图形化SOI射频功率器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迅速发展的无线通讯技术推动射频集成电路向着高速、低功耗和更高集成度的方向发展,这时,传统的GaAs和体硅衬底平台将面临散热和功率耗散等棘手的问题。在这种情况下关于新的衬底材料的研究应运而生。另一方面,由于SOI(Silicon-on-Insulator)技术具有更好的隔离性能、理想的亚阈值特性和较低的功率消耗等特点,日益成为半导体行业发展的主流技术。但是,SOI技术面临浮体效应和自加热效应。
     而采用埋氧层是间断的图形化SOI衬底是解决浮体效应和自加热效应的最简单的方法。鉴于此,本文对图形化SOI衬底上的射频功率器件LDMOSFET进行了系统研究。
     本文提出了沟道下方开硅窗口的图形化SOI LDMOSFET结构,并且进行了工艺和电学性能仿真。采用工艺模拟软件TSUPREM4与器件模拟软件MEDICI对工艺过程和器件结构进行了优化,而且对器件的电学性能进行了仿真。新结构呈现良好的性能:器件温度降低,没有负的微分电导现象出现,输出特性曲线平滑;2GHz时,小信号增益为11dB;截止频率和最大振荡频率分别达到10GHz和40GHz。
     利用软件L-edit进行了版图设计,与常规SOI CMOS工艺相比,主要增加了二块模板:其一是为了制备图形化SOI衬底,其二是定义漂移区。同时,结合TSUPREM4仿真结果,设计了与常规1μm SOI CMOS工艺兼容的工艺流程。
     采用低剂量掩膜注氧隔离技术准备了低缺陷的图形化SOI衬底,在此衬底上同时制备了图形化SOI、体连接SOI和体硅LDMOSFET。采用open-short技术去除了pads对器件S参数的影响。建立了拓扑结构,进行参数提取,建立了小信号等效电路模型。测试分析结果表明,沟道下方埋氧层断开的图形化SOI LDMOSFET的开态输出特性曲线平滑、无曲翘现象,开态和关态击穿电压可分别达到8V和13V。
The continuing growth of mobile communications markets is motivating a steady evolution of radio frequency integrated circuits (RFIC's), and the explosion of interest in high integrated-density, high speed and low power-consumed RFIC is driving the research of novel substrate platforms for the replacement of conventional GaAs or bulk silicon technology, which will reach their physical limits. On the other hand, SOI (Silicon-on-Insulator) is becoming mainstream technology in sub-micron semiconductor technology due to its completely dielectric isolation and ideal sub-threshold slope, as well as low power-consumption. However, SOI technology has to face the problems of floating body effects and self-heating effects.Patterned SOI technology is the simplest way to overcome floating body effects and self-heating effects. In this thesis, the application of patterned SOI (PSOI) technology to RF power device was investigated systematically.PSOI LDMOS structure with a silicon window underneath p body was proposed, and TSUPREM4 and MEDICI simulation were presented. The proposed structure showed excellent electrical performance including ideal output characteristics immunity of kink effect and self-heating effect, the small signal gain reaching to 1 ldB at 2GHz, and the cut off frequency and the maximal oscillating frequency up to 10GHz and 40GHz respectively.Masks and flowing process were designed with the help of simulation results. Minimal changes were introduced to the process in order to demonstrate potential compatibility with conventional lum SOI CMOS technology. There were two principal modifications, one was to prepare patterned SOI substrate, the other was to define n- drift region.
    The proposed structures were fabricated on PSOI substrates prepared by selective masked SIMOX technology. Body contact SOI LDMOSFETs and bulk counterparts were also integrated in the same die to show the flexibility of PSOI technology. PSOI LDMOSFET exhibited good DC electrical performance. The output curves were flat, showing no kink effects and self-heating effects. The on-state breakdown voltage of 8V and the off-state breakdown voltage of 13V were achieved. The leakage current was about one order lower than that of bulk counterpart. RF characterization was performed using coplanar wave-guide probes, and the calibration to the probe pads was obtained through two-step de-embedding technology. The small signal gain could reach to 6dB at 1GHz, and cut off frequency up to 8GHz. The small signal equivalent circuit model was established for the further investigation on power amplifier applications.In addition, the body contact technology usually adopted by power devices was improved, where body contact regions were formed by p body implantation, that is, source region was selectively implanted by n+ in order to conserve some p type regions. SOI LDMOSFETs fabricated with this body contact technology showed no kink effects when gate finger length was 10um or 20um, but kink effects appeared at the gate finger length of 50u.m.At last, high k dielectric films on SOI substrates for the replacement of conventional gate dielectric of SiO2 was studied. Post deposition anneal (PDA) can effectively reduce traps density, make surface smooth, but lead to the growth of SiO2 at the interface. Hf silicate or Hf silicide were not found at the interface.
