Jianding Yu, Paul-Francuois Paradis,Takehiko Ishikawa, Shinichi Yoda,Yutaka Saita, Mitsuru Itoh, and Fumihisa Kano. Giant Dielectric Constant of Hexagonal BaTiO3 Crystal Grown by Containerless Processing. Chem. Mater.,2004,16(21):3973-3975.
    [178]. V. V. Laguta, A. M. Slipenyuk,I. P. Bykov, and M. D. Glinchuk, M. Maglione and D. Michau, J. Rosa and L. Jastrabik. Electron spin resonance investigation of oxygen-vacancy- related defects in BaTiO3 thin films. Appl.Phys. Lett,2005,87(2):022903.
    [179]. H. Li and J. Finder, Y. Liang, R. Gregory, and W. Qin. Dielectric properties of epitaxial Ba0.5Sr05TiO3 films on amorphous SiO2 on sapphire.Appl.Phys. Lett,2005,87:072905.
    [180]. S Ezhilvalavan, Tseung-Yuen Tseng. Progress in the developments of (Ba,Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Materials Chemistry and Physics.2000, 65(3):227-248.
    [181]. R. Reshmi, A.S. Asha, P.S. Krishnaprasad, M.K. Jayaraj, M.T. Sebastian. High tunability of pulsed laser deposited Bao.7Sro.3Ti03 thin films on perovskite oxide electrode.Journal of Alloys and Compounds,2011,509(23):6561-6566.
    [182]. M. Jain, S.B. Majumder, R.S. Katiyar. A.S. Bhalla. Structural and dielectric properties of heterostructured BST thin films by sol-gel technique. Thin Solid Films.2004, 447-448:537-541.
    [183]. D. Popovici,M. Noda, M. Okuyama, Y. Sasaki, M. Komaru, A low-loss BST thin film on initial nucleation layer for micro and millimeter wave tunable phase shifter. Journal of the European Ceramic Society,2006,26:1879-1882.
    [184]. Di Wu, Aidong Li, Huiqin Ling, Xiaobo Yin, Chuanzhen Ge,Mu Wang, Naiben Ming. Preparation of (Bao.5Sro.5)Ti03 thin films by sol-gel method with rapid thermal annealing. Applied Surface Science,2000,165:309-314.
    [185]. X.T. Li, B. Wang, M.R. Li, J.F. Chen, G.R. Han, W.J. Weng, P.Y. Du. Effect of magnesium doping on the growth and dielectric properties of (Pb,Sr)TiO3 thin films deposited by RF magnetron sputteringJournal of Crystal Growth,2008,310:1148-1153.
    [186]. M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, "High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases" J. Solid State Chem. 2000,151:323-325.
    [187]. Cohen, M. H.; Neaton, J. B.; He, L.; Vanderbilt, D. Extrinsic models for the dielectric response of CaCu3Ti4O12 J. Appl. Phys.,2003,94,3299.
    [188]. Kalinin, S. V.; Shin, J.; Veith, G. M.; Baddorf, A. P.; Lobanov, M.V.; Runge, H.: Greenblatt, M. Real space imaging of the microscopic origins of the ultrahigh dielectric constant in polycrystalline CaCu3Ti4O12.Appl. Phys. Lett..2005,86:102902.
    [189]. J. L. Zhang, P. Zheng, C. L. Wang, M. L. Zhao, J. C. Li, and J. F. Wang:" Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures", Appl. Phys. Lett.,2005,87:142901.
    [190]. S. F. Shao, J. L. Zhang, P. Zheng, W. L. Zhong, and C. L. Wang:Microstructure and electrical properties of CaCu3Ti4O12ceramics. J. Appl. Phys.2006,99:084106.
    [191]. Jianding Yu, Takehiko Ishikaw, Yasutomo Arai, and Shinichi Yod, Mitsuru Itoh, Yutaka Saita. Extrinsic origin of giant permittivity in hexagonal BaTiO3 single crystals Contributions of interfacial layer and depletion layer. Appl. Phys. Lett. 2005,87:252904.
    [192]. Jianding Yu, Paul-Francuois Paradis,Takehiko Ishikawa, Shinichi Yoda, Yutaka Saita, Mitsuru Itoh, and Fumihisa Kano. Giant Dielectric Constant of Hexagonal BaTiO3 Crystal Grown by Containerless Processing. Chem. Mater.,2004,16(21):3973-3975.
    [193]. Hui Shen, Yuanwei Song, Hui Gu, Pingchu Wang, Yiming Xi:A high-permittivity SrTiO3-based grain boundary barrier layer capacitor material single-fired under low temperature, Materials Letters,2002,56:802-805.
    [194]. Ping-an Fang, Hui Gu, Hui Shen, Yuan-wei Song, Ping-chu Wang, Miran Ceh:A novel interfacial microstructure in SrTiO3 ceramics with Bi2O3-doping, Journal of the European Ceramic Society,2004,24:2509-2513.
    [195]. Matjaz Valant, Ales Dakskobler, Milan Ambrozic and Tomaz Kosmac:Giant permittivity phenomena in layered BaTiO3-Ni composites, Journal of the European Ceramic Society,2006,26(6):891-896.
