碳饱和熔铁中Ti(C,N)析出规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着高炉冶炼的进一步强化,加快了高炉炉缸、炉底的侵蚀,尤其炉役后期,炉底炉缸水温超标的现象经常发生。高炉是冶炼强化的基础,如何延长高炉寿命已成为我国炼铁生产中一个十分重要的问题。在高炉中加入一定量的含钛物料可以起到保护高炉、延长高炉寿命的作用,自上世纪80年代我国高炉开始应用含钛物料护炉以来,该项技术已得到广泛的应用,成为维护高炉炉缸、炉底的重要措施。在含钛物料护炉的高炉冶炼过程中,高炉内含钛量过低时,达不到护炉效果;含钛量过高时,易造成高炉内渣铁粘度过大,不利于高炉冶炼。为了达到最佳的护炉效果与经济效益,熔铁中钛要多少含量时才有Ti(C,N)的析出,不是很清楚,大多采用热力学数据进行预测,因而对含钛物料护炉的相关理论还待进一步研究,含钛物料护炉操作的科学性、实践性有待进一步完善。
     本实验采用过饱和析出法,模拟高炉目前的冶炼状况对熔铁中Ti(C,N)的析出规律进行研究,得到了多元系Fe-C_(sat)-Ti-(N)-j(j=Si、S、P、V、Mn等)中钛溶解度的数学表达式;温度、氮分压、Si、V、Mn等对钛溶解度的影响。结果表明:在实验温度1633K~1753K范围内,钛溶解度随着温度的升高而增大;在氮气气氛中,钛溶解度随着氮分压的增大而降低。当温度一定时,钛溶解度随着硅含量的增加而降低;随着锰、钒含量的增加而增大。
     通过试样表面成分的能谱分析发现,Ti(C,N)沉积在坩埚底部多,而铁液表层、坩埚侧面均较少。当熔铁中钛、碳(氮)达到过饱和时,TiC(TiN)能以晶体形式析出,主要包括两个过程:(1)成核阶段;(2)晶核长大阶段。在TiC与TiN形成的理想固溶体Ti(C,N)中,经推导得到Ti(C,N)中TiC的摩尔分数与氮分压、温度的关系式,N_(TiC)=1/(1+P_(N_2)~(1/2)×e~((18495/T)-10.1))。在实验温度范围内,当P_(N_2)一定时,N_(TiC)随着温度的升高而增大;当温度一定时,N_(TiC)随着P_(N_2)增大而减少。
     对TiC、TiN含量与铁液成分的关系,研究结果表明,在一定温度下,当硅、钒
    含量一定时,TiC含量随氮分压的增大而减少;当氮分压一定时,TiC、TiN含量随硅、钒含量的增加而减少。
In recent years, hearth of blast furnace is rapidly eroded with intensified operation of blast furnace, especially anaphase of campaign; water temperature of blast furnace hearth is often higher than usual. Blast furnace is basis of intensified operation, how to prolong BF life has become a serious problem in China's ironmaking. Titanium-bearing materials can be used for protecting blast furnace and prolonging BF life. They had been used to protecting blast furnace from 1980s, the technique has widely applied and become an important way to protect hearth of blast furnace. In the course of blast furnace smelting, when titanium-bearing materials are not enough, they can not to protect blast furnace; when titanium-bearing material are redundant, easily resulting in outrageous viscosity of molten iron, which is not good for blast furnace smelting. In order to achieve optimal effect of protecting blast furnace and economic benefit, Ti (C, N) can deposit when what is titanium content in molten iron, it is not clear, predication is often carried out by thermodynamic data, therefore, correlative theory of titanium-bearing materials for protecting blast furnace should be further investigated, scientificaalness and practicality of titanium-bearing materials for protecting blast furnace should be further perfected.
    Super-saturation precipitation method is adopted in this study; present condition of blast furnace is simulated to investigate sedimentation of Ti(C, N), gaining mathematic expression of titanium solubility in Fe-C_(sat)-Ti- (N) -j(j= Si, S, P, V, Mn etc); At the same time, influence of temperature, nitrogen pressure, Si, V, Mn on titanium solubility are studied. Results show that, at different temperatures from 1360℃~1480℃, titanium solubility increases with higher temperature; falls with higher nitrogen pressure ; falls with increasement of silicon content; increases with increasement of manganese, vanadium content.
    Ti(C, N)at crucible bottom is more than that at superfical coat and lateral face through energy spectroscopy of sample superficial component. When [Ti] and [C] or [N] are
    supersaturation in molten iron, TiC or TiN can precipitate, including nucleation period and growth period of crystal nucleus.
    In ideal solid solution Ti (C, N), relationship between N_(TiC) and nitrogen pressure and
    temperatureare as follows: during 1360℃~1480℃ range,
    when p_(N_2) is determinate, N_(TiC) is direct ratio of approximately linear with temperature, N_(TiC) is increscent with higher temperature; when the temperature is determinate, N_(TiC) is less with bigger p_(N_2).
    Relationship between TiC,TiN content and components in molten iron, results shows that, under certain temperature, When silicon content, vanadium content are determinate, TiC content is less with higher nitrogen pressure; when nitrogen pressure is determinate, TiC, TiN content are less with increasement of silicon content, vanadium content.