引文
[1]. Sang Lam, Philip K. T. Mok, Ping K. Ko, et al. High-isolatin boding pad desigh for Silicon RFIC up to 20GHz. IEEE Electron device Lett. 24(9): 601(2003).
    [2].司朝良,MMIC单片微波集成电路的原理及应用,国外电子元器件.7:48(2002).
    [3]. Jan S evenhans, Frank Opt eynde, Peter reusens. The silicon radio decade. IEEE Trans. Microwave Theory and Techniques, 50: 235(2002).
    [4]. J. D. Cressler, Silicon germanium heterjunction bipolar technology: the next leap in silicon? In 1994 ISSCC Tech. Kig.: 24-27.
    [5]. Marco racanelli, Pingxi ma, Paul Kempf. SiGe BiCMOS technology for highly integrated wireless transceivers. IEEE GaAs Digest: 183. (2003).
    [6]. www.national.com.
    [7]. Ravi Gupta, David J.Allstot. Fully monolithic CMOS RF power amplifiers: recent advances. IEEE Communications Magazine: 94(1999).
    [8]. P. R. Gray. Architectures and technologies for CMOS RF Transceivers. Solid-State Circuits Conf. 1997.
    [9]. D. Su, W. McFarland. A 2.5V, 1-W monolithic CMOS RF Power amplifier, Custom Integrated Circuits Conf.: 189(1997).
    [10]. Juin J. Liou, frank Schwierz. RF MOSFET: recent advances, current status and future trends. Solid-State electronics 47: 1881-1895(2003).
    [11]. Asad A. Abidi. RF CMOS Comes of Age, IEEE microwave magazine 47(2003).
    [12]. M. Lundstrom Moore's law forever?. Science, 299: 210(2003).
    [13]. Doerre G W, Lackey D E. The IBM ASIC/SoC methodology-a recipe for first-time success. IBM J. Res. Dev., 46: 649(2002).
    [14]. BednarT R, Buffet P H, Darden R J. Issues and strategies for the physical design of system-on-a-chip ASICs. IBM J. Res. Dev. 46: 661(2002).
    [15]. Lawrence E. Larson. Integrated circuit technology options for RFIC's-present status and future directions. IEEE J. Solid-State Circuits, 33(3): 387(1998).
    [16]. H. L. Chang, Y. C. Lu, L. P. Li, et al. Robust low-k film(k=2.1~2.5) for 90/65nm BEOL technology using bilayer film schemes., IEEE 181 (2004).
    [17]. Chang-Hoon Choi, Zhiping Yu, Robert W.Dutton. Impact of poly-gate depletion on MOS RF linearity. IEEE Electron Device Lett., 24 (5): 330(2003).
    [18]. G. dambrine, C.Raynaud, D.Lederer, et al. What are the limiting parameters of deep-submicron MOSFETs for High frequency applications? IEEE Electron Device Lett. 24(3): 189(2003).
    [19]. C. M. Garner, G. Kloster, G..Atwood, et al. Challenges for dielectric materials in future integrated circuit technologies Microelectronics and Reliability, 45(5-6): 919-924(2005)
    [20]. V. Rumennik. Power devices are in the chips. IEEE Spectrum, 22: 42(1985)
    [21]. R. C. Frye, Integration and electrical isolation in CMOS mixed-signal wireless chips. Proc. IEEE, 89: 444-455(2001).
    [22] N. K. Verghese and D. J. Sllstot. Computer-aided design considerations for mixed-signal coupling in RF integrated circuits. IEEE J. Solid-State Circuits, 33: 314-323(1998).
