FFC法制备钛硅合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金具有质量轻、比强度高、耐蚀性强、抗氧化性好等优点,目前主要应用于航空、汽车、船舶、医疗、化工、建筑、体育及日常生活等方面。但现行Kroll法生产钛的工艺存在工序复杂、不能连续化生产等缺点,致使钛的成本居高不下,极大的限制了钛的广泛应用。剑桥大学提出的FFC法,具有生产流程短、成本低、无污染等优点,被认为是最有希望取代Kroll法的钛生产工艺。而FFC法在合金制备方面更有优势,可以由混合金属氧化物一步制备出钛合金。钛硅合金具有较好的高温稳定性、较高的高温强度和良好的抗氧化能力,可作为高温结构材料;同时由于其低电阻和高温稳定性,在集成电路接触和互连技术中发挥了重要的作用。
     本课题采用FFC法,由TiO2和Si02混合物来制备钛硅合金。实验过程主要包括阴极制备和电解两个部分。阴极制备流程包括如下步骤:均匀混合TiO2、SiO2粉末;添加1%(质量比)的聚乙烯醇作为粘结剂;20 MPa压力下压制成形;1200℃下烧结4h;烧结后的片体和钼丝、镍硅丝组装成复合阴极。适宜的电解条件为:以烧结的TiO2-SiO2片体为阴极,石墨坩埚为阳极,电解温度900℃、电解电压3.0 V。电解10 h制得了钛硅合金,经过XRD分析其成分为TiSi2和Si,同时发现钛硅的合金化反应经历了下面几个阶段:Ti5Si3→Ti5Si3+TiSi2→TiSi2→TiSi2+Si。
Titanium and its alloys have many desirable properties such as light weight, high strength, good corrosion and oxidation resistance etc, and have been used mainly in aviation, automobiles, ships,medicine, chemical industry, buildings, sports and daily life. The use of titanium has been greatly restricted because of the high production cost caused by the Kroll method which is of complicated procedures,intermittent operations and so on.The FFC method proposed by Cambridge University, has many advantages such as short production process, low cost and non-pollution and is believed as the most hopeful technology for sponge titanium production instead of the Kroll method. The FFC methode has even more advantages while for alloy preparation, because it can reduce the mixture of metal oxides to alloy by one step. Ti-Si alloy is used as construction materials owing to its good stabilility, strength and oxidation resistance at high temperature,and it also plays an important role in the contact and interlinkage technology of integrate circuit because of its low electrical resistivity and high-temperature stability.
     In this work, the mixture of TiO2 and SiO2 was used to produce Ti-Si alloy by the FFC method. The experiment progress mainly includes two parts:cathode preparation and electrolysis.The flow of cathode preparation is as followings:mixing TiO2 and SiO2 powder evenly, and adding 1%(mass ratio) polyvinyl alcohol as adhesive to the mixture; pressing the mixture to pellets at 20 MPa;sintering the pellets at 1200℃for 4 h; then connecting the sintered pellet, Mo wire and Ni-Si wire to form a cathode.The electrolysis conditions are optimized as follows:Sintered TiO2-SiO2 pellet was as the cathode and graphite crucible as anode. The electrolysis voltage and temperature are 3.0 V and 900℃.Ti-Si alloy was prepared after 10 hours' electrolysis. The electrolysis product was analysed by XRD(X-ray diffraction) and is consisted of TiSi2 and Si. It is also found that the alloying process of Ti-Si follows the followed stages:Ti5Si3→Ti5Si3+TiSi2→TiSi2→TiSi2+Si.
引文
1.孙康.金属钛粉及其制备方法[J],有色矿冶,1996,12(4):31-32.
    2.邓炬.钛-世纪回眸与展望[J],金属世界, 2000,21(4):2-3.
    3.唐帛铭.有色金属提取冶金手册[M],北京:冶金工业出版社,1992,3-5.
    4.孙康.钛提取冶金物理化学[M],北京:冶金工业出版社,2001,3-4.
    5.张英明,韩明臣,舒滢等.低成本钛合金制备技术研究进展[J],稀有金属快报,2007,26(7):7-11.
    6.罗庆文.有色冶金概论[M],北京:冶金工业出版社,1986,4.
    7.莫畏,邓国珠,罗方承.钛冶金[M],北京:冶金工业出版社,1998,281-334.
    8.张祖训,汪尔康.电化学原理和方法[M],北京:科学出版社,2000,55-56.
