APCVD法硅化钛薄膜和硅化钛纳米线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展和微电子装置的小型化,以纳米线为基块来制备纳米电子和光电子器件引起了广泛注意。由于硅化钛已在微电子器件中获得了广泛应用,所以,硅化钛纳米线在微电子领域有着广阔的应用前景,若能用化学气相沉积法(CVD)实时形成同质基层,并利用其诱导作用实时生长纳米线,就相当于可以直接在器件上制备形成纳米线,也即可以将纳米线相关的功能单元直接集成于有关电路和器件中,对于纳米线在器件中的应用将起到非常积极的推动作用。有望开辟一种纳米线在微电子领域中的全新应用,并且这种在线植入纳米线的方法可在不同基板上方便地制备高密度硅化钛纳米线,对于开拓硅化钛纳米线在多领域的广泛应用将起到极为关键的作用。另外,硅化钛薄膜本身具有低电阻特性,对中远红外辐射具有很大的反射率,同时在可见光区具有大致相同的透射率。因此,在玻璃上形成的硅化钛薄膜还有望是一种新型的既具有阳光控制功能又具有低辐射功能薄膜。成功制备这种新型硅化钛功能薄膜的镀膜玻璃,有望使生产工序大大简化,生产成本大大降低,性能得到大幅度提高,从而开发出新型高效节能的镀膜玻璃,为推动节能镀膜玻璃的发展和应用起到十分重要的作用。
     本论文采用APCVD方法,以SiH_4和TiCl_4为前驱体,在玻璃衬底上制备出硅化钛薄膜及硅化钛薄膜/纳米线复合结构,运用XRD、SEM、TEM、EDX、四探针电阻仪、紫外可见光谱仪等手段对样品的结构和性能进行了测试和分析。讨论了薄膜中硅化钛晶相的形成过程和机理,以及薄膜层上硅化钛纳米线的形成和生长机理。成功实现了硅化钛纳米线在相应薄膜层上的生长。
     结果表明,通过APCVD方法由SiH_4和TiCl_4直接在玻璃基板上成功制备了面心正交型TiSi_2薄膜;TiSi_2晶相在玻璃基板上生长的最佳SiH_4/TiCl_4摩尔比为3,主要反应的反应方程为:TiCl_4(g)+3SiH_4(g)=TiSi_2(s)+6H_2(g)+SiCl_4(g);薄膜中晶相的形成确实建立在初期非晶态层的基础上,而薄膜上部形成的晶态TiSi_2层是均一的;可见,晶态TiSi_2薄膜在玻璃基片上生长分为两步:第一步是在玻璃上形成非晶态薄膜层,第二步才是在非晶态薄膜上形成晶态TiSi_2层;TiSi_2薄膜的厚度和晶相含量随沉积时间的增加而增加。随着沉积温度的增加,TiSi_2晶相的生长速率增大从而导致其颗粒尺寸的增大。但由于在较高温度下的快速生长导致颗粒形貌比较低温度时更加不规则,因此其堆积密度随沉积温度的增加而下降。在700℃时,TiSi_2晶相的堆积密度达到最大;理论推导了晶相含量和致密度随沉积时间和温度的变化关系,单位厚度TiSi_2薄膜的晶相含量与沉积时间和沉积温度之间的理论表达关系式为:当取K_1=0.85和K2,=4.0×10~(-4)时,理论计算曲线与实验点基本相符。
     同时,通过APCVD方法由SiH_4和TiCl_4直接在玻璃基板上成功制备了六方晶相Ti_5Si_3薄膜。Ti_5Si_3薄膜生长的SiH_4/TiCl_4摩尔比为1,TiCl_4和SiH_4生成Ti_5Si_3的主要反应为:5TiCl_4(g)+5SiH_4(g)=Ti_5Si_3(s)+2SiCl_4(g)+12HCl(g)+4H_2(g);随沉积温度的增加,Ti_5Si_3晶相的生长速率增大从而导致其颗粒尺寸的增大。随沉积温度的增加,Ti_5Si_3晶体的发育更加完善,Ti_5Si_3薄膜的晶相含量增大。
     进一步研究发现:薄膜的电阻率直接由晶相的形成所决定,受晶相种类、晶相颗粒大小和晶相致密度控制;Ti_5Si_3薄膜的电阻率高于TiSi_2薄膜的电阻率;薄膜中TiSi_2晶相含量越高,晶相堆积致密度越大,薄膜的电阻率越小;根据晶态TiSi_2首先在玻璃上形成非晶态膜层,然后再在非晶态底膜上形成晶态TiSi_2层的生长机制,TiSi_2薄膜的电阻率与沉积时间和沉积温度之间的理论表达关系式可以表示为:当取K_1=0.85,K_2=4.0×10~(-4)和K_4=0.05时,理论计算曲线与实验值基本相符;当沉积时间增加时,TiSi_2薄膜的电阻率随晶相堆积密度增大而下降。当沉积温度升高时,晶相生长速率增大,晶相含量的增加导致TiSi_2薄膜的电阻率降低;在700℃时,达到最小;然后由于在较高温度下的快速生长导致颗粒形貌更加不规则,致使堆积密度随沉积温度的增加反而下降,导致薄膜的电阻率转而增大;Ti_5Si_3薄膜的电阻率同样取决于薄膜中Ti_5Si_3晶相的形成及堆积密度的变化。Ti_5Si_3晶相的堆积密度越大,薄膜的电阻率越低。Ti_5Si_3薄膜的最小电阻率为4.5×10~(-4)Ω·cm;
     TiSi_2薄膜在400~750nm范围内的可见光区具有大致相同的透射率;随着TiSi_2晶相的逐渐形成和堆积,薄膜的电阻率降低,薄膜的吸收和散射增大,透射率随之下降,即晶态TiSi_2薄膜的透射率小于非晶态薄膜的透射率;Ti_5Si_3薄膜在波长600~700nm处薄膜具有最大的透射率;由于Ti_5Si_3薄膜的电阻率大于TiSi_2薄膜的电阻率,因此,在Ti_5Si_3薄膜内发生的吸收少,Ti_5Si_3薄膜的透射率大于TiSi_2薄膜的透射率;随着薄膜中TiSi_2晶相含量的增大,薄膜电阻率的降低,TiSi_2薄膜的反射率增大;在波长小于5000nm时,TiSi_2薄膜的反射率随波长的增加而增大,在大于5000nm后,TiSi_2薄膜的反射率基本不变;TiSi_2薄膜对中远红外辐射的最大反射率达0.95;Ti_5Si_3薄膜中晶相含量越高,薄膜的电阻率越低,薄膜对电磁波的反射越大;Ti_5Si_3薄膜在整个可见光区具有最小的反射率;在波长小于7000nm时,Ti_5Si_3薄膜的反射率随波长的增加而增大,在大于7000nm后,Ti_5Si_3薄膜的反射率基本不变;Ti_5Si_3薄膜对中远红外辐射的最大反射率达0.98。
     以SiH_4和TiCl_4为前体、在700℃、经两步法分别控制SiH_4/TiCl_4摩尔比为约1和1.5,成功地通过APCVD法,在先制备了Ti_5Si_3薄膜后制备了高密度的单晶TiSi纳米线;纳米线的长度可达约5μm,直径约15~40nm,TiSi纳米线沿着[110]方向生长。TiSi纳米线的生长过程为:首先在Ti_5Si_3上形成准液态的Ti—Si纳米合金颗粒,然后,Ti和Si原子不断进入到准液态的Ti—Si纳米合金颗粒中,当TiSi在Ti—Si纳米合金颗粒中达到过饱和后,先在Ti—Si纳米合金颗粒表面析出,形成TiSi纳米颗粒,随后,不断析出的TiSi沉积在Ti—Si纳米合金颗粒与TiSi纳米颗粒的界面上,TiSi纳米颗粒被顶起,在TiSi晶体单位表面自由能自发减小的诱导下,产生自诱导效应,最终自发地沿着[110]方向,生长形成TiSi纳米线。TiSi纳米线的长度随着生长时间的增加而增加;纳米线的生长受温度影响明显,当生长温度由670℃升高到700℃时,晶体的生长速率增大,纳米线的长度增加;随着温度的进一步升高,纳米线在径向方向上的生长逐渐增大,至730℃时,方形纳米柱形成;当生长温度进一步升高到750℃时,晶体在各个方向的生长速率都较大,不适于纳米线的生长,开始形成颗粒。
     在690℃时,在第二步沉积时通过控制(SiH_4+TiCl_4)的摩尔浓度可以制备高密度的TiSi纳米线簇,这种纳米线簇由多根单晶的TiSi纳米线彼此平行聚集而成;TiSi纳米线簇沿着TiSi晶体的[110]方向生长;纳米线的数量和大小随着(SiH_4+TiCl_4)的摩尔浓度的增加而增加;当(SiH_4+TiCl_4)的摩尔浓度为3.33%、SiH_4/TiCl_4摩尔比为1.5时,所制备的纳米线簇长度大于2μm,直径约在40nm~80nm之间。采用APCVD两步法,以SiH_4和TiCl_4为前体、第二步以SiH_4/TiCl_4摩尔比为1.5和生长温度为730℃时,可以成功在Ti_5Si_3薄膜上制备高密度的单晶TiSi纳米柱;纳米柱的长度约300~500nm,其方形截面的边长约40~60nm;TiSi纳米柱沿着[110]方向生长;纳米柱的数量和大小随着(SiH_4+TiCl_4)在氮气中的摩尔浓度的增加而增加;当(SiH_4+TiCl_4)的摩尔浓度大于2.0%时,成核密度相对较大,可获得相邻彼此平行聚集的纳米柱。
     通过新设计的三步沉积方法,保持前二步正常形成纳米柱的基础上,增加第三步:逐渐减小(SiH_4+TiCl_4)的摩尔浓度,可以在Ti_5Si_3薄膜上成功制备高密度的单晶TiSi纳米钉,这种纳米钉沿着[110]方向生长。纳米钉的生长也受温度影响,沉积温度过低时,受原子迁移能力太小的影响,纳米钉无法形成;随着生长温度的增加,纳米钉大量形成;当温度过度升高,晶体的成核速率减小,生长速率增大,纳米钉的形成数量下降。在低于710℃时,没有纳米钉形成,当生长温度高于730℃时,纳米钉的数量随生长温度的升高而下降,纳米钉的尺度增大。在730℃时,得到致密的纳米钉,纳米钉总的长度约为0.7~1μm;钉头的长度约200nm,钉头的横截面为方形,边长约40nm;钉体的直径约20nm。TiSi纳米钉的生长过程包括:在Si/Ti_5Si_3界面形成准液态的Ti—Si纳米合金颗粒;Ti和Si原子不断进入到准液态的Ti—Si纳米合金颗粒中;当TiSi在合金中达到过饱和后,在合金表面析出,形成TiSi纳米颗粒;不断析出的TiSi自发地沉积在Ti—Si纳米合金颗粒和TiSi纳米颗粒的界面上,导致TiSi纳米柱的生长;随着控制反应气体浓度的不断下降,从准液态的Ti—Si纳米合金颗粒中析出并沉积形成纳米柱的Ti和Si原子的数量逐渐减少,TiSi纳米柱的直径会逐渐减小,控制反应气体浓度下降的时间,最后形成不同形态的纳米钉。由于纳米钉的钉头形成受第二步沉积控制,纳米钉的钉体则受第三步中原料气体浓度的变化控制。TiSi纳米钉在第三步时生长速率随反应物浓度和的生长时间变化的理论关系式可用v=k_3·C_0~n·(1-t/t_g)~n来表示,当取k_3=1.05×10~(15)和n=3时,理论计算曲线与实验值基本一致。
     以SiH_4和TiCl_4为前体、在700℃、经三步法分别控制SiH_4/TiCl_4摩尔比为约1、1.5和1.5,通过在第三步增加(SiH_4+TiCl_4)浓度后再沉积的方法,在先制备了Ti_5Si_3薄膜后成功制备了火箭状TiSi纳米线。纳米线的头部是由几根彼此平行的短纳米线围绕在本体纳米线的一端形成的,与绑在火箭上的助推器类似。这些彼此平行的纳米线的长度约150nm,直径约10nm,数量为4~8根。该火箭状纳米线为由单晶的TiSi纳米线形成的。适量增加(SiH_4+TiCl_4)的摩尔浓度,能够促进TiSi在纳米线的顶端形核并生长。制备TiSi火箭状纳米线的最佳的(SiH_4+TiCl_4)摩尔浓度约为3.33%。TiSi火箭状纳米线的生长过程包括:在TiSi纳米线生长过程中,增加TiCl_4和SiH_4的浓度可使参加生长的Ti和Si的数量增加,当过多的Ti和Si吸附在TiSi纳米线顶端时,过量的Ti和Si将不会扩散到TiSi纳米线内部,而是在纳米线顶部表面形成新的TiSi纳米颗粒,这些新形成的TiSi纳米颗粒在TiSi纳米线的诱导下,都自发地沿着TiSi纳米线的方向生长,最后,这些TiSi纳米颗粒也形成了新的纳米线,从而,火箭状TiSi纳米线形成。这种TiSi火箭状纳米线的生长机制相当于一种自组装机制。
Due to their low resistivity and high thermal stability, titanium silicides have been widely used in ultra large scale integration (ULSI) technologies. As device dimensions shrink, using titanium silicide nanostructures in nanoscale electronics and optoelectronics as ideal building blocks has been drawing more attention. Compared to conventional semiconductor, nanostructures have the potential to reach higher device densities. One-dimensional nanomaterials can be fabricated by several methods. Among all the fabrication methods, Chemical vapor deposition (CVD) is considered to be efficient for growing high-density one-dimensional nanomaterials on large scale substrate. Especially, atmospheric pressure CVD (APCVD) is economical for continuous large scale production and is practical for depositing on required substrate. To find a new APCVD way to grow titanium silicide nanowires under the self-induced effect of as-deposted homogeneous silicide thin films is very important for promoting applications of the nanowires to the microelectronic devices. This new method can grow the nanowires on the devices in situ. That is to say, the functional blocks of nanowires can be directly integrated into the microdevices and microcircuit. It will blaze a brand-new development of the applicatins of nanowires to the microelectronic device. Furthermore, the self-induced method can grow the nanowires on the different kinds of substrates, which represents a rapidly expanding area of the application of silicide nanowires. On the other hand, titanium silicide thin films have high reflectivity on low-frequency electromagnetic wave because of its low resistivity, and it has good solar shielding window properties. Therefore, a new type of coating glass which combined the functions of solar control and low-E will be exploited if titanium silicide thin film is successfully prepared as a glass coating. The new type of coating glass will attract considerable attention due to its high performances and low cost.
     In this thesis, the thin films and nanowires of titanium silicides were prepared on the glass substrate by APCVD, using SiH_4 and TiCl_4 as precursors. The phase structure and compositions were identified by XRD and EDX. The surface morphology and thickness were observed by FESEM and TEM. The sheet resistance and optical behaviors of the thin films were measured using the four point probe method and UV-VIS spectrometer, respectively. The silicide phase formations were studied. The formation and growth of TiSi nanowires were also clarified.
     The results show that the titanium silicide thin films have been successfully prepared on the glass by APCVD using SiH_4 and TiCl_4 as the precursors. TiSi_2 thin films are formed with the face-centered orthorhombic structure. The maximal content of TiSi_2 is obtained when the molar ratio of SiH_4/TiCl_4 is 3 and the deposition temperature is about 700℃.TiCl_4(g)+3SiH_4(g)=TiSi_2(s)+6H_2(g)+SiCl_4(g) is the main reaction. Due to the effect of the amorphous substrate, the amorphous layer is formed initially on glass substrate and TiSi_2 crystalline phase grows finally on top of it. The thickness and content of TiSi_2 crystalline phase increases with the increase of deposition time. The growth rate and thus the size of TiSi_2 crystalline phase increase with increasing deposition temperature. The stack density decreases with increasing deposition temperature because the rapid growth at higher temperature causes the more irregular shape of crystalline particles. The maximal stack density of the crystalline phase is obtained at the deposition temperature of 700℃and the molar ratio of SiH_4/TiCl_4 of 3. The expressions of the stack density of crystalline phase as functions of the deposition conditions are theoretically deduced. The equation can be written aswhen K_1=0.85 and K_2 = 4.0×10~(-4), it is consistent well with the experimental results.
     Ti_5Si_3 thin films were also successfully deposited on glass by APCVD. Ti_5Si_3 is obtained when the ratio of SiH_4 /TiCl_4 is 1. The main reaction is 5TiCl_4(g)+5SiH_4(g)=Ti_5Si_3(s)+2SiCl_4(g)+12HCl(g)+4H_2(g). Ti_5Si_3 thin films are formed with the hexagonal structure. The growth rate and thus the size of Ti_5Si_3 crystalline phase increase with increasing deposition temperature. The stack density decreases with increasing deposition temperature. The thickness and content of Ti_5Si_3 crystalline phase increases with the increase in deposition temperature.
