新型高性能受电弓材料的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路的电气化和高速化是目前世界铁路运输发展的趋势。随着我国列车速度的不断提高,研制性能优良的受电弓滑板材料成为我国研究学者追求的目标。炭滑板因其电阻率较大,而且强度不足易发生事故;浸金属滑板的制备工艺复杂,造价高;而传统的粉末冶金受电弓滑板对导线的磨耗严重。为了解决这些滑板存在的问题,本文尝试制备性能优良的陶瓷颗粒增强铜基复合材料。碳硅化钛(Ti3SiC2)作为一种新型结构-功能陶瓷材料,具有金属和陶瓷的优良性能,如低密度、高熔点、良好的导电导热性、高弹性模量、高断裂韧性、易加工等,同时还具有超低的摩擦系数和优良的自润滑性能。二硼化钛颗粒增强铜基复合材料也因具有高强度、高导电性以及良好的高温性能而广泛地应用于电接触材料。故课题将尝试将二硼化钛强化铜与碳硅化钛弥散强化铜结合,制备TiB2/Ti3SiC2/Cu复合材料。该材料将综合二硼化钛、碳硅化钛和铜的优良性能,从而成为一种值得研究的新型高性能受电弓滑板材料。
     本文重点研究了增强相二硼化钛及碳硅化钛颗粒表面化学镀铜,应用X-射线衍射结合扫描电镜研究增强相颗粒表面的镀铜相组成及显微结构特征。通过在二硼化钛、碳硅化钛表面化学镀铜来解决其与铜的润湿性问题;通过球磨混料法来解决各相的分散性问题。
     本文通过调整原料的起始配比、烧结温度、冷压成型压力及增强相碳硅化钛粒径等工艺参数,探索制备性能优异的TiB2/Ti3SiC2/Cu复合材料。重点研究了在850℃、950℃和1050℃三个温度点下,成型压力0-40MPa,Ti3SiC2粒径100~400目,采用无压烧结制备Ti3SiC2体积含量为10%、20%,二硼化钛体积含量为0-30%,其余为铜粉的复合材料的性能。在确定最优工艺与最佳配比后,进行无压烧结与热压烧结性能对比。应用四探针电阻率测量仪、HB-3000布氏硬度计、MTS-810型材料试验机及JB-5型冲击试验机研究复合材料的电性能和力学性能,应用扫描电镜结合电子能谱研究复合材料显微结构及断裂机制。
     研究结果表明,无压950℃,成型压力40MPa,保温2.0h,Ti3SiC2平均粒径75μm条件下,在碳硅化钛含量为10%,二硼化钛含量为4%时复合材料的综合性能最佳。其电阻率为7.437μΩ·cm,硬度为67.5HBS,拉伸强度为71.597MPa。在其它工艺相同情况下,采用热压烧结此试样,其综合性能远优于无压烧结试样。其电阻率为5.337μΩ·cm,硬度为95HBS,拉伸强度为258.94MPa,冲击韧性为3.47 J/cm2。通过金相照片可见在二硼化钛含量较低时,各增强相在基体中分散较均匀。通过断面的扫描电镜分析了复合材料的显微结构。初步探讨了碳硅化钛及二硼化钛作用在复合材料中的断裂机制。复合材料在拉伸和冲击载荷作用下,其断裂机制类似,为铜基体、TiB2-Cu界面处基体韧断与Ti3SiC2-Cu界面脆断的混合断裂。
Railroad's electrification and the high speed are the tendencies which the present world railway transportation develops. With the speed of the continuous improvement of our trains, developed excellent performance pantograph slider material has become a goal pursued by researchers. Carbon slider is prone to arouse accidents for its high electrical resistivity and low strength. Immersed metal carbon slider need complicated producing process which leads to high cost. And common pantograph slider prepared by powder metallurgy technology usually causes serious abrasion of the conducting wire. To solve these problems, this thesis will attempt to preduce excellent copper matrix composites reinforced by ceramic particles. Ti3SiC2 is a kind of novel structural-functional ceramics material, it combines the merits of both metals and ceramics. It has outstanding properties, such as low density, high melting point, nice electrical and thermal conductivity, high elastic modulus, high fracture toughness and machinability. And more significantly, it has very low friction coefficient and nice self-lubricating property. Copper matrix composites reinforced with TiB2 particles have been widely used as electrical contact materials because of its high strength, high electrical conductivity, and excellent high temperature. Therefore, this paper will try to combine the TiB2 reinforced copper and Ti3SiC2 dispersion strengthened copper, prepared the TiB2/Ti3SiC2 reinforced Cu composites. This material may integrate the excellent properties of TiB2, Ti3SiC2 and copper. So it becomes to a new material for pantograph slide plates worthy of study.