    9.吴全兴.日本钛合金研发及应用最新动向[J],稀有金属快报,2005,24(2):38-40.
    10.曹春晓.航空用钛合金的发展概况[J],航空科学技术,2005,4:3-6.
    11.张朋省,毛小南,赵永庆等.世界钛及钛合金产业现状及发展趋势[J],稀有金属快报,2007,26(10):1-6.
    12.汪汉臣.中国钛工业发展与评述[J],稀有金属快报,2007,26(11):1-6.
    13.蒋伟,赵金平,龚敏.钛及钛合金在防腐应用中的研究现状和前景[J],轻金属,2007,9:59-63.
    14.彭键.钛合金在航空应用领域的应用和发展[J],航空科学技术,2007,2:3-4.
    15.马慧娟.钛冶金学[M],北京:冶金工业出版社,1979,18-20.
    16. Michael F. Titanium extracted directly from TiO2[J], Chemical and Engineering News, 2002,15(39):12-13.
    17.高敬,屈乃琴.海绵钛生产工艺概述[J],钢铁钒钛,2002,23(3):44-48.
    18.郭汉杰.冶金物理化学教程[M],北京:冶金工业出版社,2004,8-15.
    19. Okabe T H, Waseda Y. Producing titanium through an electronically mediated reaction [J], Journal of Metals,1997,49(6):28-32.
    20. Okabe T H, Sadoway D R. Metallothermic reduction as an electronically mediated Reaction [J], Journal of Materials Research,1998,13:3372-3377.
    21.郭胜惠.熔盐电解TiO2制取海绵钛新技术研究[D],昆明理工大学,2004.
    22. Uda T, Okabe T H, Waseda Y, et al. Phase equilibria and thermodynamics of the system Dy-Mg-Cl at 1073 K [J]. Journal of Alloys and Compounds,1999,284(1-2):282-288.
    23.洪艳,沈化森,曲涛等.钛冶金工艺研究进展[J],稀有金属,2007,31(5):694-700.
    24. Kraft E H. Opportunities for low cost titanium in reduced fuel consumption, improved emissions, and enhanced durability heavy-duty vehicles [R], Washington:EHK Technologies,2002:31-38.
    25. Okabe T H, Oda T, Mitsuda Y. Titanium powder production by prefom reduction process(PRP) [J], Journal of Alloys and Compunds,2004,364:156.
    26.许原,白晨光,陈登福等.海绵钛生产工艺研究进展[J],重庆大学学报,2003,26(7):97-100.
    27. Ginatta M V. Process for the electrolytic production of metals [P], U.S. Patent:6074545, 2006-06-13.
    28. Ginatta M V. Why produce titanium by EW [J], Journal of Metals,2000,52(5):18-20.
    29. Okabe T H, Oishi T, Ono K. Preparation and characterization of extra-low-oxygen titanium [J], Journal Alloys and Compounds,1992,184(1):43-56.
    30. Fray D J, Farthing T W, Chen G Z. Removal of oxygen from oxides and solid solutions by electrolysis in a fused salt[P], UK Pat, PCT/GB99/01781,1998-06-05.
    31. Hirota K, Okabe T H, Saito F, et al. Electrochemical deoxidation of RE-0 (RE=Gd, Tb, Dy, Er) solid solution [J], Journal Alloys and Compounds,1999,282:101-108.
    32. Chen G Z, Fray D J, Farthing T W. Direct eleotrochemical reduction of titanium dioxide to titanium in molten chloride[J], Nature,2000,407(21):361.
    33.高桥恭,丸井勇冶.日本钛协会成50周年论文集[A],东京:日本钛协会,2002:149.
    34.赵志国,鲁雄刚,丁伟中等.利用固体透氧膜提取海绵钛的新技术[J],上海金属,2005,27(2):40-43.
    35.陈朝轶,鲁雄刚,李谦等.SOM法金属氧化物制取金属新技术[J],材料与冶金学报,2007,6(3):204-208.
    36.陈朝轶,鲁雄刚,李谦等.Ta205直接制备金属钽的研究[J],稀有金属,2007,31(3):306-310.
    37. Ono K, Suzuki R O. A new concept for production Ti sponge:Calciothermic reduction [J], JOM,2002,54(2):59-61.
    38. Wang S L, Li Y J. Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride [J], Journal of Electroanalytical Chemistry,2007,571:37-42.
    39. Chen G Z, Fray D J. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride [J], Journal of the Electrochemical Society,2002,149(11):E455.