     The resistivity of thin films is dependent on the crystalline formation. It is controlled with the kinds of crystalline phase, the crystalline phase size and the stack density, respectively. The resistivity of Ti_5Si_3 thin films is higher than that of TiSi_2 thin films. The content of crystalline phase increases and thus the resistivity decreases with the increase of stack density of TiSi_2 crystalline phase. The theoretical expression of the resisitivity as the functions of the deposition conditions can be written as follows, when K_1=0.85, K_2 = 4.0×10~(-4) and K_4=0.05, it is consistent well with the experimentalresults. The stack density increases and thus the resistivity of TiSi_2 thin films decreases with the increase of time. The growth rate and the content of crystalline phase increase with temperature, thus the resistivity decreases. The minimal resistivity is obtained at 700℃. The stack density decreases and thus the resistivity increases with increasing deposition temperature because the rapid growth at higher temperature causes the more irregular shape of crystalline particles. The resistivity of Ti_5Si_3 thin films is also dependent on the formation and stack density of Ti_5Si_3 crystalline phase. The resistivity of Ti_5Si_3 thin films decreases with increasing of stack density of Ti_5Si_3 crystalline phase, the minimum resistivity of the Ti_5Si_3 thin films is 4.5×10~(-4)Ω·cm.
     The TiSi_2 thin films have the same transmittance between 400nm and 750nm. The resistivity decrease and thus the absorption and dispersion increase with the increase of stack density of TiSi_2 crystalline phase. That is to say, the transmittance of TiSi_2crystalline films is smaller than that of amorphous films. The Ti_5Si_3 thin films have the same and maximum transmittance between 600nm and 700nm. Because the resistivity of Ti_5Si_3 thin films is higher than that of TiSi_2 thin films, the absorption of Ti_5Si_3 thin films is smaller, the transmittance of Ti_5Si_3 thin films is higher than that of TiSi_2 thin films. The infrared reflection relys much on the phase formation in the films.The IR-reflectance of the thin films increases with the decrease in the resistivity of the thin films. The reflectance of the TiSi_2 thin films increases when the wavelength increases to 5000nm, and then the reflectance is almost costant with increasing of wavelength. The IR-reflectance of the TiSi_2 thin films is about 0.95 with increasing light wavelength to 25000nm. The IR-reflectance of the Ti_5Si_3 thin films increased with the wavelength. The reflectance increases little when the wavelength is larger than 7000nm, The IR-reflectance of the Ti_5Si_3 thin films increased to about 0.98 with increasing light wavelength to 25000nm.
     The high-density single crystalline orthorhombic TiSi nanowires were first prepared on Ti_5Si_3 layer at 700℃by APCVD, using SiH_4, and TiCl_4, as the precursors. The procedure includes two steps. First, Ti_5Si_3 thin films are deposited with the molar ratio of SiH_4/TiCl_4 of 1. Then, the molar ratio of SiH_4/TiCl_4 increases from 1 to 1.5, TiSi nanowires forms on the Ti_5Si_3 layer. The nanowires with diameters of 15-40nm and lengths of about 5 micrometers were obtained when the growth time is 15 min. The TiSi nanowires grow along [110] direction of the orthorhombic structure. The formation process of TiSi nanowires includes: Initially, Ti_5Si_3 thin films form when the ratio of SiH_4/TiCl_4 is 1, then Si forms on Ti_5Si_3 thin films when the ratio of SiH_4/TiCl_4 increases to 1.5. Si incorporates into Ti_5Si_3 to form the quasi-liquid Ti-Si alloy. After the quasi-liquid alloy becomes supersaturated with TiSi, TiSi will precipitate on the surface of quasi-liquid alloy to form TiSi nanoparticles, and then TiSi will precipitate on the interface between quasi-liquid alloy and TiSi nanoparticles. Continuous feeding of Ti and Si atoms into the quasi-liquid alloy leads to the formation of nanowires. The surface free energy per unit area of TiSi crystal decreases spontaneously with the increase in length along [110] direction of the crystal. Finally, TiSi nanowires form. The length of TiSi nanowires increases with the time. The growth rate and the length increase with the increase of temperature from 670 to 700℃. With the temperature increasing continuously, the radial growth rate increases gradually. The quadrate nanorods form at 730℃. With the temperature increasing continuously to 750℃, the growth rate is higher in the every direction, there are no nanowires, and the particles form.
     The single crystalline orthorhombic TiSi nanowire bundles were also successfully prepared with the different concentrations of (SiH_4+TiCl_4) of the second process. TiSi nanowires bundles, which reveal that the several parallel nanowire are tightly bound together, grow along [110] direction of the orthorhombic structure. The quantities and the dimension of the nanowires bundles increase with the concentration of (SiH_4+TiCl_4). The nanowire bundles with the lengths of about 2 micrometers and the diameters about 40-80nm were obtained when the concentration of (SiH_4+TiCl_4) is 3.33% and the molar ratio of SiH_4/TiCl_4 is 1.5. In addition, high-density single crystalline orthorhombic TiSi nanorods were also successfully prepared on Ti_5Si_3 layer at 730℃via the two-step method. The quadrate nanorods are approximately 0.5μm long and 40×40 nm~2 in area. The TiSi nanorods grow along the [110] direction of the orthorhombic TiSi crystal. The quantities and dimensions of TiSi nanopins increase with the concentration of (SiH_4+TiCl_4). The density of the nucleus increases, so the neighboring nanorods are parallel when the concentration of (SiH_4+TiCl_4) is higher than 2.0%
     In addition, high-density single crystalline orthorhombic TiSi nanopins were also first prepared on Ti_5Si_3 layer via the new three-process method. Based on the first two steps, the nanorods form. In the third step, the concentration of (SiH_4+TiCl_4) decreases gradually to zero, TiSi nanopins form. TiSi nanopins also grow along [110] direction of the orthorhombic structure. The temperature has an important influence on the growth of TiSi naopins. The atoms can not gather together to fulfill the nucleation when the temperature is not high enough, which explains why the nanopins fail to form until the temperature is above 710℃. A large amount of nanopins form when the temperature increases. With the temperature increasing continuously, the growth rate increases, but the nucleation rate switchs to decrease. Therefore, the nanopins exhibit a constant increase in the dimensions, but a decrease in distribution density. The maximal density of TiSi nanopins is obtained at the deposition temperature of 730℃. The nanopins are 0.7-1μm long in total, with the quadrate tip of about 200 nm long and 40×40 nm~2 in area. The growth process involves that Ti-Si quasi-liquid alloy formed on Ti_5Si_3 layer, the continuous feeding of Ti and Si form TiSi nanorods on Ti_5Si_3 layer. When the flux of (SiH_4+TiCl_4) begins to decrease, the formation of TiSi decreases, the size of the nanorods decreases gradually. Consequently, the nanopins form. The dimension of nanopins is controlled by the change of the concentration of (SiH_4+TiCl_4) in the third step. Because the growth of nanopins tip is controlled by the second step and the growth of tail end is dependent on the third step. The theoretical expression of the growth rate of the third step as the functions of the depositiontime and the concentration of (SiH_4+TiCl_4) was established as v =k_3、C_0~n、(1-t/t_g)~n,when k_3= 1.05×10~(15) and n=3, it was well consistent with the experimental results.
     TiSi rocket-shaped nanowires were also successfully prepared at 700℃via the three step method. Based on the first two steps, TiSi nanowires form. In the third step, the growth time is 5min, the molar ratio of SiH_4/TiCl_4 is 1.5 and the concentration of (SiH_4+TiCl_4) fixes to a higher value. TiSi rocket-shaped nanowires, which reveal that the several same nanowire sections are tightly bound parallel round the tip of the central nanowire, were obtained. TiSi central nanowires are more than 3 micrometers long with diameters within between 15nm and 30nm. The parallel nanowire sections are about 150nm long with the diameter about 10nm. The TiSi rocket-shaped nanowires grow along the [110] direction of the orthorhombic TiSi crystal. To form TiSi rocket-shaped nanowires, the optimal concentration of (SiH_4+TiCl_4) in the third step is about 3.33%. Their formations are based on both the excess of TiSi nanoparticles precipitated on the tip of nanowires and the inducing effect of TiSi nanowires. In the third step, the quantities of Ti and Si increase with the concentration of (SiH_4+TiCl_4). Because the nanowires have formed in the second step, the excess of Ti and Si atoms will precipitate on the tip of nanowires with the increase of (SiH_4+TiCl_4). Some Ti and Si atoms will form new TiSi nanoparticles. These new TiSi nanoparticles will form the new nanowires under the inducing effect of TiSi central nanowire. Finally, the rocket-shaped TiSi nanowires form. The growth process can be defined as self-assembled growth.
     The growth mechanism that we report here expands our understanding of growing nanostructures, and the method may be adaptable to the preparation of other nanostructure. It is believed that a way to grow titanium silicide nanowires on large scale glass substrate without metal catalysts by APCVD for promoting application of large scale flat panel display will be taken into account, and the application for the thin film capacitor with super-high charge storage will be induced with a special thin film configuration of the conductive nanowires planted into the dielectric matrix.
引文
[1] C. Bernard, R. Madar and Y. Pauleau, Chemical vapoe deposition of refractory metal silicide forVLSI metallization. Solid-state Technology, 32(2),(1989), 79-84.
    
