APCVD法制备硅化钛纳米线、薄膜及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨入21世纪随着平板显示技术(FPD)飞速发展,需要更低电阻率的材料作为FPD薄膜晶体管的接触电极,以提高响应速率、降低功耗。传统的场致发射平板显示器(FED)的微尖锥场发射体制作成本高、易与环境气体反应,限制了其工业化。采用低成本的方法在玻璃上制备高导电性的硅化钛薄膜并在薄膜层上生长纳米线能够有效的解决这些问题,极大的推动平板显示技术进一步发展。
     本论文采用常压化学气相沉积法(APCVD)以SiH_4和TICl_4为前驱体在玻璃衬底上一次性制备出大面积硅化钛薄膜/纳米线复合结构,运用XRD、SEM、TEM、EDX、四探针电阻仪、紫外可见光谱仪等手段对样品的结构和性能进行了测试和分析。讨论了薄膜中晶相的形成过程和机理,以及薄膜层上纳米线的形成和生长机理。成功实现了硅化钛纳米线在相应薄膜层上的生长。
     结果表明,APCVD法在玻璃基板上沉积低电阻硅化钛(TiSi_2)薄膜的过程由前驱体SiH_4和TiCl_4的化学反应控制。通过调制前驱体不同的反应进程,使生成TiSi_2的化学反应在沉积过程中为主导,促进薄膜中TiSi_2晶相的形成,从而得到电阻率较低的薄膜,典型样品的电阻率为37μΩ·cm。TiSi_2薄膜在玻璃基板上的形成过程是,SiH_4和TiCl_4在气相反应直接形成TiSi_2晶核,而后沉积在玻璃衬底的表面,随着沉积时间的延长,晶粒逐渐长大,堆积变得致密,结构也趋于完整,薄膜的电阻率也随着降低。通过控制前驱体不同的化学反应,提高低阻相TiSi_2的在薄膜中的含量,降低薄膜电阻率,可以得到红外高反射率的薄膜。
     APCVD法成功的在玻璃基板上一次性制备出大面积硅化钛薄膜/纳米线复合结构,实现了高质量、高密度的硅化钛纳米线在薄膜层上的生长。正交晶系的TiSi方形纳米线(RNWs)截面为矩形,长约几微米,宽、高介于20-40nm,生长方向是[011]。纳米线以气/固模式生长,TiSi_2薄膜沉积完成后,控制残余前驱体SiH_4和TICl_4的反应,使新相的纳米岛在TiSi_2薄膜中的颗粒上形成,在TiSi纳米岛的自诱导作用下,TiSi晶体开始生长,此后为保持较低的表面能,晶体结构的各向异性使TiSi在(011)晶面上优先生长,最终导致了沿[011]方向生长的TiSi方形
The Flat Panel Displays (FPDs) are rapidly developing in 21st century. Novel materials with the lower resistivity are required for contact electrodes of the FPDs to enhance the respond performance. Besides, Fabrication of the field-emitters of Field Emission Displays (FEDs) is too complex to step forward. The combination of conductive thin films and nanowires deposited on large area glass by simple methods with low cost will solve the above problems.In this thesis, the films and nanowires of titanium silicides were prepared on the glass substrate by atmosphere pressure chemical vapor deposition (APCVD), using SiFLt and TiCl_4 as precursors. XRD, FESEM, EDX, UV-VIS spectrometer and Four-point probe were employed to characterize structure and properties of the films, respectively. The phase formation in the films and CVD reaction were studied. The formation and growth of TiSi nanowires were also clarified.The results reveal that the deposition of the films is determined by CVD reaction between SiH_4 and TiCl_4.Via controlling the CVD reaction to promote the TiSi_2 formation and depress the Ti_5Si_3 formation at the same time, the TiSi_2 films can be gained with the low resistivity. The mechanism of the films deposition is described as below: SiFLt and TiCl_4 directly reacted in the vapor phase at first, and then the TiSi_2 grains deposited on the glass substrate. The stack density of the TiSi_2 crystalline phase gradually increased and the particles grew up. The films came to continuous and uniform, resulting in the low resistivity. The infrared reflection relys much on the phase formation in the films. Improving the concentration of the TiSi_2 crystalline phase, decreasing the sheet resistance will enhance of the infrared reflection of the TiSi_2 films.