    [196]. Carlos Pecharromμn, Fμtima Esteban-Beteg6n,Jos(?) F. Bartolom(?), Sonia Lopez-Esteban, and Jos(?) S. Moya:New Percolative BaTiO3-Ni Composites with a High and Frequency-Independent Dielectric Constant (εr(?)80 000), Adv. Mater.,2001, 13(20):1541-1544.
    [197]. J. L. Cohn and M. Peterca, J. J. Neumeier. Giant dielectric permittivity of electron-doped manganite thin films, Ca1-xLaxMnO3 (0(?)x(?)0.03) J. Appl. Phys,2005,97:034102.
    [198]. N. Biskup, A. de Andres, and J. L. Martinez, C. Perca. Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3. Physical Review B,2005,72:024115.
    [199]. A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T.Vogt, and S. M. Shapiro. Giant dielectric constant response in a copper-titanate.Solid State Commun. 2000,115(5),217-220.
    [200]. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West. CaCu3Ti4O12:One-step internal barrier layer capacitor Appl.Phys. Lett.,2002,80:2153.
    [201]. Li wen Tang, Piyi Du, Gaorong Han, Wenjian Weng, Gaoling Zhao. Ge Shen:Effect of dispersed Ag on the dielectric properties of sol-gel derived PbTiO3 thin films on ITO glass substrate, Surface and Coatings Technology,2003,167:177-18.
    [202]. Tan Benny Murtanto, Satoshi Natori, Jun Nakamura, and Akiko Natori. Ac conductivity and dielectric constant of conductor-insulator composites, Phys. Rev. B, 2006,74:115206.
    [203]. Jiang Q, Qu MZ, Zhou GM, Zhang BL, Yu ZL. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Materials Letters,2002,57(4): 988-991.
    [204]. Wang Lu, Liu Xiaoheng, Wang Xin, Yang Xujie, Lu Lude. Electrochemical capacitance study on Co3O4 nanowires for super capacitors application. Journal of Materials Science-Materials in Electronics,2011,22(6):601-606.
    [205]. Ting Xiao, Bojun Heng, Xiaoyan Hu, and Yiwen Tang. In Situ CVD Synthesis of Wrinkled Scale-Like Carbon Arrays on ZnO Template and Their Use to Supercapacitors. J. Phys. Chem. C,2011,115,25155-25159.
    [206]. O.A. Vargas, A. Caballero, L. Hernan, J. Morales. Improved capacitive properties of layered manganese dioxide grown as nanowires. Journal of Power Sources,2011.196: 3350-3354.
    [207]. Yong Zhang, Dongsheng Geng,Hao Liu, Mohammad Norouzi Banis, Mihnea loan Ionescu,Ruying Li,Mei Cai, and Xueliang Sun. Designed Growth and Characterization of Radially Aligned Ti5Si3 Nanowire Architectures. J. Phys. Chem. C.,2011,115, 15885-15889.
    [208]. G. Medeiros-Ribeiro.D.A.A. Ohlberg, D.R. Bowler, R.E. Tanner,G.A.D. Briggs, R. Stanley Williams. Titanium disilicide nanostructures:two phases and their surfaces. Surface Science,1999,431:116-127.
    [209]. M.Berti and A.V.Drigo, C.Cohen and J.Siejka, G.G.Bentini, R,Nipoti and S.Guerri. Titanium silicide formation:Effect of oxygen distribution in the metal film. J.Appl..Phys.,1984,55(10):3558-3565.
    [210]. Akira Kikuchi and Tsutomu Ishlba.Role of oxygen and nitrogen in the titanium-silicide reaction.J.App..Phys.,1987,61 (5):1891-1894.
    [211]. Toshiyuki Nakamura, Yasusei Yamada, Takeshi Kusumori, Hideki Minoura, Hachizo Muto. Improvement in the crystallinity of ZnO thin films by introduction of a buffer layer. Thin Solid Films,2002,411:60-64.
    [212]. P. Misra, L.M. Kukrej. Buffer-assisted low temperature growth of high crystalline quality ZnO films using Pulsed Laser Deposition. Thin Solid Films,2005,485:42-46.
    [213]. Faxian Xiu, Zheng Yang, Dengtao Zhao, Jianlin Liu, Khan A. Alim, Alexander A. Balandin, Mikhail E. Itkisc, Robert C. Haddon. ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE. Journal of Crystal Growth,2006,286:61-65.
    [214]. Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho,Dong Jun Park and Jeong Yong Lee. Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition. Nanotechnology,2007,18:015603.
    [215].丁艳丽,朱志立,谷锦华,史新伟,杨仕娥,郜小勇,陈永生,卢景霄.沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.物理学报.,2010,59(2):1190-1195.
    [216]. R. J. Kematick and C. E. Myers. Thermodynamics of the Phase Formation of the Titanium Silicides. Chem. Mater.,1996,8,287-291.
    [217]. Alexandru R. Biris, Zhongrui Li, Enkeleda Dervishi, Dan Lupu, Yang Xu,Viney Saini, Fumiy Watanabe, Alexandru S. Biris. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system. Physics Letters A,2008,372:3051-3057.