    [2] J. P. Gambino and E. G. Colgan. Silicides and ohmic contacts, Materials Chemistry and physics 52(1998)99-146
    
    [3] J. Lee and R. Reif, Selective deposition of TiSi_2 on oxide patterned wafers using low pressurechemical vapor deposition. Journal of Electronic Materials 20(4) (1991)331-337.
    
    [4] G J. Reynolds, C. B. Cooper and P. J. Gaczi, Selective titanium disilicide by low-pressure chemical??vapor deposition. J. Appl. Phys. 65(8) (1989) 3212-3218.
    
    [5] O. A. Fouad, M. Yamatazo, H. Ichinose and M. Nagano, Titanium disilicide formation by rf plasmaenhanced chemical vapor deposition and film properties. Applied Surface Science 206 (2003)159-166
    
    [6] R. P. Southwell, M. A. Mendicino and E.G.Seebauer, Optimization of selective TiSi_2 chemical vapordeposition by mechanistic chemical kinetics. J. Vac. Sci. Technol. A 14(3) (1996) 928-934
    
    [7] L. A. Clevenger, J. M. harper, C. Cabral, C. Nobili, G.Ottaviani and R. Mann, Kinetic analysis ofC49-TiSi_2 and C54-TiSi_2 formation at rapid thermal annealing rates. J. Appl. Phys. 72(10) (1992)4978-4980
    
    [8] K. Shenai, Novel refractory contact and interconnect metallizations for high-voltage andsmart-power applications. IEEE Transactions on Electron Devices, 37, (1990) 2207-2220.
    
    [9] S. Agarwal, E. J. Cotts, S. Zarembo, R. Kematick and C. Myers, The heat capacities of titaniumsilicides Ti_5Si_3, TiSi and TiSi_2, Journal of Alloys and Compounds 314 (2001) 99-102
    
    [10] T. Hashimoto, H. Inui, K. Tanaka and M. Yamaguchi, Reduction of the C49-C54 phasetransformation temperature in co-sputtered TiSi_2 thin films by ternary alloying. Intermetallics 11(2003)417-424
    
    [11] K. Sadananda, C.R. Feng, R. Mitra and S.C. Deevi, Creep and fatigue properties of hightemperature silicides and their composites. Materials Science and Engineering A261 (1999)223-238.
    
    [12] S. P. Murarka, Silicides thin films and their applications in microelectronics, Intermetallics, 3 (1995)173-186
    
    [13] K.Varahramyan and E. J.Verret, A model for specific contact resistance applicable for titaniumsilicide-silicon contacts. Solid-State Electronics 39(11) (1996) 1601-1607
    
    [14] K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara and S. Matsumoto, Scanning tunnellingmicroscopy study of initial growth of titanium silicide on Si (111). Applied Surface Science,130-132(1998)13-17.
    
    [15] K. Saito, T. Amazawa and Y. Arita, Selective titanium silicide chemical vapor deposition withsurface cleaning by silane and ohmic contact formation to very shallow junctions, J. Electrochem.Soc. 140(2) (1993) 513-519
    
    [16] V. Ilderem and R. Reif, Optimized deposition parameters for LPCVD TiSi_2, J. Electrochem.Soc.:Solid-State Science and technology, 135(10) (1988) 2590-2596.
    
    [17] M. Takai, T. Iriguchi, H. Morimoto, A. Hosono and S. Kawabuchi, Electron emission from gatedsilicide field emitter arrays, J. Vac. Sci. Technol. B, 16(2), (1998) 790-792
    
    [18] R. Pretorius, Prediction of silicide formation and stability using heat of formation. Thin solid films,290-291,(1996)477-484
    
    [19] R. J. Nemanich, R. W. Fiordalice and H. Jeon, Raman scattering characterization of titaniumsilicide formation, IEEE J. Quantum Electronics, 25(5), (1989) 997-1002.
    
    [20] E.H. Lim, G. Karunasiri, S.J. Chua, Z.X. Shen, H. Wong, K.L. Pey, K.H. Lee and L. Chan, Characterization of titanium silicide by Raman spectroscopy for submicron IC processing. Microelectronic Engineering 43-44 (1998) 611-617
    
    [21] S. Kal, I. Kasko, and H. Ryssel, Noncontacting measurement of thickness of thin titanium silicidefilms using spectroscopic ellipsometer, IEEE Electron Device Letters, 19(4), (1998) 127-130.
    