    The TiSi crystalline nanowires with the orthorhombic structure were prepared on the TiSi2 films deposited on glass substrate. The length of the nanowires is more than several micrometers with the width between 20nm and 40nm. The growth direction is [011]. The growth process involves the self-induced growth of TiSi nanowires via the 'vapor-solid' (VS) growth mode. In the initial stage, the TiSi crystalline nanoislands are formed on TiSi2 particles. After that, an intrinsically anisotropic crystallographic structure of the TiSi crystalline results in the growth along [011] direction of nanowires. The silicide nanoneedles, core-sheath nanowires are also prepared by APCVD.Moreover, nanowires and films of titanium silicides are also prepared on Si (111) substrate. The nanowires growth on films is not affected by underlying substrate.
引文
[1] Murarka SP. Silicides for VLSI Application Academic, 1983.
    [2] Kittl JA, Hong QZ. Self-aligned Ti and Co silicides for high performance sub-0.18 mm CMOS technologies. Thin Solid Films 1998;320: 110-21.
    [3] 曲喜新等.电子薄膜材料科学出版社,1996.
    [4] Zhang SL, Ostling M. Metal Silicides in CMOS Technology: Past, Present, and Future Trends. Critical Reviews in Solid State & Materials Sciences 2003;28(1): 1-129.
    [5] Tung RT. Schottky-Barrier Formation at Single-Crystal Metal-Semiconductor Interfaces. Physical Review Letters 1984;52(6): 461.
    [6] Zhang S-L, Smith U. Self-aligned Silicides for Ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi. J. Vac. Sci. Technol. A 2004;22(4): 1361-62.
    [7] Ling TGI, Montelius L. Metal silicides as a novel electrode material in electrochemical sensors. Sensors and Actuators B-Chemical 2000;70(1-3): 83-86.
    [8] Fleischauer MD, Topple JM, Dahna JR. Combinatorial investigations of Si-M (M=Cr plus Ni, Fe, Mn) thin film negative electrode materials. Electrochemical and Solid State Letters 2005;8(2): A137-A40.
    [9] Kim YL, Lee HY, Jang SW, Lim SH, Lee S J, Balk HK, Yoon YS, Lee SM. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries. Electrochimica Acta 2003;48(18): 2593-97.
    [10] Gambino JP, Colgan EG. Silicides and ohmic contacts. Materials Chemistry and Physics 1998;52(2): 99-146.
    [11] Reynolds GJ, C. B. Cooper I, Gaczi PJ. Selective titanium disilicide by low-pressure chemical vapor deposition. Journal of Applied Physics 1989;65(8): 3212-18.
    [12] Saito K, Higashi y, Amazawa T, Arita Y. Reaction and Film Properties of Selective Titanium Silicide Low-Pressure Chemical Vapor Deposition. Journal of the Electrochemical Society 1994;141 (7): 1879-85.
    [13] Tedrow PK, Ilderem V, Reif R. Low pressure chemical vapor deposition of titanium silicide. Applied Physics Letters 1985.
    [14] Tedrow PK, Ilderem V, Reif R. Low pressure chemical vapor deposition of titanium silicide. Applied Physics Letters 1985;46(2): 189-91.
    [15] Fouad OA, Uddin NMD, Yamazato M, Nagano M. RF-plasma enhanced CVD of TiSi2 thin films: effects of TiCl4 flow rate and RF power. Journal of Crystal Growth 2003;257(1-2): 153-60.
    [16] Fouad OA, Yamazato A, Hiroshi A, Era A, Nagano A. Formation of titanium silicide thin films on Si(100) substrate by RF plasma CVD. Surface & Coatings Technology 2003;169: 632-35.
    [17] Fouad OA, Yamazato M, Ahagon H, Nagano M. Effect of in situ H-2-plasma cleaning on TiSi2 film properties in plasma enhanced chemical vapor deposition. Materials Letters 2003;57(19): 2965-69.
    [18] Fouad OA, Yamazato M, Era M, Nagano M, Hirai T, Usui I. Preparation and properties of TiSi2 thin films from TiC14/H-2 by plasma enhanced chemical vapor deposition. Journal of Crystal Growth 2002;234(2-3): 440-46.
    [19] Fouad OA, Yamazato M, Ichinose H, Nagano M. Titanium disilicide formation by rf plasma enhanced chemical vapor deposition and film properties. Applied Surface Science 2003;206(1-4): 159-66.