    [23] SO1 Digital CMOS VLSI-A Design Perspective C. T. Chuang and R. Puri, IBM T. J. Watson Research Center.
    [24]. SORIN CRISTOLOVEANU. Far-future trends in SOI technology: A guess, 12(2): 343-351 (2002).
    [25]. J. Petruzzello, T. Letavic, B.Dufort. SOI high voltage power FET with an internal voltage(current) sensing terminal. ISPSD,224(2003)
    [26]. Chau-Neng Wu, Chou, H.-M., New latch-up failure mechanism between different power pins in the mixed-voltage process [CMOS ICs], IPFA Proceedings of the 11th International Symposium: 81-84(2004).
    [27]. Dietmar Eggert, Peter Huebler, Arnd Huerrich, et al., A SOI-RF-CMOS Technology on High Resistivity SIMOX Substrates for Microwave Applications to 5 GHz. IEEE Trans. Electron Devices, 44(11): 1981(1997).
    [28]. K. Mistry, G. Grula,J.Sleight, L.Bair, et al. A 2.0V, 0.35μm Pratially Depleted SOI-CMOS technology. Tech. Digest, IEDM,583-586(1997)
    [29]. www.alldatasheet.com.
    [30]. M. M. De Souza, G. Cao E. M. Sankara Narayanan, et al. Progress in silicon RF power MOS technologies current and future trends. Fourth IEEE International Caracas Conference on Devices, Circuits and Systems, D047-1(2002).
    [31]. H. J. Sigg.DMOS transistor form microwave silcon applications. IEEE trans. Electron Devices, 1: 45(1972)]
    [32]. E. Fong, D. C. Pitzer, R. J. Zeman. Power DMOS for high-frequency and switching applications. IEEE Trans. Electron Devices, 2: 193-198(1980).
    [33]. T. Okabe, M. Nagata, H. Itoh. A microwave silicon power MOSFET. IEDM, Tech. Dig., 1980: 825-826.
    [34]. I. Yoshida. High efficient 1.5GHz Si power MOSFET for digital cellular front end. Proc. ISPSD, Tokyo, Japan, 1992: 156-157.
    [35]. A. Wood, C. Dragon, W. Burger. High performance Si LDMOS technology for 2GHz RF power amplifier applications. IEDM, Tech. Dig., 1996: 87-90.
    [36]. Krishna Shenai and Erik McShane Current status and Emerging Trends in RF Power FET Technologies. 2001 IEEE MTT-S Digest.
    [37]. www.motorola.com/rf/models
    [38]. Adriaan W. Ludikhuize. A review of RESURF Technology. IEEE ISPSD: 11(2000).
    [39]. S. Hardikar, M. M. de Souza, et al. A novel double RESURF LDMOS for HVIC's. Microelectronics Journal, 35(3): 305-310(2004).
    [40]. J.Roig, D.Flores, J.Reboolo et al. A 200V silicon-on-sapphire LDMOS structure with astepocide extended field plate. Solid-State Electron., 48: 245(2004).
    [41]. J.Luo, G. Cao, S.N.Ekkanath, et al. A high performance RF LDMOSFET in thin film SOI technology with step drift profile. Solid-State Electron, 47: 1937(2003).
    [42]. F. van Rijs, R.Dekker, H. A. Visser, Influence of output impedance on power added efficiency of Si-bipolar power transistors, IEEE MTT-S Dig., 1945-1948(2000).
    [43]. Yue Tan, Mahender Kumar, Jun Cai, et al. A SOI LDMOS Technology Compatible with CMOS, BJT, and Passive Components for fully-Integrated RF Power Amplifiers. IEEE Trans. On Electron Devices, 48(10): 2428 (2001).
    [44]. D. Ngo, W. M. Huang, J. M. Ford, et al. Power amplifiers on thin-film silicon-on-insulator (TFSOI) technology, in Proc. IEEE Int. SOI Conf., 1999, 133 134.
    [45]. T.Letavic, et al. High performance 600V smart power technology based on thin layer silicon-on-insulator, Proc. 9th. IEEE Int. Symp. Power Semiconductor Devices and Ics, 49(1997).