    [22] F. Cazzaniga, G. Pavia, A. Sabbadini, S. Spiga and G. Queirolo, AFM measurement of the grainsize in polycrystalline titanium silicides. Microelectronic Engineering 55 (2001) 93-99
    
    [23] T. Stark, L. Gutowski, M. Herden, H. Grunleitner, S. Kohler, M. Hundhausen and L. Ley,??Ti-silicide formation during isochronal annealing followed by in situ ellipsometry,MicroelectronicEngineering 55 (2001) 101-107
    
    [24] C. Bresolin, M. Pesaturo, P. Paruzzi, V. Soncini, D. Erbetta and M. Bigi, A pplication of atomicforce microscopy to detect edge of mask contaminations that may hinder titanium silicide formation.Microelectronic Engineering 70 (2003) 196-200
    
    [25] I. Goldfarb, S. Grossman, G. Cohen-Taguri and M. Levinshtein, Scanning tunneling microscopy oftitanium silicide nanoislands. Applied Surface Science 238 (2004) 29-35
    
    [26] J.J. Williams, Y.Y. Ye, M.J. Kramer, K.M. Hoa, L. Hong, C.L. Fu and S.K. Malik, Theoreticalcalculations and experimental measurements of the structure of Ti_5Si_3 with interstitial additions.Intermetallics 8 (2000) 937-943
    
    [27] F. Weitzer, P. Rogl and H. Noel, The ternary system: silicon-titanium-uranium,Journal of Alloysand Compounds 350 (2003) 155-159
    
    [28] J.H. Schneibel and C.J. Rawn, Thermal expansion anisotropy of ternary titanium silicides based onTi_5Si_3, Acta Materialia 52 (2004) 3843-3848
    
    [29] H. Jeon, G. Yoon and R. J. Nemanich. Dependence of the C49-C54 TiSi_2 phase transitiontemperature on film thickness and Si substrate orientation. Thin Solid Films 299 (1997) 178-182
    
    [30] Z. Lin and Y.K. Lee, Effect of multi-cycle annealing on the C49-C54 phase transformation in TiSi_2thin film. Materials Science in Semiconductor Processing. 3 (2000) 215-219.
    
    [31] M.S. Alessandrino, M.G. Grimaldi and F. La Via, C49-C54 phase transition in nanometrictitanium disilicide nanograins. Microelectronic Engineering 64 (2002) 189-196
    
    [32] F. La Via, S. Privitera,F. Mammoliti and M.G. Grimaldi, Effects of a Ta interlayer on the titanium silicide reaction: C40 formation and scalability of the TiSi_2 process. Microelectronic Engineering 60(2002)197-203
    
    [33] I. Matko, B. Chenevier, O. Chaix-Pluchery, R. Madar and F. La Via, TEM analysis of an additionalmetal-rich component at the C49-C54 transformation in Ti/Si thin films capped with TiN. ThinSolid Films 408 (2002) 123-127
    
    [34] M.G. Grimaldi F. La Via, V. Raineri, S. Bocelli, M. Galli,F. Marabelli,F. Bonolli,M. Iannuzziand M. Yamaguchi, Kinetics of the C49-C54 phase transformation in TiSi_2: New indications fromsheet resistance, infrared spectroscopy and molecular dynamics simulations. MicroelectronicEngineering 37/38 (1997) 441-448
    
    [35] A.S. Ozcan, Evolution of texture in titanium silicide thin films,Dissertation of BostonUniversity.2003.
    
    [36] R. Achutharaman, P. Hey and J. L. Regolini, Selective CVD of titanium silicide for raisedsource/drains Semiconductor International, 19(11), (1996) 149-152
    
    [37] I. Kasko, S. Kal and H. Ryssel. Characterization of thin TiSi_2 films by spectroscopic ellisometryand thermal wave analysis. Microelectronic Engineering, 37/38 (1997) 455-460.
    
    [38] P. Fornara, S. Denorme, E. de Berranger, D. Mathiot, M. Mouis and A. Poncet, Accuratetwo-dimensional modelling of the titanium silicide process with an application to a thin base n-p-nbipolar transistor. Microelectronics Journal, 29(3) (1998) 71-81.
    
    [39] K.C. Leonga, P.C. Liua, K. S. Yeoa, C. H. Ganb, G. Qianb, Y, M. Leeb and L. Chanb Comparison of latchup immunity for silicided source/drain at different n~+ implant energy. Microelectronics Reliability 38 (1998) 1401-1405
    
    [40] A.S. Ozcana, K.F. Ludwig,C. Lavoie, S.N. Basu, C. Coia,C. Cabral, K.P. Rodbell and J. M. E.Harper Evolution of microstructure in Ti-Ta bilayer thin films on polycrystalline -Si and Si(001),Thin Solid Films 466 (2004) 238-249
    
    [41] C. C. Lin, W. S. Chen, H. L. Hwang, K. Y. J. Hsu, H. K. Liou and K. N. Tu, Reliability study ofsub-micron titanium silicide contacts. Applied Surface Science, 92 (1996) 660-664.
    
    [42] W. Zagozdzon-Wosika, I. Rusakova, S.R. Gooty, D. Marton, J. Li, Z.H. Zhang, C. H. Lin, R.J. Bleiler and D.X. Zhang, Formation of contacts to shallow junctions using titanium silicide with di.usion barriers. Materials Science in Semiconductor Processing 1 (1998) 243-247
    
    [43] Y. P. Chen, G. A. Dixit, J. P. Lu, W. Y. Hsu, A. J. Konecni, J.D. Luttmer and R. H. Havemann, Integrated barrier plug fill schemes for high aspect ratio Gb DRAM contact metallization. Thin Solid Films 320 (1998) 73-76
    
    [44] R. Getto, J. Freytag, M. Kopnarski and H. Oechsner, Characterization of sputtered titanium silicide ohmic contacts on n-type 6H-silicon carbide,Materials Science and Engineering, B61-62 (1999) 270-274
    
    [45] C. L. Gan, K. L. Pey, W. K. Chim and S. Y. Siah, Effects of high current conduction in sub-micronTi-silicided films. Solid-State Electronics, 44 (2000) 1837-1845
    
    [46] A.S. Holland and G.K. Reeves, New challenges to the modelling and electrical characterization ofohmic contacts for ULSI devices. Microelectronics Reliability 40 (2000) 965-971.
    
    [47] F. La Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musumeci and L. Calcagno, Structural and electrical characterisation of titanium and nickel silicide contacts on silicon carbide, Microelectronic Engineering 60 (2002) 269-282
    
    [48] J. Chen and J.P. Colinge, Study on titanium silicide process for thin-film SOI devices.Microelectronic Engineering, 33 (1997) 189-194.
    
    [49] D. Szwagierczak, Thick film compositions based on titanium silicides for surge resistors, CeramicsInternational 30 (2004) 757-764
    
    [50] C.Y. Kuo, Thick film system for surge protection-part v, in: Proceedings of (?)SHM Conference,Boston, 1994, pp. 530-535.
    
    [51] T.G.I. Ling and L. Montelius, Metal silicides as a novel electrode material in electrochemicalsensors, Sensors and Actuators B 70 (2000) 83-86
    
    [52] X. Tong and R. A. Wolkow, Scanning tunneling microscopy characterization of low-profilecrystalline TiSi_2 microelectrodes on a Si(111) surface. Appl. Phys. Lett. 86 (20) (2005) 203101
    
    [53] M. Cervera, A. Climent-Font, J. Garrido, J. Martinez and J. Perriere, Scanning electron beam annealing of sputter-deposited titanium on silicon. Neclear Instruments and Methods in Physics Research B 118 (1996) 733-738.
    
    [54] S.C. Jung, J.S. Park, Y.B. Yoon, J.S. Roh and J.J. Kim, The effect of precleaning treatments on theformation of Ti silicide. Applied Surface Science, 125 (1998) 23-28.
    
    [55] M. Koto, K. Ohno, S. Yoshikado, K. Yukimura, S. Kurooka, Y. Suzuki, A. Kinomura, A.Chayahara and Y. Horino, Titanium implantation profiles in silicon using metal plasma-based ion implantation technique. Materials Chemistry and Physics, 54 (1998) 127-130.
    
    [56] K. Yukimura, K. Ohno, M. Koto, S. Kurooka, Y. Suzuki, A. Kinomura, A. Chayahara and Y. Horino, Titanium ion implantation into silicon substrate by plasma-based metal ion implantation system with 100-kV/2.5-A pulse modulator. Surface and Coatings Technology, 103-104 (1998) 252-256.
    
    [57] D. B. Kao, M. Manley, C. Blair, G. Scott, H.W.M. Chung, K. Brown, N. Narahari, E.R. Myers and C.M. Shyu, Two-dimensional effects in titanium silicidation, IEEE Transactions on Electron Devices. 45(1) (1998) 187-193.
    
    [58] G. Verma, S. Talwar, and J. C. Bravman, Differential thermal budget in laser processing:Application to formation of titanium silicide, IEEE Electron Device Letters, 21(10) (2000) 482-484.
    
    [59] S.M. Lee, E.T. Ada, H. Lee, J. Kulik and J.W. Rabalais, Growth of Ti and TiSi_2 films on Si(111)by low energy Ti~+ beam deposition,Surface Science 453 (2000) 159-170
    
    [60] S. Wang, H. Liang and P. Zhu, Preferential growth of C54 TiSi_2 by metal vapor vacuum arc ionsource implantation and post-annealing. Surface and Coatings Technology 131 (2000) 84-87
    
    [61] I. V. Gusev, V. I. Chapljuk and V. P. Belevsky, Formation of titanium silicides by titanium deposition onto silicon with simultaneous self-ion bombardment. Thin Solid Films, 278 (1996) 57-60.
    
    [62] O. Schmidt and G. H. Fecher, The lateral variation of solid state reactions at surfaces studied bymeans of photoemission electron microscopy: formation of titanium silicides. Surface Science,482-485(2001)335-340.
    
    [63] H. Hortenbach, M. Falke, S. Teichert, G. Beddies and H. J. Hinneberg, Surfactant-mediated growthof TiSi_2 on Si(001), Microelectronic Engineering 64 (2002) 157-162.
    