     In this thesis, we main studied electroless plating copper on TiB2 and Ti3SiC2. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were utilized to investigate the phase composition and the morphology characteristics of the products. This paper resolved the problem of wettability through electroless plating copper on TiB2 and Ti3SiC2. Mixture through the ball milling method to make it uniform dispersion.
     In this thesis, In order to find the ideal TiB2/Ti3SiC2 reinforced copper composite material, various raw materials ratios in volume fraction, different sintering temperatures, unequal pressing pressure and granularity of Ti3SiC2 were investigated. Under the three temperature points 850℃、950℃and 1050℃, Molding pressure ranges from 0 to 40MPa, granularity of Ti3SiC2 ranges from 100 to 400mesh, the performance of composite material which prepared by pressureless sintering, content Ti3SiC2 for 10% and 20%, TiB2 for 0-30%, the rest of the powder is copper were especially studied. Affer determining the optimum process and the best ratio, the performance of composite material which prepared by hot pressing compared with which prepared by pressureless sintering. Four-probe resistivity meter, HB-3000 Brinell hardness tester, the MTS-810 material testing machine and the JB-5 impact testing machine were utilized to investigate the electrical properties of composite materials and mechanical properties, the application of scanning electron microscopy(SEM) coupled with energy-dispersive spectroscopy (EDS) study of microstructure and fracture mechanism of composite materials.
     Results indicated that composite materials has best performance when pressureless sintering temperatures of 950℃, molding pressure of 30MPa, soaking time of 2.0h, Ti3SiC2 average granularity of 75μm, Ti3SiC2 volume content of 10%, TiB2 volume content is 6%. Resistivity, hardness, tensile strength of the composites respective is 7.437μΩ·cm,67.5HBS,71.597MPa. Wherein the other processes were same for the experiment, integrated performance of composite materials which prepared by hot pressing were better than the samples which prepared by pressureless sintering. And resistivity, hardness, tensile strength, toughness of the composites respective is 5.337μΩ·cm,95HBS,258.94MPa,3.47J/cm2. We can find each reinforcement phase in the matrix is more uniform dispersion by Metallographic photos when the content of TiB2 is lower. The microstructure of the composites was investigated by using SEM. And the fracture mechanism of the composites was analyzed. The breakage is due to tearing of matrix near Cu-TiB2 interface, in addition, the interfacial debonding and Ti3SiC2 cleavage crack have a prominent effect on the failure mechanism of composite under tensile and impact loads.
引文
[1]冯金柱.我国电气化铁路建设展望[J].铁道知识,2003(5):12-13
    [2]李强,陈敬超,孙加林.一种新型滑动集电材料的研制及性能研究[J].金属成形工艺,2003,21(3):28
    [3]刘军.铜基复合材料受电弓滑板的制备及其摩擦磨损性能研究[D].湖南大学,2007.
    [4]陈绚,吴柏秋.高速受流质量标准的讨论[J].机车电传动,2000(1):40-43
    [5]潘连明,张国荣,钱中良.电力机车受电弓滑板[J].机车车辆工艺,2001(3):1-4
    [6]于正平,张弘,吴鸿表,等.高速电气化铁路接触网-受电弓系统的研究[J].中国铁道科学,1999,20(1):69-71
    [7]迟春阳,周成学,王家襄.电力机车滑板材料的发展[J].炭素,1999,(4):4143
    [8]严石,梅炳初,周卫兵.新型受电弓滑板材料的研究[J].机车电传动,2009(6):21-23
    [9]钱中良,盛伟,张枝苗.碳滑板发展概况及我国的研究进展[J].机车电传动,2003(增刊):5-6
    [10]冀盛亚,孙乐民,上官宝,张永振,等.受电弓滑板材料的研究现状及展望[J].热加工工艺,2009(6):80-83
    [11]侯明,孙乐民,李爱娜.电力机车受电弓滑板的现状[J].粉末冶金技术,2006,(03):223-226
    [12]Yoshitada Watanabe. Sliding contact characteristics between composite materials containing layered solid lubricants and carbon. wear,1992,155(2):237-249
    [13]卓钺,刘希从,文思维.受电弓滑板用轻质高碳-石墨/铝复合材料[J].机车电传动,2003,(B 12):37-38
    [14]胡建红,陈敬超,李强.电力机车用滑动集电材料的研究及其选用[J].电工材料,2004,(1):39
    [15]Chi Ch Y, Zou Ch X, Wang J X et al.Development in material of electric locomotive slide.Charcoal,1999,16(4):40-42
    [16]Zhang X L. Survey and analysis to electric locomotive pantograph slide plate. China Railway, 1996,24(11):16-18
    [17]ShunichiKubo, KojliKato. Effect of Arc Discharge on the Wear Rate and Wear Mode Transition of a Copper-impregnated Metalized Carbon Contact Strip Sliding Against a Copper Disk [J].Tribology International 1999(32):367-377
    [18]ShunichiKubo, KojlKato.Effect of Arc Discharge on Wear Rate of Cu-impregnated Carbon Strip in Unlubricated Sliding against Cu Trolley under Electric Current [J]. Wear,1998(216): 172-178.