    40. Dring K, Dashwood R, Inman D. Voltammetry of titanium dioxide in molten calcium chloride at 900℃ [J], Journal of the Electrochemical Society,2005,152(3):E104-E113.
    41. Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride [J], Electrochimica Acta,2005, 51:66-76.
    42. Alexander D T L, Schwandt C, Fray D J. Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride [J], Acta Materialia,2006,54:2933-2944.
    43.金烁,盖鑫磊,张梅等.熔盐电脱氧法制备金属及合金的研究进展[J],材料导报,2007,21(11):64-67
    44.李晴宇,杜继红,奚正平.金属锆的熔盐电脱氧制备[J],稀有金属材料与工程,2007,36(3):390-393.
    45.高筠,周正,王岭等.熔盐电解NiO制备Ni的机理探讨[J],化学工程师,2007,143(8):11-13.
    46. Li G M, Wang D H, Jin X B, et al. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission [J], Electrochemicstry Communications,2007,9:1951-1957.
    47.胡小峰,许茜.CaCl2-NaCl熔盐电脱氧法制备金属Ta[J],金属学报,2006,42(3):285-289.
    48. Liu Y K, Ma W H, Yang B, et al. Investigation of direct electrolytic reduction of solid SiO2 to Si with high purity [J], Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007,46:333-334.
    49. Kouji Y, Toshiyuki N, Yasuhiko I. Effect of electrolysis potential on reduction of solid silicon dioxide in molten CaCl2 [J], Journal of Physics and Chemistry of Solids,2005, 66:443-447.
    50. Kouji Y, Toshiyuki N, Rika H, et al. Direct electrolytic reduction of solid SiO2 in molten CaCl2for the production of solar grade silicon [J], Electrochimica Acta,2007,53:106-110.
    51.王淑兰,张华,庄立军.二氧化硅电脱氧反应的交流阻抗谱[J],东北大学学报,2007,28(4):537-540.
    52.赵炳建,王玲,崔广华.熔盐电脱氧法制备AB5型储氢合金的研究[J],山西化工,2008,28(1):5-8.
    53.朱用,马猛,王的华等.熔盐电还原固态混合氧化物低能耗制备TiNi合金[J],科学通报,2006,51(16):1966.
    54.陈远望.英美联合推进FFC-剑桥法的工业化生产[J],世界有色金属,12:57-58.
    55.秦超,吴汀,王连军等.SPS原位反应制备TiSi2基复合材料的微观结构和性能研究[J],无机材料学报,2008,23(2):209-212.
    56.陈贵清,韩杰材,赫晓东等.弱放热反应TiSi2燃烧合成的研究[J],粉末冶金技术,1998,16(40):251-255.
    57.徐向勤,杜军.硅化钛薄膜的制备及应用[J],电镀与涂饰,2007,26(9):29-32.
    58. Guenter S, Markus S, Dirk G, et al. Strain sensitivity of TiB2,TiSi2,TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges [J], Sensors and Actuators, 2006,126:287-291.
    59. Zhang S L, Michal O. Metal silicides in CMOS technology:past, present, and future trends [J], Solid State and Materials Sciences,2003,28(1):1-10.
    60. Yoo S L, Jong H L, Yeon W K, et al. Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries [J],Electrochimica Acta,2006,52:1523-1526.
    61.邹敏,朱世富,刘国钦等.熔盐电解Ti02制备海绵钛过程中电解温度的确定[J],成都理工大学学报,2006,33(3):327-330.
    62.梁英教,车荫昌,刘晓霞等.无机物热力学数据手册[M],沈阳:东北大学出版社,1994.
    63. LIU M F, LU S G, KAN S R, et al. Effect of electrolysis voltage on electrochemical voltage on reduction of titanium oxide to titanium in molten calcium chloride [J], Rare Metals,2007,26(6):547-551.
    64.刘国钦,邹敏,毛雪华等.真空条件下电解Ti02制备海绵钛中Ti02电极制备及工艺参数确定[J],攀枝花学院学报,2007,24(3):1-4.
    65.杜继红,奚正平,李晴宇等.Ti02阴极组分对电解的影响[J],稀有金属材料与工程,2007,36(3):347-350.
    66. Llango S, Raghavan G, Kalavathi S, et al. On the role of oxygen in the catalysis of C54 titanium disilicide by Ti5Si3 phase [J], Journal of Applied Physics,2005,98:07350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700