    [64] N. Lundqvist, J. Aberg, S. Nygren,C. A. Bjormander and S. L. Zhang, Effects of substrate bias and temperature during titanium sputter-deposition on the phase formation in TiSi_2, Microelectronic Engineering 60 (2002) 211-220
    
    [65] I. Montero, E. Roman, J.L. Segovia and L. Galan, Influence of carbon on the electron stimulateddesorption from titanium silicide surfaces. Surface Science 528 (2003) 42-46
    
    [66] J. Zhao, J.P. Lu, Y.Q. Xu, Y.J.R. Kuan and L. Tsung, Characterization of reactions attitanium/nickel silicide interface using X-ray photoelectron spectroscopy and transmission electronmicroscopy. Applied Surface Science 211 (2003) 367-372
    
    [67] V. Venkataramana, S. Rajagopalanb,P. Manoravic, A.K. Balamuruganb. A. Ramalingama andA.K. Tyagi, Formation of interface silicides at room temperature in pulsed laser deposited Ti thinfilms on Si(100). Materials Research Bulletin 38 (2003) 1835-1840
    
    [68] J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang and Y.T. Qian, Co-reduction route tonanocrystalline titanium silicide by using different metal reductants,Journal of Alloys andCompounds 381 (2004)250-253
    
    [69] J. Y. Tsai and P. Apte,A thickness model for the TiSi_2/TiN stack in the titanium salicide processmodule. Thin Solid Films, 270 (1995) 589-595.
    
    [70] F. Jonckx, R. Verbeeck, B. Deweerdt and K. Maex, On the formation of silicides on poly runnerswith topography by a two-step silicidation process. Applied Surface Science,91 (1995) 378-381.
    
    [71] W. Kaplan, A. Mouroux, S. L. Zhang and C. S. Petersson, A self-aligned silicide technology withthe Mo/Ti bilayer system, Microelectronic Engineering. 37/38 (1997) 461-466.
    
    [72] W.K. Wan and S.T. Wu, The formation of TiSi_2 by RTA processing. Thin Solid Films,298 (1997)62-65.
    
    [73] C.S. Ho, K.L. Pey, H. Wong. R.P.G. Karunasiri, S.J. Chua,K.H. Lee and L.H. Chan,Integration ofSALICIDE process for deep-submicron CMOS technology: effect of nitrogen: argon-amorphizedimplant on SALICIDE formation. Materials Science and Engineering B51 (1998) 274-279
    
    [74] R. Achutharaman, P. Hey and J. L. Regolini, Selective CVD of titanium silicide for raisedsource/drains. Semiconductor International, 19(11), (1996) 149-152
    
    [75] H.Jeon, G.Yoon and R.J. Nemanich, Dependence of the C49-C54 TiSi_2 phase transition temperature on film thickness and silicon substrate orientation. Thin Solid Films 299 (1997) 178-182.
    
    [76] J. Hillman, R. Foster, J. Faguet, W. Triggs, R. Arora,M. Ameen, F. Martin and C. Arena, Intergrated CVD Ti and TiN processes for sub-0.5-μm metallization. Solid State Technology 38(7) (1995)147-152.
    
    [77] M. J. H. Kemper, S. W. Koo and F. Huizinga, The Electrochemical Society Extended Abstracts,New Orleans, LA, 84-2 (1984) Abstract 377, 533
    
    [78] J. F. Million-Brodaz, C. Vahlas, C. Bernard, J. Torres and R. Madar, in "Proceedings of the SixthEuropean Conference on Chemical Vapor Deposition," R. Porat, Editor, Israel, Iscar Limited,(1987)280.
    
    [79] 阙端麟,陈修治《硅材料科学与技术》.杭州,浙江大学出版社.(2002)
    
    [80] I.Barin,程乃良,《纯物质热化学数据手册》北京,科学出版社,(2003)
    
    [81] 叶大伦,胡建华《实用无机物热力学数据手册》北京,冶金工业出版社,(2002),第二版
    
    [82] D. Maury, P. Gayet and J.L. Regolini, Further study on selective TiSi_2 deposition by CVD.Microelectronic Engineering, 37/38 (1997) 435-440.
    
    [83] R. P. Southwell and E.G.Seebauer, Practical processing issues in titanium silicide CVD. AppliedSurface Science, 119 (1997) 41-49.
    
    [84] G. Llauro, F. Gourbilleau, F. Sibieude and R. Hillel, Oxidation behavior of CVD TiN-Ti_5Si_3composite coatings, Thin Solid Films 315 (1998) 336-344
    
    [85] M. Pons, C. Bernard, E. Blanquet and R. Madar, Combined thermodynamic and mass transportmodeling for material processing from the vapor phase. Thin Solid Films 365 (2000) 264-274.
    
    [86] G.A.D. Briggs, D.P. Basile, G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg and R. S. Williams, The incommensurate nature of epitaxial titanium disilicide islands on Si(001). Surface Science 457 (2000)147-156
    
    [87] J.L.Regolini, D. Bensahel and G.Bomchil, Selective layers of TiSi_2 deposited without substrateconsumption in a cold wall LPCVD reaction. Applied Surface Science, 38 (1989) 408-415.
    
    [88] C.Y. Lee, Selective formation of titanium silicide by chemical vapor deposition using titaniumhalides and silicon wafer as the precursors. J. Materials Synthesis and Processing, 6(1) (1998)55-59.
    
    [89] R.P. Southwell and E.G.Seebauer, Kinetics of TiSi_2 formation and silicon consumption duringchemical vapor deposition, J. Electrochem. Soc. 144(6) (1997), 2122-2137.
    
    [90] A. Weber, R. Nikulski, C. P. Klages, M. E. Gross, R. M. Charatan, R. L. Opilan and W. L. Brown,Aspects of TiN and Ti deposition in an ECR plasma enchanced CVD process. Applied SurfaceScience, 91 (1995) 314-320.
    
    [91] 严北平,周南生,于宗光,杨林安,等离子增强化学气相沉积硅化钛薄膜的特征,无机材料 学报,9(2)1994 204-208.
    
    [92] O. A. Fouad, M. Yamazato and M. Nagano, Investigation of RF power effect on the deposition andproperties of PECVD TiSi_2 thin film. Applied Surface Science 195 (2002) 130-136.
    
    [93] E. Richter, J. Piekoszewski, E. Wieser, F. Prokert, J. Stanislawski, L. Walis and H. Reuther,Modification of titanium surface by its alloying with silicon using intense pulsed plasma beams,Surface and Coatings Technology 158-159 (2002) 324-327
    
    [94] O.A. Fouad, M. Yamazato, M. Era, M. Nagano, T. Hirai and I. Usui, Preparation and properties ofTiSi_2 thin films from TiCl_4/H_2 by plasma enhanced chemical vapor deposition, Journal of CrystalGrowth 234 (2002) 440-446.
    
    [95] O.A. Fouad, M. Yamazato, A. Hiroshi, M. Era and M. Nagano, Formation of titanium silicide thinfilms on Si(100) substrate by RF plasma CVD, Surface and Coatings Technology 169-170 (2003)632-635
    
    [96] O.A. Fouad, M. Yamazato, H. Ichinose and M. Nagano, Titanium silicide formation by rf plasmachemical vapor dposition and filmproperties. Applied Surface Science, 206 (2003) 159-166.
    
    [97] K. Saito and Y. Arita, Cause of aligned-orientation growth of titanium silicide in plasma enhanced??chemical vapor deposition. J. Electrochem. Soc.,143(11) (1996)3778-3784.
    
    [98] G.Reisse, F. Gansicke and A. Fischer, Laser direct writing of titanium silicide thin films. Applied Surface Science, 69 (1993) 412-417.
    
    [99] 张立德,牟季美,“纳米材料与纳米结构”科学出版社,(2001)
    
    [100] 李新勇,张桂兰,汤国庆,陈文驹,“纳米晶体材料研究进展”,化学进展,8(1996)231-239
    
    [101] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G.Chopra, A. Zettl, A. Thess and R. E. Smalley,Single-electron transport in ropes of carbon nanotubes,Science 275 (1997) 1922-1925
    
    [102] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Carbon nanotube single-electrontransistors at room temperature, Science, 293 (2001) 76-79
    
    [103] A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Logic circuits with carbon nanotubetransistors, Science, 294 (2001) 1317-1320
    
    [104] H. M. Kim, T. W. Kang and K. S. Chung, Nanoscale ultraviolet-light-emitting diodes usingwide-bandgap gallium nitride nanorods. Adv. Mater., 15 (2003) 567-569
    
    105] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, Indium phosphide nanowires asbuilding blocks for nanoscale electronic and optoelectronic devices, Nature, 409 (2001) 66-69
    
    [106] Z. H. Zhong, F. Qian, D. L. Wang and C. M. Lieber, Synthesis of p-type gallium nitride nanowiresfor electronic and photonic nanodevices, Nano Letters 3 (2003) 343-346
    
    [107] S. S. Fan, M. G.Chapline,N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai,Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283(1999)512-514
    
    [108] V. Semet, V. T. Binh, P. Vincent, D. Guillot, K. B. K. Teo, M. Chhowalla, G.A.J. Amaratunga, W. I.Milne, P. Legagneux and D. Pribat, Field electron emission from individual carbon nanotubes of avertically aligned array, Appl. Phys. Lett. 81 (2002) 343-345
    
    [109] F. C. K. Au, K. W. Wong, Y. H. Tang,Y. F. Zhang, I. Bello and S. T. Lee, Electron field emissionfrom silicon nanowires, Appl. Phys. Lett. 75 (1999) 1700-1702
    
    [110] J. Chen, S. Z. Deng, N. S. Xu,S. H. Wang, X. G.Wen, S. H. Yang, C. L. Yang, J. N. Wang and W.K. Ge, Field emission from crystalline copper sulphide nanowire arrays, Appl. Phys. Lett. 80(2002) 3620-3622
    
    [111] N. S. Xu, S. Z. Deng and J. Chen,Nanomaterials for field electron emission: preparation,characterization and application, Ultramicroscopy 95 (2003) 19-28
    