    [19]张晓娟,孙乐民.受电弓滑板和接触网导线材料的现状及展望[J].河南科技大学学报(自然科学版),2006,(06):4-7
    [20]钱中良.粉末冶金电力机车受电弓滑板的研究概况[J].粉末冶金工业,2007,(04):43-46
    [21]戴春意,俞明昌.电力机车受电弓滑板的选用[J].机车电传动,1998,(3):39
    [22]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势[J].材料导报,2003(1):18-20
    [23]肖军,张鹏,杜云慧,刘汉武.电力机车受电弓滑板材料的发展[J].铁道机车车辆,2005(6):65-68
    [24]黄岭茂.在铜质接触网区段电力机车使用铜基粉末冶金滑板效果良好[J].机车电传动,1994(5):57-58
    [25]黄岭茂.在铜质接触网区段电力机车使用铜基粉末冶金滑板效果良好[J].机车电传动,1995(3):28-30
    [26]金永平,郭斌,郑艾龙,等.铜基受电弓滑板试件电阻率和磨损性能研究[J].哈尔滨工业大学学报,2003(4):44 1
    [27]Pay Yih. Discontinuously reinforce copper-matrix composites by powder metallurgy.Ph.D.dissertation. State university of New York at Buffalo.1996.13-20.
    [28]高立强.Ti3AlC2及其与Cu的复合材料的制备与性能[D].北京交通大学,2007.
    [29]方俊鑫主编,固体物理(上册),高等教育出版社,1981.
    [30]韩海军.金属基复合材料的研究现状[J].科技情报开发与经济,2005,15(19):171-172
    [3 1]程雪利,赵波,刘传绍.颗粒增强金属基复合材料的制备进展[J].现代制造工程,2005,(9):5-8
    [32]湛永钟.非连续增强铜基复合材料的研究现状[J].材料开发与应用,2004,20(4):41-46
    [33]启明.金属基复合材料[J].金属功能材料,2005,(3):4748
    [34]赵程,罗昆,张恒.复合材料的研究现状及展望[J].浙江万里学院学报,2005,18(2):103-107
    [35]宋伟.金属基复合材料的发展与应用[J].铸造设备研究,2005,(5):48-50
    [36]马彦忱.颗粒增强金属基复合材料[J].江苏冶金,2004,(32)1:54-57
    [37]孙跃军,仲伟深,时海.金属基复合材料的研究现状与发展[J].铸造技术,2004,(25)3:158-160
    [38]李凤平.金属基复合材料的发展与研究现状[J].玻璃钢/复合材料,2004,(1):48-52
    [39]律恕章.浅谈我国弥散铜的现状与展望[J].铜加工,1997,67(3):1-3
    [40]曹明盛.物理冶金基础[M].北京冶金工业出版社,1984.
    [41]卢光熙,侯增寿.金属学教程[M].上海:上海科学技术出版社,1985.198-311.
    [42]武建军,雷廷权,张运.弥散强化铜基复合材料制备工艺[J].粉末冶金技术,1999,17(3):195-200
    [43]周国洪.高强度高导电Al2O3/Cu复合材料的研究:[硕士学位论文].西北工业大学,2002.
    [44]徐磊.新型真空内氧化工艺制备Cu-Al2O3复合材料及其组织与性能的研究:[硕士学位论文].西安理工大学,2002.
    [45]I.A.Ibrahim, F.A.Mohamed, E.J.Lawernia, Particulate reinforced metal matrix composites-a review, Journal of Materials Science,1991,26,1137-1156.
    [46]J.R.groza, J.G.Gilbeling, Principle of particle selection for dispersion-strengthened copper, Mater.Sci.Eng,1993, A171,115-125
    [47]Tang K, Wang C-A, Huang Y, et al. An X-ray Diffraction Study of the Texture of Ti3SiC2 Fabricated by Hot Pressing.J. Euro. Ceram. Soc,2001,21(5):617-620.
    [48]Jeitschlo, H. Nowotny. Ein Neuer Komplexcarbid-Typ [J].Monatash Chem.1967 (29)
    [49]纪嘉明,周飞,李中华,等.TiB2和ZrB2晶体结构与性能的电子理论研究[J].中国有色金属学报,2000,10(3):358
    [50]WJeitschko and H.Nowotny.Die Kristallstructur von Ti3SiC2-Ein Neuer Komplxcarbid-Typ, Monatsh.Fur Chem.1967.98:329-37.