    [20] Fouad OA, Yamazato M, Nagano M. Investigation of RF power effect on the deposition and properties of PECVD TiSi2 thin film. Applied Surface Science 2002;195(1-4): 130-36.
    [21] Saito K, Arita Y. Cause of Aligned-Orientation Growth of Titanium Silicide in Plasma Enhanced Chemical Vapor Deposition. Journal of the Electrochemical Society 1996;143(11): 3778-84.
    [22] West GA, Beeson KW, Gupta A. Laser-induced chemical vapor deposition of titanium silicide films. Journal of vacuum science & technology. A 1985;3(6): 2278-82.
    [23] Hensel JC, Levi AFJ, Tung RT, Gibson JM. Transistor action in Si/CoSi[sub 2]/Si heterostructures. Applied Physics Letters 1985;47(2): 151-53.
    [24] 裴立宅等.硅纳米线纳米电子器件及其制备技术.电子元件与材料2004;23(10):44-47.
    [25] 阙端麟,陈修治.硅材料科学与技术浙江大学出版社,2002.
    [26] Preinesberger C, Pruskil G, Becker SK, Dahne M, Vyalikh DV, Molodtsov SL, Laubschat C, Schiller F. Structure and electronic properties of dysprosium-silicide nanowires on vicinal Si(001). Applied Physics Letters 2005;87(8).
    [27] Zhian H, David JS, Bennett PA. Epitaxial DySi[sub 2] nanowire formation on stepped Si(111). Applied Physics Letters 2005;86(14): 143110.
    [28] Zhou W, Wang SH, Ji T, Zhu Y, Cai Q, Hou XY. Growth of erbium silicide nanowires on Si(001) surface studied by scanning tunneling microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006;45(3B): 2059-62.
    [29] Jun L, Lu Z, Jing Z. Novel synthesis of Pt6Si5 nanowires and Pt6Si5-Si nanowire heterojunctions by using polycrystalline pt nanowires as templates. Advanced Materials 2003;15(7-8): 579-81.
    [30] Mohammad AM, Dey S, Lew KK, Redwing JM, Mohney SE. Fabrication of cobalt silicide nanowire contacts to silicon nanowires. Journal of the Electrochemical Society 2003;150(9):G577-G80.
    [31] Lee KS, Mo YH, Nahm KS, Shim HW, Suh EK, Kim JR, Kim JJ. Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chemical Physics Letters 2004;384(4-6):215-18.
    [32] Li CP, Wang N, Wong SP, Lee CS, Lee ST. Metal silicide/silicon nanowires from metal vapor vacuum arc implantation. Advanced Materials 2002;14(3):218-+.
    [33] Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures (vol 430, pg 61, 2004). Nature 2004;430(7000):704-04.
    [34] Lee CY. Selective Formation of Titanium Silicide by Chemical Vapor Deposition Using Titanium Halides and Silicon Wafer as the Precursors. Journal of Materials Synthesis and Processing 1998;6(1):55-59.
    [35] Hiroyuki O, Iwao M, Rei H, Yoshikazu H, Shuji H, Bennett PA. In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110). Applied Physics Letters 2005;86(23):233108.
    [36] Xiang B, Wang QX, Wang Z, Zhang XZ, Liu LQ, Xu J, Yu DP. Synthesis and field emission properties of TiSi[sub 2] nanowires. Applied Physics Letters 2005;86(24):243103.
    [37] Chen LJ. Metal silicides: An integral part of microelectronics. Jom 2005;57(9):24-30.
    [38] Ito K, Hayashi T, Nakamura H. Electrical and thermal ransition metal 5-3 silicides Ti_5Si_3. Intermetallics 2004;12:443-50.
    [39] Osburn CM, Tsai JY, Sun J. J. Electron. Mater. 1996;25:1275.
    [40] Ebisawa J, Ando E. Solar control coating on glass. Current Opinion in Solid State & Materials Science 1998;3:386-90.
    [41] Karlsson B. Optical classification of transparent heat-mirrors. Optical Materials Technology for Energy Efficiency and Solar Energy Conversion V 1986;653:148-53.
    [42] Shenai K. Novel refractory contact and interconnect metallizations for high-voltage and smart-power applications. Electron Devices, IEEE Transactions on 1990;37(10):2207-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700