    [112] Z. W. Pan, H. L. Lai, F. C. K. Au, X. F. Duan, W. Y. Zhou,W. S. Shi, N. Wang, C. S. Lee,N. B.Wong, S. T. Lee and S. S. Xie. Oriented silicon carbide nanowires synthesis and field emissionproperties, Adv. Mater. 12 (2000) 1186-1190
    
    [113] P. Dorozhkin, D. Golberg, Y. Bando and Z. C. Dong, Field emission from individual B-C-Nnanotube rope, Appl. Phys. Lett. 81 (2002) 1083-1085
    
    [114] L. F. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff and M. Coulter. ZnO nanowires formedon tungsten substrates and their electron field emission properties, Appl. Phys. Lett. 82 (2003)1096-1098
    
    [115] Y. H. Lee, C. H. Choi,Y. T. Jang, E. K. Kim, B. K. Ju,N. K. Min and J.H. Ahn, Tungstennanowires and their field electron emission properties, Appl. Phys. Lett. 81 (2002) 745-747
    
    [116] Y. Huang, X. F. Duan, Q. Q. Wei and C. M. Lieber. Directed assembly of one-dimensionalnanostructures into functional networks, Science 291 (2001) 630-633
    
    [117] Y. Cui and C. M. Lieber, Functional nanoscale electronic devices assembled using siliconnanowire building blocks,Science 291 (2001) 851-853
    
    [118] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Logic gates and??computation from assembled nanowire building blocks, Science 294 (2001) 1313-1317
    
    [119] X. F. Duan, Y. Huang and C. M. Lieber, Nonvolatile memory and programmable logic frommolecule-gated nanowires, Nano Letters 2 (2002) 487-490
    
    [120] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz and S. T. Lee,High-density, ordered ultraviolet light-emitting ZnO nanowire arrays, Adv. Mater. 15 (2003)838-841
    
    [121] J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally and P. D. Yang, Singlenanowire lasers, J. Phys. Chem. B 105 (2001) 11387-11390
    
    [122] J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang and R. J. Saykally,Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nano Letters 4 (2004)197-204
    
    [123] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang,Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897-1899
    
    [124] H. J. Choi, J. C. Johnson, R. R. He, S. K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykallyand P. D. Yang, Self-organized GaN quantum wire UV lasers, J. Phys. Chem. B 107 (2003)8721-8725
    
    [125] J. C. Johnson, H. J. Chol, K. P. Knutsen, R. D. Schaller, P. D. Yang and R. J. Saykally, Singlegallium nitride nanowire lasers, Nature Materials, 1 (2002) 1-4
    
    [126] X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Single-nanowire electrically driven lasers,Nature 421 (2003) 241-245
    
    [127] F. Favier, E. C. Walter, M. P. Zach, T. Benter and R. M. Penner, Hydrogen sensors and switchesfrom electrodeposited palladium mesowire arrays, Science 293 (2001) 2227-2231
    
    [128] J. Kong, N. R. Franklin, C. W. Zhou, M. G.Chapline, S. Peng, Y. Cho and H. J. Dai, Nanotubemolecular wires as chemical sensors, Science 287 (2000) 622-625
    
    [129] Y. Cui, Q. Q. Wei, H. K. Park and C. M. Lieber, Nanowire nanosensors for highly sensitive andselective detection of biological and chemical Species, Science 293 (2001) 1289-1292
    
    [130] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka and R. S. Williams, Sequence-specific label-freeDNA sensors based on silicon nanowires, Nano Letters 4 (2004) 245-247
    
    [131] Z. L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials tonanodevices, Adv. Mater. 15 (2003) 432-436
    
    [132] E. Comini, G.Faglia, G.Sberveglieri, Z. W. Pan and Z. L. Wang, Stable and highly sensitive gassensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81 (2002) 1869-1871
    
    [133] Y. L. Wang, X. C. Jiang, Y. N. Xia, A Solution-Phase, Precursor route to polycrystalline SnO_2nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125(2003) 16176-16177
    
    [134] H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa and P. A. Bennett, In situ resistancemeasurements of epitaxial cobalt silicide nanowires on Si(110), Applied Physics Letters 86,233108(2005)
    
    [135] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, Single-crystal metallic nanowires andmetal/semiconductor nanowire heterostructures. Nature, 430 (2004) 61-65.
    
    [136] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, Synthesis and fieldemission properties of TiSi_2 nanowires, Appl. Phys. Lett 86 (2005) 243103
    
    [137] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff and J. R. Heath,Ultrahigh-Density Nanowire Lattices and Circuits, Science, 300 (2003) 112-115.
    
    [138] 裴立宅,唐元洪,陈扬文,张勇,郭池,硅纳米线纳米电子器件及其制备技术.电子元件??与材料,.23(10)(2004)44-47
    
    [139] Z. He, D. J. Smith, and P. A. Bennett, Endotaxial silicide nanowires, Physical Review Letters, 93,256102(2004)
    
    [140] Y. Chen, D. A. A. Ohlberg and R. S. Williams. Epitaxial growth of erbium silicide nanowires onsilicon(001), Materials Science and Engineering B 87 (2001) 222-226
    
    [141] R. Ragana, Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro and R. S. Williams, Ordered arraysof rare-earth silicide nanowires on Si(001) Journal of Crystal Growth, 251 (2003) 657-661
    
    [142] M. Kuzmin, P. Laukkanen, R. E. Perala, R. L. Vaara and I. J. Va(?)yrynen, Formation of ytterbiumsilicide nanowires on Si(001), Applied Surface Science 222 (2004) 394-398
    
    [143] Z. He, J. D. Smith, and P. A. Bennett, Epitaxial DySi_2 nanowire formation on stepped Si(111).Applied Physics Letters, 86(14) (2005) 143110.
    
    [144] J. H. Lee, Wirelike growth of self-assembled hafnium silicides: oxide mediated epitaxy,AppliedSurface Science 239 (2005) 268-272
    
    [145] P. A. Bennett, B. Ashcroft, Z. He and R. M. Tromp, Growth dynamics of titanium silicidenanowires observed with low-energy electron microscopy. J. Vac. Sci. Technol. B 20(6), (2002)2500-2504
    
    [146] Z. He, M. Stevens, D.J. Smith and P.A. Bennett, Epitaxial titanium silicide islands and nanowires,Surface Science 524 (2003) 148-156
    
    [147] M. Stevens, Z. He, D. J. Smith and P. A. Bennett, Structure and orientation of epitaxial titaniumsilicide nanowires determined by electron microdiffraction. J. Appl. Phys., 93(9) (2003)5670-5674.
    
    [148] C. P. Li, N. Wang, S. P. Wong, C. S. Lee and S. T. Lee, Metal silicide/silicon nanowires frommetal vapor vacuum arc implantation, Adv. Mater., 14(3) (2002) 218-221
    
    [149] A. M. Mohammad, S. Dey, K. K. Lew, J. M. Redwing and S. E. Mohney, Fabrication of cobaltsilicide nanowire contacts to silicon nanowires. Journal of the Electrochemical Society, 150(9)(2003) 577-580.
    
    [150] H. Kohno and S. Takeda. Infusing metal into self-organized semiconductor nanostructures. Appl.Phys. Lett., 83(6) (2003) 1202-1203
    
    [151] J. Luo, L. Zhang and J. Zhu. Novel synthesis of Pt_6Si_5 nanowires and Pt_6Si_5-Si nanowireheterojunctions by using Pt polycrystalline nanowires as templates. Adv. Mater., 15, 579 (2003).
    
    [152] K. S. Lee, Y. H. Mo,K. S. Nahm,H. W. Shim, E. K. Suh, J. R. Kim and J. J. Kim, Anomalousgrowth and characterization of carbon-coated nickel silicide nanowires, Chemical Physics Letters384(2004)215-218
    
    [153] J. F. Qi and Y. Masumoto, Copper silicide nanocrystals in silicon nanowires, Materials Research Bulletin 36 (2001) 1407-1415
    
    [154]马军,玻璃的节能特性及节能玻璃.玻璃,6(159)(2001)46-47.
    
    [155]丁志华,李恭宪,加大节能玻璃在建筑门窗中的推广应用力度,化学建材,2(2001)6-8.
    
    [156]刘起英,汪建勋,陈华,低辐射镀膜玻璃的现状及展望,玻璃,6(165)(2002)9-13.
    
    [157]姜燮昌,大面积反应溅射技术的最新进展及应用,真空,3(2002)1-9.
    
    [158]周美茹,低辐射镀膜玻璃-节能型门窗玻璃材料,中国玻璃,3(2003)31-33
    
    [159]徐美君,节能、透明的环保型低辐射玻璃, 建筑玻璃与工业玻璃,3(2002)9-21
    
    [160]J.H.Russell and J.N.Steve,Coated Glass Application and Markets.美国BOC公司出版
    
    [161] 莫建良,CVD法F掺杂SnO_2低辐射薄膜的制备、结构、性能及低辐射镀膜玻璃的产业化研 究,浙江大学硕士学位论文,(2003).
    
    [162] 徐淦卿,陈珏,程东杰,红外物理与技术,西安,西安电子科技大学出版社,1989.12
    
    [163] E. Kauer, Technical possibilities of solar energy utilization, Elektromeister & DeutschesElektrohandwerk, 50(17) (1975) 1039-1042.
    