    [46]. James G. Fiorenza, Dimitri A. Antoniadis, Jesus A. del Alamo, RF Power LDMOSFET on SOI. IEEE Electron Device Lett., 22(3): 139( 2001).
    [47]. C. D. Chen, M. Matloubian and R. Sundaresan et al. Single-transistor latch in SOI MOSFETs. IEEE Electron Device Lett., 1988 (12): 636-638. Trans.
    [48]. K. K. Young and J. A. Burns. Avalanche-induced drain-source breakdown in silicon-on-insulator n-MOSFETs. IEEE Trans Electron Devices, 1988 (35): 426-431
    [49]. Y. K. Leung, Y. Suzuki, K. E. Goodson, et al., Self-heating effect in lateral DMOS on SOI. Proc. ISPSD, 136-140(1995).
    [50]. F. X. Yu, M. C. Cheng, P. Habitz, et al., Modeling of thermal behavior in SOI structures. IEEE Trans Electron Devices, (51): 83-91(2004).
    [51]. L. T. Su, J. E. Chung, D. A. Antoniadis, et al. Measurement and modeling of self-heating in SOI NMOSFET's. IEEE Trans Electron Devices, 41: 69-75(1994).
    [52]. Dallmann D A, Shenai K. Scaling constraints imposed by self-heating in submicron SOI MOSFET's. IEEE Trans Electron Devices, 42: 489~496(1995).
    [53]. Nishiyama A, Arisumi O, Yoshimi M. Suppression of the floating-body effect in partially-depleted SOI MOSFET's with SiGe source structure and its mechanism. IEEE Trans Electron Devices, 1997 (44): 2187~2192
    [54]. Matasumoto Satoshi, Hiraoka Yasushi, and Sakai Tatsuo, Radio-Frequency Performance of a State-of-the-Art 0.5-um-Rule Thin-Film SOI Power MOSFET. IEEE Tran s Electron Device, 48(6): 1251(2001)
    [55]. Song Z R, Yu Y H, Li C L, et al. Tetrahedral amorphous-carbon thin films for silicon-on-insulator application. Appl Phys Lett, 2002 (80): 743~745
    [56]. Changhong Ren, Cai Jun, Liang Yung C., et al., The Partial Silicon-on-Insulator Technology for RF Power LDMOSFET Devices and On-Chip Microinductors, IEEE Electron Device, 49(12): 2271(2002).
    [57]. J. M. Park, T. Grasser, H. Kosina,et a. A numerical study of partial-SOI LDMOSFETs Solid State Electronics, vol.47, pp. 275-281(2003).
    [58]. Lim H. et al., 1998 IEEE International SOl Conference. pp. 89-92
    [59]. D. M. Garner, F. Udrea, H. T. Lim, et al. The integration of high-side and low-side LIGBTs on partial silicon-on-insulator. Solid-State Electronics, vol.44, pp. 929-935(2000)
    [60]. Yemin Dong, Meng Chen, Jing Chen, et al. Patterned buried oxide layers under a single MOSFET to improve the device performance. Semiconductor Science and Technology, 19: L25~L28(2004).
    [61]. Ho H L, Steigerwalt M D, Walsh B L, et al. A 0.13μm high-performance SOI logic technology with embedded DRAM for system-on-a-chip application. IEDM Tech Digest, 503~506(2001).
    [62]. Colinge J P. Siliocon-on-insulator technology: Materials to VLSI. 2nd ed. Boston: Kluwer Academic Publishers,P 272(1997).
    [63].董业民,图形化SOI技术研究,[博士论文],中科院上海微系统与信息技术研究所,2004.3.
    [64]. Yemin Dong, Xi Wang, Xiang Wang, Meng Chen and Jing Chen. Low defect density and planar patterned SOI materials by masked SIMOX. Chemical Physics Letters, 378: 470~473(2003).
    [65]. G. D. Wilk, R. M. Wallace, J. M. Anthony. High-k gate dielectric: current status and materials properties considerations. J. Appl. Phys. 89: 5243(2001).