    [51]Kisi.E.K, Crossley.J.A.A, Myhra.S, et al. Structure and Crystal-chemistry of Ti3SiC2.Phys.Chem.sol.1998.59:1437-1443.
    [52]Amer.M, Barsoum.M.W, EI-Raghy.T, Wiess.I, et al. Raman Spectrum of Ti3SiC2.Applphys.1998.84:5817-5819.
    [53]Y. Zhou, B. Chen, X. Wang, C. Yan. Mechanical properties of Ti3SiC2 particulate reinforced copper prepared by hot pressing of copper coated Ti3SiC2 and copper powder. Materials Science and Technology,2004,20:661-665
    [54]马向东.硼酸一氧化硼系统纳米摩擦磨损特性研究[J].机械工程材料,2000,24(1):11-13
    [55]Jiaoqun Zhu, Bingchu Mei, et al.Synthesis of single-phese polycrystalline Ti3SiC2 and Ti3AlC2 by hot pressing with the assistance of metallic Al or Si Materials Letters.2004, 58(5):588-666
    [56]肖鹏.预氧化法制备Cr2O3/Cu复合材料及其组织与性能的研究:[硕士学位论文].西安理工大学,2003:1-2
    [57]贾燕民,丁秉钧.制备弥散强化铜的新工艺[J].稀有金属材料与工程,2001,29(2):141-143
    [58]朱和国,王恒志,吴中庆.a-Al2O3,TiB2颗粒增强铝基复合材料的XD合成[J].金属学报,2001,37(3):321-324
    [59]马明臻.原位复合TiCp/LD7复合材料的组织与力学性能[J].材料工程,2000,3:28-30
    [60]阵杨滨,许芳,张济山.铝熔体中原位合成TiC的动力学分析[J].稀有金属材料与工程,2001,30(4):241-244
    [61]张中宝,许少凡.TiB2表面镀铜工艺[J].电镀与精饰,2006,(06):34-37
    [62]S.M.El-Raghy and A.A. Abo-Salama, the Electrochemistry of Electroless Deposition of Copper.J.Electrochem. Soc.,1979,126:171
    [63]M.Paunovic, Potentionstatic High Over potential Studies of Copper Deposition from Electroless Copper Solution. J.Electrochem. Soc.1985,132:1155
    [64]P.Bindra and J.Roldan, Mechanism of Electroless Metal Plating-Mixed Potential Theory and the Interdependence of Partial Reaction.J.Appl. Electrochem,1987,17:1254
    [65]Shenwei; Depositing Process of Electroless Cu Plating and Properties of Deposition. journal of Materials Protection,2000,33(1):33-35
    [66]Bindra P,White J.R.Chapter 12, Fundamental Aspects of Electroless Copper Plating, Electroless Plating, Fundamentals and Applications.Florida,AESF,1990.
    [67]Paunovic M.Kinetics and Mechanism of Electroless Metal Deposition In Proceedings of The Symposium on Electroless Deposition of Metals and Alloys.New Jersey,Esc Inc 1988.88-12
    [68]张中宝.陶瓷颗粒化学镀铜及陶瓷颗粒/石墨—铜基复合材料组织和性能研究[D].合肥工业大学,2007
    [69]Rorabacher D.B.,Turan T.S., Defear J.A.Steric Effects in Chelation Kinetics.Inorganic Chemistry,1968,8(7):1498
    [70]Oita Masahiro, Matsuoka Masao, Lwakura Chiaki.Deposition Rate and Morphology of Electroless Copper Film from Solutions Containing 2,2 prime-dipyridyl.Electrochimica Acta 1997,42 (9):1435-1440
    [71]高立强,周洋,翟洪祥,等.Ti3AlC2/Cu复合材料的制备及其性能研究[J].稀有金属材料与工程,2007,(S 1):682-684
    [72]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.335-340.
    [73]陈树川.材料物理性能[M].上海:上海交通大学出版社,1988.201-280.
    [74]董仕节,史耀武,雷永平.TiB2含量对TiB2/Cu复合材料性能的影响[J].热加工工艺,2002,(03):47-49
    [75]黄锡文.电接触材料导电性探讨[J].电工合金,1998(3):26-32
    [76]杨淑霞.CNTs/Ti3SiC2/Cu复合材料组织及性能研究.武汉理工大学[硕士论文]2009.5.
    [77]潘保武,赵捍东.纳米晶W-Cu合金粉体的冷压成形研究[J].材料科学与工艺,2000,8(1):80-85
    [78]Leon L, Mishnaevky J. Acta Materialia,2004,52 (14):4177-4188
    [79]郭成,程羽,尚春阳,等.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,200 1,1 8(4):54-57
    [80]Taya M, Arsenault R J.Metal matrix composites, Thermomechanical behavior, Pergamon Press, Ox-ford, United Kingdom,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700