    [164] M. Ritala, M. Lesketa, E. Rauhala and P. Haussalo, Atomic layer epitaxy growth of TiN thin films.J. Electrochem. Soc. 142(8) (1995) 2731-2732
    
    [165] 田民波编译,薄膜科学与技术手册(下),北京,机械工业出版社,(1991)48-49
    
    [166] G.Frank, E. Kostlin and H. Kostlin. Transparent heat-reflecting coatings based on highly dopedsemiconductors. Thin Solid Films, 77 (1981) 107-117
    
    [167] J. Szczyrbowski, A. Dietrich and K. Hartig, Bendable silver-based low emissivity coating on glass.Solar Energy Materials. 19(1989) 43-53
    
    [168] 杨邦朝,薄膜物理与技术,成都,电子科技大学出版社,1994
    
    [169] R. Clanget. Ionized imputity scattering in degenerate In_2O_3. Appl Phys. 2(5) (1973) 247-256
    
    [170] 王承遇,陶瑛,王波,玻璃表面的透明半导体薄膜,玻璃与搪瓷,27(4)(1999)50-56
    
    [171] G.Mavrodiev, M. Gajdardziska and N. Novkovski. Properties of SnO_:F films prepared on glass substrates by the spraying method. Thin Solid Films. 113 (1984) 93-
    
    [172] 殷顺湖,透明导电膜研究进展,材料导报,11(3)(1997)33-37
    
    [173] R. Kalbskopf. Continuous chemical vapour deposition of tin oxide. Thin Solid Films. 77 (1981)65
    
    [174] J. Szczyrbowski, G.Brauer, M. Ruske, H. Schilling and A. Zmelty, New low emissivity coatingbased on TwinMag sputtered TiO_2 and Si_3N_4 layers.. Thin Solid Films. 351 (1999) 254-259
    
    [175] J. Szczyrbowski, A. Dietrich and K. Hartig, Evaluation and control of the properties of thesputtered silver films for spectrally selective coatings. Solar Energy Materials. 6(1987) 103-111.
    
    [176] P. Grosse, R. Hertling and T. Muggenburg, Design of low emissivity systems based on a threelayer coating. Journal of Non-crystalline Solids. 218 (1997) 38-43
    
    [177] T. Minami, H. Nanto and S. Takata, Highly conductive and transparent ZnO thin films preparedby RF magnertron in an applied external DC magnetic field. Thin Solid Films. 124 (1985) 43-47
    
    [178] R. J. Martin-Palma and J. M. Martinez-Duart. Ni-Cr passivation of very thin films forlow-emissivity multilayer coatings. J Vac Sci Technol. A17(6) (1999) 3449-3451
    
    [179] M. Miyazaki and E. Ando. Durability improvement of Ag-based low emissivity coatings. Journalof Non-crystalline Solids. 178 (1994) 245-249
    
    [180] 张红,李越,低辐射镀膜玻璃的膜系结构及其特性,玻璃,27(3)(1999)39-41
    
    [181] M. Ruske, G.Brauer and J. Szczyrbowski, Properties of SnO_2 films prepared by DC and MF reactivesputtering, Thin Solid Films, 351 (1999) 146-150
    
    [182] 金灏,镀膜玻璃和ARICO公司镀膜技术,上海建材,3(1992)3-9
    
    [183] R. Gordon. Chemical vapour deposition of coatings on glass, Journal of Non-Crystalline Solids, 218 (1997)81-91.
    
    [184] C. Schaefer, G.Brauer and J. Szczyrbowski. Low emissivity coatings on architectural glass. Surface andCoatings Technology, 93 (1997):37-45
    
    [185] R. J. McCurdy. Successful implementation methods of atmospheric CVD on a glassmanufacturing line. Thin Solid Films. 351 (1999) 66-72.
    
    [1] K. Saito, Y. Higashi, T. Amazawa and Y. Arita, Reaction and film properties of selective titaniumsilicide low-pressure chemical vapor deposition. J. Electrochem. Soc. 141(7) (1994) 1879-1885
    
    [2] R. Mann and L. A. Clevenger, The C49 to C54 phase transformation in TiSi_2 thin films. J.Electrochem. Soc. 141(5) (1994) 1347-1350
    
    [3] K. Shenai, Novel refractory contact and interconnect metallizations for high-voltage andsmart-power applications. IEEE Transactions on Electron Devices, 37,2207-2220 (1990).
    
    [4] O. A. Fouad, M. Yamatazo, H. Ichinose and M. Nagano, Titanium disilicide formation by rf plasmaenhanced chemical vapor deposition and film properties. Applied Surface Science 206 (2003)159-166
    
    [5] V. Ilderem and R. Reif, Investigation of the effects of very low pressure chemical vapor depositedTiSi2 on device Electrical characteristics. J. Electrochem. Soc., 136(10) (1989) 2989-2993.
    
    [6] J. Lee and R. Reif, Plasma enhanced chemical vapor deposition of blanket TiSi_2 on oxide patternedwafers. J. Electrochem. Soc. 139(4) (1992) 1166-1170.
    
    [8] G. J. Reynolds, C. B. Cooper and P. J. Gaczi, Selective titanium disilicide by low-pressure chemicalvapor deposition. J. Appl. Phys. 65(8) (1989) 3212-3218.
    
    [9] R. P. Southwell, M. A. Mendicino and E.G. Seebauer, Optimization of selective TiSi_2 chemicalvapor deposition by mechanistic chemical kinetics. J. Vac. Sci. Technol. A 14(3) (1996) 928-934
    
    [10] K. Saito and Y. Arita, Effect of fluorine on surface morphology in Selective epitaxial TiSi_2 growthby plasma-enhanced chemical vapor deposition. J. Electrochem. Soc. 145(5) (1998) 1640-1644
    
    [11] J. P. Gambino and E. G. Colgan, Silicides and ohmic contacts. Materials Chemistry and physics 52(1998)99-146
    
    [12] J. S. Byun, S. J. Choi, J. J. Kim, J. T. Choi, J. Swenberg and R. Achutharaman, Selective titaniumsilicide deposition using SiH_4-TiCl_4-H_2 in low-pressure chemical vapor deposition and filmcharacterization, J. Electrochem. Soc. 145(11) 1998 3941-3950
    
    [13] W. Kaplan, A. Mouroux, S. L. Zhang and C. S. Petersson, A self-aligned silicide technology withthe Mo/Ti bilayer system. Microelectronic Engineering, 37/38 (1997) 461-466.
    
    [14] C. S. Ho, K. L. Pey, H. Wong, R. P. G. Karunasiri, S. J. Chua, K. H. Lee and L. H. Chan,Integration of SALICIDE process for deep-submicron CMOS technology: effect of nitrogen:argon-amorphized implant on SALICIDE formation. Materials Science and Engineering B51 (1998)274-279
    
    [15] R. Achutharaman, P. Hey and J. L. Regolini, Selective CVD of titanium silicide for raisedsource/drains. Semiconductor International, 19(11), (1996) 149-152
    
    [16] G. J. Reynolds, C. B. Cooper and P. J. Gaczi, Selective titanium disilicide by low-pressurechemical vapor deposition. J. Appl. Phys. 65(8) (1989) 3212-3218.
    
    [17] I.Barin,程乃良,纯物质热化学数据手册,北京,科学出版社,(2003)
    
    [18] 叶大伦,胡建华,实用无机物热力学数据手册,北京.冶金工业出版社,(2002),第二版
    
    [19] Y. Wang, T. I. Kamins, and B. Zhao, Polycrystalline silicon thin film and its application inintegrated circuits,2nd Ed., Science. Beijing, 2001. p. 16.
    
    [20] R. P. Southwell and E.G.Seebauer. SiH_4 on TiSi_2: an investigation of gas adsorption on metal-likecompounds. Surface Science. 329, (1995) 107-104.
    
    [21] R. Ditchfield, M.A. Mendicino and E.G. Seebauer, Adsorption of chlorine on TiSi_2: Application toetching and deposition of silicide films. J. Electrochem. Soc., 143(1) (1996) 266-271.
    
    [22] J. Du, P. Du, M. Xu, P. Hao. Y. Huang, G. Han, C. Song, W. Weng, J. Wang and G. Shen,Nucleation and growth of TiSi_2 thin films deposited on glass by atmospheric pressure chemicalvapor deposition, Journal of Applied Physics, 101,(2007) 033539.
    
    [23] 丁子上,王民权,潘守彝,林云飞,王曼莉,硅酸盐物理化学,北京,中国建筑工业出版社, 1980,7第一版
    
    [24] 胡赓强,蔡珣,材料科学基础,上海,上海交通大学出版社,2000第一版
    
    [25] PJ Meschter, DS. Schwartz, Silicide-matrix materials for high temperature applications, JOrganomet. Chem. (1989) 52-55.
    
    [26] D. P. Riley, C. P. Oliver, E. H. Kisi, In-situ neutron diffraction of titanium silicide, Ti_5Si_3, duringself-propagating high-temperature synthesis (SHS), Intermetallics 14 (2006) 33-38
    
    [27] Z. H. Tang, A. J. Thom, M. Akinc, Role of nitrogen on the oxidative stability of Ti_5Si_3 based alloysat elevated temperature, Intermetallics 14 (2006) 537-543
    
    [28] K. Das, Y. M. Gupta, A. Bandyopadhyay, Titanium silicide (Ti_5Si_3) synthesis under shock loading,Materials Science and Engineering A 426 (2006) 147-156
    
    [29] J. H. Schneibel, C. J. Rawn, Thermal expansion anisotropy of ternary titanium silicides based onTi_5Si_3, Acta Materialia, 52 (2004) 3843-3848
    
    [30] C. S. Byun, S. Bopark, D. K. Kim, W. Lee, C. Y. Hyun and P. J. Reucroft, Formation mechanismof titanium silicide by mechanical alloying. J. Mater. Sci. 36(2) (2001) 363-369
    
    [31] D. Szwagierczak, Thick film compositions based on titanium silicides for surge resistors CeramicsInternational 30 (2004) 757-764
    
    [32] C.Y. Kuo, Thick film system for surge protection-part v, in: Proceedings of ISHM Conference,Boston, (1994) 530-535.
    
    [1] K. Saito, Y. Higashi,T. Amazawa and Y. Arita, Reaction and film properties of selective titaniumsilicide low-pressure chemical vapor deposition. J. Electrochem. Soc. 141(7) (1994) 1879-1885
    
    [2] R. Mann and L. A. Clevenger,The C49 to C54 phase transformation in TiSi_2 thin films. J.Electrochem. Soc. 141(5) (1994) 1347-1350
    
    [3] D. Szwagierczak, Thick film compositions based on titanium silicides for surge resistors CeramicsInternational 30 (2004) 757-764
    
    [4] O. A. Fouad, M. Yamatazo, H. Ichinose and M. Nagano, Titanium disilicide formation by rf plasmaenhanced chemical vapor deposition and film properties. Applied Surface Science 206 (2003)159-166
    
    [5] V. Ilderem and R. Reif, Investigation of the effects of very low pressure chemical vapor deposited TiSi_2 on device Electrical characteristics. J. Electrochem. Soc., 136(10) (1989) 2989-2993.
    