    [66]. International Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2001), http://public.itrs.net
    [67]. C. L. Hinkle, C. Fulton, R. J. Nemanich, et al. Enhanced tunneling in stacked gate dielectrics with ultra-thin HfO2 (ZrO2) layers sandwiched between thicker SiO_2 layers, Surface Science 566-568: 1185-1189(2004).
    [68]. X. Guo, X. Wang, Z. Luo, et al. High quality ultra-thin (1.5 nm) TiO-Si N gate dielectric for deep sub-micron CMOS technology. IEDM Tech. Dig., pp. 137 140(1999).
    [69]. TSUPREM4, Technology Modeling Associates Inc., USA, 1997
    [70]. MEDICI, Technology Modeling Associates Inc., USA, 1997
    [71]. Malay Trivedi, Pankaj Khandelwal, Krishna Shenai. Performance modeling of RF power MOSFET's. IEEE Tran. On Electron Devices, 46(8):1794:1999.
    [72].曾莹,严利人,王纪民等译,微电子制造科学原理与工程技术,电子工业出版社。
    [73].N.艾罗拉著.用于VLSI模拟的小尺寸MOS器件模型—理论与实践.科学出版社.
    [74]. Lars Vestling, Design and modeling of high-frequency LDMOS transistors. Acta universitatis upsaliensis uppsala 2002
    [75]. Yue Tan, Mahender Kumar, Johnny K. O. Sin, et al. A SOI LDMOS/CMOS/BJT Technology for fullyintegrated RF power amplifiers. ISPSD, 137(2002).
    [76]. M.-C. Jeng, J. E. Chung, P.-K. Ko, et al. The effects of source/drain resistance on deep submicrometer device performance, IEEE Trans. Electron Devices. 37: 2408(1990).
    [77]. T. Brat, C. M. Osburn, T. Finsted, et al. Self aligned Ti silicide formation by rapid thermal annealing effects, J. Electrochem. Soc., 133: 1451 (1986).
    [78].叶良修,半导体物理学—上册.高等教育出版社.
    [79]. S. K. Chung, S. Y. Han. An analytical model for the surface field distribution of SOI RESUEF devices, IEEE Trans. Electron Devices, 45: 1374-1376(1998).
    [80]. Cheng Xinhong, Yang Wenwei, Song Zhaorui, et al. A novel LDMOS structure in thin film Patterned-SOI technology with a silicon window beneath the P well, Journal of Chinese semiconductors, 25(12): 1569(2004)
    [81]. Shih-Chia Lin, James B.Kuo. Closed-form breakdown voltage model for PD SOI NMOS devices considering impact ionization of both parasitic BJT and surface MOS channel simultaneously. IEEE Trans. Electron Devices. 49(11): 2016(2002).
    [82]. Alberto O. Adan, Kenichi Higashi. Off-state leakage current mechanisms in bulk and SOl MOSFETs and their impact on CMOS ULSIs standby current. IEEE Tran. Electron Devices. 48(9):2050(2001).
    [83]. Benjamin Iniguez, Jean-Pierre Raskin, Pascal Simon, et al. A review of leakage current in SOI CMOS Ics: impact on parametric testing techniques. Solid-State Electronics 47: 1959(2003).
    [84]. Vishnu Khemka, Vijay Parthasarathy, Ronghua Zhu, et al. Experimental and Theoretical Analysis of Energy Capability of RESURF MOSFETs and Its Correlation With Static Electrical Safe Operating Area (SOA),IEEE Trans. Electron Devices, 49(6): 1049(2002).
    [85]. K. Rajendran, W. Schoenmaker. Modeling of Minimum surface potential and sub-threshold swing for grooved-gate MOSFETs. Microelectronics Journal 32: 631-639(2001).
    [86]. S. S. Chen, J. B. Kuo. An analytical cad kink effect model of partially-depleted SOI NMOS devices operation in strong inversion. Solid-State Electronics, 41(3): 447(1997).
    [87]. F. van Rijs, R. Dekker, H. A. Visser. Influence of output impedanceon power added efficiency of Si-bipolar power transistors. IEEE MTT-S Dig. 1945(2000).
    [88].王子宇,张肇仪,徐承和 等译.射频电路设计—理论与应用.电子工业出版社.