    [218]. Gerald Franky Malgas, Christopher J. Arendse,Nonhlanhla P. Cele, Franscious R. Cummings. Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD. J Mater Sci,2008,43:1020-1025.
    [219]. Dong Chan Kim, Bo Hyun Kong and Hyung Koun Cho. Synthesis and growth mechanism of catalyst free ZnO nanorods with enhanced aspect ratio by high flow additional carrier gas at low temperature. J. Phys. D:Appl. Phys.,2009,42:065406.
    [220]. C. Valle's, M. Perez-Mendoza, W.K. Maser, M.T. Martinez, L. Alvarez,J.L. Sauvajol, A.M. Benito. Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon,2009,47:998-1004.
    [221]. Chun-Pei Cho, Tsong-Pyng Perng. On the dendritic growth and field emission of amorphous AlQ3 nanowires. Organic Electronics,2010,11:115-122.
    [222]. Liu Fei, Su Zan-Jia, Liang Wei-Jie,Mo Fu-Yao, Li Li, Deng Shao-Zhi,Chen Jun and Xu Ning-Sheng. Chinese Physics B.,2009,18(5):2016-2023.
    [223]. Jianding Yu, Paul-Francuois Paradis,Takehiko Ishikawa, Shinichi Yoda,Yutaka Saita, Mitsuru Itoh, and Fumihisa Kano. Giant Dielectric Constant of Hexagonal BaTiO3 Crystal Grown by Containerless Processing. Chem. Mater.,2004,16(21):3973-3975.
    [224]. Xiang Xiaoli, Hou Lisong, Gan Fuxi. Sol-gel derived BaTiO3 thin films.Vacuum.,1991, 42(16):1057-1058.
    [225]. Young Chul Choi, Byung Soo Lee. Bottom electrode dependence of the properties of (Ba,Sr)TiO3 thin film capacitors.Materials Chemistry and Physics,1999,61(2):124-129.
    [226]. D.C Yoo, J.Y Lee. Effects of post-annealing on the interface microstructure of (Ba,Sr)TiO3 thin films. Journal of Crystal Growth,2001,224(3-4):251-255.
    [227]. Tian-jin Zhang, Jun Wang, Bai-shun Zhang, Jin-zhao Wang, Neng Wan, Lan Hu. Preparation and dielectric properties of compositionally graded (Ba,Sr)TiO3 thin film by sol-gel technique.Transactions of Nonferrous Metals Society of China,2006,16(Supplementl):s119-s122.
    [228]. Yuhuan Xu, C.H. Cheng, J.D. Mackenzie. Electrical characterizations of polycrystalline and amorphous thin films of Pb(ZrxTi1-x)O3 and BaTiO3 prepared by sol-gel technique Journal of Non-Crystalline Solids,1994,176(1,2):1-17.
    [229]. Ru-Bing Zhang, Chun-Sheng Yang, Gui-Pu Ding, Jie Feng. Preparation and characterization of Ba1-xSrxTiO3 thin films deposited on Pt/SiO2/Si by sol-gel method.Materials Research Bulletin,2005,40(9):1490-1496.
    [230]. Liu Meidong, Wang Peiying, Wu Guoan, Rao Yunhua.The preparation of PbTiO3 thin films by sol-gel processing.Sensors and Actuators A:Physical,1993,35(3):259-263.
    [231]. Te-Yi Chen, Sheng-Yuan Chu, Ren-Chuan Chang, Chih-Kao Cheng, Cheng-Shong Hong, Hsiau-Hsian Nien.The characteristics of low-temperature sintered PbTiO3 based ceramics and its applications.Sensors and Actuators A:Physical,2007,134 (2):452-456.
    [232]. Cheng-Chun Lee, G.Z. Cao, I.Y. Shen. Effects of residual stresses on lead-zirconate-titanate (PZT) thin-film membrane microactuators.Sensors and Actuators A:Physical, 2010,159(1):88-95.
    [233]. Jing Wang, LiangYing Zhang, Xi Yao, JianKang Li. Characterization of PZT/PT multilayer thin film by sol-gel. Ceramics International,2004,30(7):1517-1520.
    [234]. Kazuyoshi Tsuchiya, Toshiaki Kitagawa, Eiji Nakamachi. Development of RF magnetron sputtering method to fabricate PZT thin film actuator.Precision Engineering,2003,27(3): 258-264.
    [235]. Byeong Woo Lee. Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution. Journal of the European Ceramic Society 2004, 24(6):925-929.
    [236]. Di Wu, Aidong Li, Zhiguo Liu, Huiqin Ling, Chuan Zhen Ge, Xiaoyong Liu,Hong Wang. Min Wang, Peng LuE, Naiben Ming. Fabrication and electrical properties of sol-gel derived (BaSr)TiO3 thin films with metallic LaNiO3 electrode. Thin Solid Films, 1998.336:172-175.
    [237].刘远良,杜圣一,翁文剑,韩高荣,沈鸽.热处理条件对Pb0.4Sr0.6TiO3薄膜形成影响的研究.无机材料学报,2005,20(1):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700