    [6] J. Lee and R. Reif, Plasma enhanced chemical vapor deposition of blanket TiSi_2 on oxide patterned wafers. J. Electrochem. Soc. 139(4) (1992) 1166-1170.
    
    [7] 莫建良,CVD法F掺杂SnO_2低辐射薄膜的制备、结构、性能及低辐射镀膜玻璃的产业化研究. 浙江大学硕士学位论文,(2003).
    
    [8] G.J. Reynolds, C. B. Cooper and P. J. Gaczi, Selective titanium disilicide by low-pressure chemicalvapor deposition. J. Appl. Phys. 65(8) (1989) 3212-3218.
    
    [9] R. P. Southwell, M. A. Mendicino and E.G.Seebauer, Optimization of selective TiSi_2 chemicalvapor deposition by mechanistic chemical kinetics. J. Vac. Sci. Technol. A 14(3) (1996) 928-934
    
    [10] G.J. Reynolds, C. B. Cooper and P. J. Gaczi, Selective titanium disilicide by low-pressure chemicalvapor deposition. J. Appl. Phys. 65(8) (1989) 3212-3218.
    
    [11] PJ Meschter, DS. Schwartz, Silicide-matrix materials for high temperature applications, JOrganomet. Chem. (1989) 52-5.
    
    [12] D.P. Riley, C.P. Oliver, E.H. Kisi, In-situ neutron diffraction of titanium silicide, Ti_5Si_3, duringself-propagating high-temperature synthesis (SHS), Intermetallics 14 (2006) 33-38
    
    [13] Zhihong Tang, Andrew J. Thorn, Mufit Akinc, Role of nitrogen on the oxidative stability of Ti_5Si_3based alloys at elevated temperature, Intermetallics 14 (2006) 537-543
    
    [14] Kakoli Das, Yogendra M. Gupta, Amit Bandyopadhyay, Titanium silicide (Ti_5Si_3) synthesis undershock loading, Materials Science and Engineering A 426 (2006) 147-156
    
    [15] J.H. Schneibel, C.J. Rawn, Thermal expansion anisotropy of ternary titanium silicides based onTi_5Si_3, Acta Materialia 52 (2004) 3843-3848
    
    [16] 关振铎,张中太,焦金生,无机材料物理性能,北京,清华大学出版社,1992
    
    [17] P. Y. Du, C. L. Song, W. J. Weng, G.R. Han, G.Shen. Effects of carbon additions on crystallinity and resistivity in Si-C-H thin films deposited by CVDs. Journal of Physics and Chemistry of Solids 64 (2003) 777-784
    
    [18] J. Du, P. Du, M. Xu, P. Hao, Y. Huang, G. Han, C. Song, W. Weng, J. Wang and G. Shen, Nucleation and growth of TiSi_2 thin films deposited on glass by atmospheric pressure chemical vapor deposition, Journal of Applied Physics, 101,(2007) 033539.
    
    [19] 刘恩科,朱秉升,罗晋生,《半导体物理学》,西安,西安交通大学出版社.(2003),253-264
    
    [20] 郑国培,《有色光学玻璃及其应用》,北京,轻工业出版社,(1990),61-68
    
    [21] B. Karlsson. Optical classification of transparent heat-mirrors [J]. Optical Materials Technology for Energy Efficiency and Social Energy Conversion V. SPIE V653, (1986) 148-153.
    
    [22] 杜军,杜丕一,韩高荣,翁文剑,汪建勋,郝鹏,黄燕飞,晶相形成对TiSi_2薄膜光学性能 的影响,太阳能学报,27,(2006)1185-1190
    
    [23] S. Gray, M.H. Jacobs, C.B. Ponton, W. Voice, and H.E. Evans, A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti_5Si_3 layer, Materials Science and Engineering A 384, (2004) 77-82
    
    [1] Z. He, D. J. Smith, and P. A. Bennett, Endotaxial silicide nanowires, Physical Review Letters, 93, (2004)256102
    
    [2] H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa and P. A. Bennett, In situ resistancemeasurements of epitaxial cobalt silicide nanowires on Si(110), Applied Physics Letters 86, (2005)233108
    
    [3] C. P. Li, N. Wang, S. P. Wong, C. S. Lee and S. T. Lee, Metal silicide/silicon nanowires from metalvapor vacuum arc implantation, Adv. Mater., 14(3), (2002) 218-221
    
    [4] K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim and J. J. Kim, Anomalousgrowth and characterization of carbon-coated nickel silicide nanowires, Chemical Physics Letters384(2004)215-218
    
    [5] J. Luo, L. Zhang and J. Zhu, Novel synthesis of Pt_6Si_5 nanowires and Pt_6Si_5-Si nanowireheterojunctions by using Pt polycrystalline nanowires as templates. Adv. Mater., 15, (2003)579-581.
    
    [6] P. A. Bennett, B. Ashcroft, Zhian He and R. M. Tromp, Growth dynamics of titanium silicidenanowires observed with low-energy electron microscopy. J. Vac. Sci. Technol. B 20(6), (2002)2500-2504
    
    [7] Z. He, M. Stevens, D. J. Smith, P. A. Bennett, Epitaxial titanium silicide islands and nanowires,Surface Science 524 (2003) 148-156
    
    [8] M. Stevens, Z. He, D. J. Smith and P. A. Bennett, Structure and orientation of epitaxial titaniumsilicide nanowires determined by electron microdiffraction. J. Appl. Phys., 93(9), (2003)5670-5674.
    
    [9] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, Synthesis and fieldemission properties of TiSi_2 nanowires, Appl. Phys. Lett. 86, (2005) 243103
    
    [10] R. S. Wagner, and W. C. Ellis, Vapour-liquid-solid mechanism of single crystal growth. Appl.Phys. Lett. 4, (1964) 89.
    
    [11] A. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson and L. R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth. Nature materials, 3, (2004) 677-681
    
    [12] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, Ga_2O_3 nanowires prepared by physical evaporation. Solid State Commun. 109, (1999)677.
    
    [13]I.Barin,程乃良,《纯物质热化学数据手册》北京,科学出版社,(2003)
    
    [14] 叶大伦,胡建华《实用无机物热力学数据手册》北京,冶金工业出版社,(2002),第二版
    
    [15] J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, G.Han, W. Weng and G.Zhao, Self-induced preparation of TiSi nanopins by chemical vapor deposition, Nanotechnology, 18, (2007) 345605
    
    [1] Zhian He, David J. Smith, and P. A. Bennett, Endotaxial Silicide Nanowires, Physical Review Letters, PRL 93,256102 (2004)
    
    [2] H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, S. Hasegawa and P. A. Bennett, In situ resistancemeasurements of epitaxial cobalt silicide nanowires on Si(110),Applied Physics Letters 86,233108(2005)
    
    [3] Chi-Pui Li, Ning Wang, Sai-Peng Wong, Chun-Sing Lee and Shuit-Tong Lee, Metal Silicide/SiliconNanowires from Metal Vapor Vacuum Arc Implantation, Adv. Mater., 14, No. 3, (2002) 218-221
    
    [4] Kyung Sun Lee, Young Hwan Mo,Kee Suk Nahm, Hyun Wook Shim, Eun Kyung Suh, Jae RyoungKim and Ju Jin Kim, Anomalous growth and characterization of carbon-coated nickel silicidenanowires, Chemical Physics Letters 384 (2004) 215-218
    
    [5] H. Kohno and S. Takeda, Infusing metal into self-organized semiconductor nanostructures. Appl.Phys. Lett., Vol. 83, No. 6,(2003) 1202-1203
    
    [6] Jifa Qi and Yasuaki Masumoto,Copper silicide nanocrystals in silicon nanowires, MaterialsResearch Bulletin 36 (2001) 1407-1415
    
    [7] Jun Luo, Lu Zhang and Jing Zhu. Novel synthesis of Pt_6Si_5 nanowires and Pt_6Si_5-Si nanowireheterojunctions by using Pt polycrystalline nanowires as templates. Adv. Mater., 15, 579 (2003).
    
    [8] Yong Chen, Douglas A.A. Ohlberg and R. Stanley Williams, Epitaxial growth of erbium silicidenanowires on silicon(001), Materials Science and Engineering 587 (2001) 222-226
    
    [9] Regina Ragana, Yong Chen, Douglas A. A. Ohlberg, Gilberto Medeiros-Ribeiro and R. StanleyWilliams, Ordered arrays of rare-earth silicide nanowires on Si(001)Journal of Crystal Growth 251(2003) 657-661
    
    [10] M. Kuzmin, P. Laukkanen, R. E. Pera(?)la(?), R. L. Vaara and I. J. Va(?)yrynen, Formation of ytterbiumsilicide nanowires on Si(001), Applied Surface Science 222 (2004) 394-398
    
    [11] Jung-Ho Lee, Wirelike growth of self-assembled hafnium silicides: oxide mediated epitaxy,Applied Surface Science 239 (2005) 268-272
    
    [12] P. A. Bennett, B. Ashcroft, Zhian He and R. M. Tromp, Growth dynamics of titanium silicidenanowires observed with low-energy electron microscopy. J. Vac. Sci. Technol. B 20(6), (2002)2500-2504
    
    [13] Zhian He, M. Stevens, David J. Smith, P.A. Bennett, Epitaxial titanium silicide islands andnanowires, Surface Science 524 (2003) 148-156
    
    [14] M. Stevens, Zhian He, David J. Smith and P. A. Bennett, Structure and orientation of epitaxialtitanium silicide nanowires determined by electron microdiffraction. J. Appl. Phys., Vol. 93, No. 9,(2003) 5670-5674.
    
    [15] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, Synthesis and fieldemission properties of TiSi_2 nanowires, Appl. Phys. Lett. 86, 243103 (2005)
    
    [16] J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, G.Han, W. Weng and G.Zhao, Growth mechanism of TiSinanopins on Ti_5Si_3 by atmospheric pressure chemical vapor deposition, Journal of PhysicalChemistry C,111, (2007) 10814-10817
    
    [17] J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, G.Han, W. Weng and G.Zhao, Self-induced preparation ofTiSi nanopins by chemical vapor deposition, Nanotechnology, 18, (2007) 345605,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700