    [89].施敏,现代半导体器件物理,科学出版社。
    [90]. James G. Fiorenza, Jesus A. de Alamo, Experimental Comparison of RF Power LDMOSFETs on Thin-Film SOI and Bulk Silicon, IEEE Trans. Electron. Devices, 49(2): 687(2002).
    [91]. E. McShane and Krishna shenai. The Design, Characterization, and Modeling of RF LDMOSFETs on Silicon-on-Insulator Material., IEEE Trans. Electron Devices, 49(4): 643(2002).
    [92]. A. Ajmera et al. A 0.22μm CMOS-SOI technology with a Cu BEOL, VLSI Symp. Technology Dig. Tech. Papers, 15 16(1999).
    [93]. Ewout P. Vandamme, Dominique M. M.-P. Schreurs, and Cees van Dinther. Improved Three-Step De-Embedding Method to Accurately Account for the Influence of Pad Parasitics. IEEE Trans. Electron Devices, 48(4): 737(2001).
    [94]. J. P. Raskin,, G. Dambrine, and R. Gillon. Direct Extraction of the Series Equivalent Circuit Parameters for the Small-Signal Model of SOI MOSFET's. IEEE Microwave and Guided Wave Lett. 7(12): 408(1997).
    [95]. R. Gaddi, P. J. Tasker and J. A. Pia. Direct extraction of LDMOS small signal parameters from off-state measurements. Electronics Letters, 36(23): 1964-1966(2000).
    [96]. David Lovelace, Julio Costa and Natallino Camilleri, Extracting small-signal model parameters of silicon mosfet transistors. IEEE MTT-s Digest, 865-868(1994).
    [97]. Seonghearn Lee, A parameter extraction method for a small-signal MOSFET Model Including substrate parameters. ICSE: 255-260(2002), Penang, Malaysia.
    [98]. Yuhua Cheng, Mishel Matloubian. Parameter extraction of accurate and scaleable substrate resistance components in RF MOSFETs. IEEE Electron Device Lett. 23(4): 221-223(2002)
    [99]. Jeonghu Han, Minkyu Je, and Hyungcheol Shin. A simple and accurate method for extracting substrate resistance of RF MOSFETs. IEEE Electron Device Lett. 23(7): 434-436(2002).
    [100]. Chung-Hwan Kim, Cheon Soo Kim, Hyun Kyu Yu, et al. Unique Extraction of Substrate Parameters of Common-Source MOSFET's. IEEE Microwave and Guided Wave Lett.9(3): 108-110(1999).
    [101]. Charlotte E. Biber, Martin L. Schmatz, Thomas Morf, et al. A nonlinear microwave MOSFET model for spice simulators. IEEE Trans. On Microwave Theory and Techniques, 46(5): 604-610(1998).
    [102]. Y. Cheng and M. Matloubian, on the high frequency characteristics of the substrate resistance in RF MOSFETs. IEEE Electron Device Lett., 21: 604-606(2000).
    [103]. Bagchi S. Yu Y, Mendicino M, et al. Defect analysis of patterned SOI material. IEEE SOI Conference, 121-122(1999).
    [104]. S. S. Chen J. B. Kuo, An analytical CAD kink effect model of partially depleted SOI NMOS devices operating in strong inversion, Solid State Electron., 41: 447(1997).
    [105]. S. C. Lin, J. B. Kuo, Temperature-dependent kink effect model for partially-depleted SOI NMOS devices. IEEE Trans. Electron Devices, 46(1): 254(1999).
    [106]. J. Roig, Reduction of self-heating effect on SOIM devices, Microelectronics Reliability, 42: 61(2002).
    [107].杨文伟,SOIRESURF原理研究及SOILDMOS研制.中国科学院上海微系统与信息技术研究所博士论文,2004.
    [108]. Thomas Kauerauf, Bogdan Govoreanu, Robin Degraeve, et al. Scaling CMOS: Finding the gate stack with the lowest leakage current. Solid-State Electronics. 49: 695(2005).
    [109]. J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Boston: Kluwer Academic Publishers, 1991.
    [110]. Wang Shouwu, XIA Yongwei et al. Thin bulk effects in SOI structure, Chinese Journal of Semiconductors. 6(3): 225 (1985).
    [111]. H. Y. Yu, M. F. Li, D. L. Kwong. ALD (HfO_2)_x(Al_2O_3)_(1-x) high-k gate dielectrics for advanced MOS devices application. Thin Solid Films 462-463(2004): 110
    [112]. Wataru Mizubayashi, Naoki Yasuda, Hirokazu Hisamatsu, et al. Effect of the interfacial SiO_2 layer thickness on the dominant carrier type in leakage currents through HfAlO_x/SiO_2 gate dielectric films. Appl. Phys. Lett. 85(25): 6227(2004).
    [113]. M.-H Cho, D. W. Moon, S. A. Park, et al. Interfacial characteristics of N-incorporated HfAlO high-k thin films. Appl. Phys. Lett. 84(25): 5243(2004)
    [114]. M.-H Cho, H. S. Chang, Y. J. Cho, et al. Chang in the chemical state and thermal stability of HfO_2 by the incorporation of Al_2O_3. Appl. Phys. Lett., 84(4): 571(2004).
    [115]. Ying Qian Wang, Jing Hao Chen, Won Jong Yoo, et al. Formation of Ge Nanocrystals in HfAlO high-k dielectric and application in memory device. Appl. Phys. Lett., 84(26): 5407(2004).
    [116]. J. Zhu, Z. G. Liu and Y. R. Li. HfAlON films fabricated by pulsed laser ablation for high-k gate dielectric applications. Materials letters, 2004
    [117]. V. Mikhelashvili, R. Brener, O. Kreinin, et al. Characteristics of metal-insulator-semiconductor capacitors based on high-k HfAlO dielectric films obtained by low-temperature electron-beam gun evaporation. Appl. Phys. Lett., 2004 85(24): 5950.
    [118]. J. Robertson, Interfaces and defects of high-k oxides on silicon. Solid-State Electronics. 49: 283(2005).
    [119]. J. Y. Dai, K. Li, P. F. Lee, et al. STEM study of interfacial reaction at Hf_xAl_(1-x)O_y/Si interfaces. Thin Solid Films, 462-463: 114(2004).
    [120]. Renault D. Samour, J. F. Damlencourt, et al. HfO2/SiO2 interface chemistry studied by synchrotron radiation x-ray photoelectron spectroscopy. Appl. Phys. Lett., 81(19): 3627-3629(2002).
    [121]. P. F. Lee J. Y. dai, K. H. Wong, et al. Study of interfacial reaction and its impact on electric properties of Hf-Al-O high-k gate dielectric thin films grown on Si. Appl. Phys. Lett. 82(15): 2419(2003).
    [122]. P. F. Lee J. Y. Dai, K. H. Wong, et al. Growth and characterization of Hf-aluminate high-k gate dielectric ultrathin films with equivalent oxide thickness less than 10A. J. Appl. Phys. 93(6): 3665(2003).
    [123]. S. Toyoda, J. Okabayashi, H. Kumigashira, et al. Effects of interlayer and annealing on chemical states of HfO2 gate insulators studied by photoemission spectroscopy. Appl. Phys. Lett. 84(13): 2328-2330(2004).
    [124].郭维廉,硅与二氧化硅界面物理,国防工业出版社.
    [125]. Zhi-Yuan Cheng and C. H. Ling. Gate-Channel capacitance characteristics in fully-depleted SOI MOSFET. IEEE Trans. On Electron Devices. 48(2): 388-390(2001)
    [126]. Fawzi A. Ikraiam, Romuald B. Beck and Andrzej Jakubowski. Modeling of SOI-MOS capacitors C-V behavior: patially and fully depleted cases. IEEE Trans. Electron Devicis. 45(5): 1026—1031(1998)
    [127]. W. K. Henson, K. Z. Ahmed, E. M. Vogel, et al. Estimating oxide thickness of tunnel oxides down to 1.4nm using conventional capacitance-voltage measurements on MOS capacitors. IEEE electron Device Lett. 20(4): 179-181(1999).
    [128]. D. Flandre, T. Loo, P. Verlinden, et al. Interpretation of quasi-static C-V characteristics of MOSOS capacitors on SOI substrateds. Electron Lett. 27: 43(1991).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700