引文
[1] 宋建成.高炉含钛物料护炉技术.北京:冶金工业出版社.1994
    [2] 盛世雄,张卫东,马永华.攀钢冶炼钒钛矿高炉炉体侵蚀的研究.钢铁.1988,23(1):5~11
    [3] 裴志云.高炉炉缸钛沉积物的物质组成及特性研究.钢铁.1990,25(1):13~18
    [4] 成田贵一等,高炉炉床部化合物生成,铁钢,1976,62:525~533
    [5] 刁日升,范云东.含TiO_2高炉渣对不同耐火砖侵蚀的特点[J].钢铁钒钛,2003,24(2):1~6
    [6] 孟庆辉,潘群仆,张文志,等.高炉含钛物料护炉机理的探讨.钢铁.1989,24(4):14~20
    [7] Narita K, Maekawa M, Onoye T, Satoh Y, Miyamoto M. Formation of Titanium Compounds, So-called Titanium Bear, in the Blast Furance Hearth. Trans ISIJ,1977, Vol 17:459~468
    [8] 孟庆辉,刘坤庭,潘群仆,等.关于含钛物料护炉技术的讨论.炼铁.1992(2):1~5
    [9] 郭和才.含钛物料护炉技术浅议.湖南冶金.1995(5):33~37
    [10] 胡俊鸽.高炉使用含钛物料护炉技术的发展.鞍钢技术.1996(3):3~8
    [11] 翟兴华,胡慧丽.含钛物料护炉方法的探讨.钢铁研究.1999(4):7~10
    [12] 王文忠.高炉含钛炉料护炉机制[J].钢铁,1988,23(2):9~14
    [13] 郭和才.含钛物料护炉技术浅议.湖南冶金.1995(5):33~37
    [14] 任贵义 主编 炼铁学(下册) 北京:冶金工业出版社,1996
    [15] Delve F D, Meyer H W, and Lander H N. Physical Chemistry of Process Metallurgy, Part Ⅱ, Interscience Pulishers, New York, YN, 1961: 1111~1139
    [16] Sumito M,Tsuchiya N,Okabe K,and Sanbongi K. Solubility of Titanium and Carbon in Molten Fe-Ti Alloys Saturated with Carbon[J]. Trans.ISIJ, 1981, 21: 414~421
    [17] Morizane Y, Ozturk B,and Fruenhan R J. Thermodynamics of TiO_x in Blast Furance-Type Slags[J]. Met. Trans B. 1999, 30B: 29~43
    [18] Yun Li,Yongquan Li and Fruehan R J. Formation of Titanium Carbonitride from Hot Metal[J]. Trans ISIJ, 2001, 41(12): 1417~1422
    [19] Yun Li and R. J. Fruhan. Thermodynamics of TiCN and TiC in Fe-C_(sat) Melts. Met. Trans. B. 2001, 32B: 1203~1205
    [20] 李永全,Yun Li,Fruhan R J.高炉炉缸内碳氮化钛的生成机理研究[J].钢铁,2003,38(2):58~61
    [21] 严有为,魏伯康,傅正义,等.Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究.金属学报.1999,(35):909~912
    [22] 王自东,李庆春.钛与碳在金属铝液中反应动力学模型.1996,18(2):123~126
    [23] 张作贵,刘相法,边秀房.Al-Ti-C系中TiC形成的热力学与动力学研究.2000,36(10):1025~1029
    [24] 傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究.会属学报.2000,36(8):801~804
    [25] 王明林.低碳钢凝固过程含钛析出物的析出行为及其凝固组织影响的机理研究.钢铁研究总院博士学位论文,2003
    [26] Wada H and Pehlke R. D. Nitrogen Solubility and Nitride Formation in Austenitic Fe-Ti Alloys. Met. Trans B. 1985, 16B: 815~822
    [27] 杜鹤桂,杜钢.炼铁高炉内Ti(C,N)生成的研究.金属学报.1991,27(3):B149~154
    [28] Ozturk B, Fruehan R. J. Thermodynamics of Inclusion Formation in Fe-Ti-C-N Alloys. Met. Trans B. 1990, 21B: 879~884
    [29] D. Bergsma and R. J. Fruehan: 60 the Ironmaking Proceeding Conference, USA, 2001, 297~321
    [30] 杜鹤桂,徐国涛,孙希文,刁日升.钒钛高炉渣对炉衬材料的侵蚀研究[J].钢铁,2003,38(1):55~58
    [31] 曲彦平,杜鹤桂.钛在铁水中的行为[J].沈阳工业大学学报,2000,22(3):190~192
    [32] 文光远,鄢毓璋,赵诗金,等.含钒钛铁水性质的研究.钢铁,1996,31(2):6~11
    [33] 韩庆,丁汝才,赵民革,等.首钢4号高炉长寿技术与实践.2001,20(1):3~7
    [34] 石世雄,祁双扬,刁日升,等.强化冶炼条件下的炉体侵蚀及长寿研究.钢铁钒钛.2000,21(1):17~23
    [35] 丁跃华,杨晓源,普靖中,朱红波,李新生.碳饱和熔铁中钛溶解度的实验研究.昆明理工大学学报(理工版),2005,30(5):20~24
    [36] 陈友善.钒钛矿物化学物相分析.成都:四川人民出版社.1982
    [37] 黄希祜.钢铁冶金过程理论.北京:冶金工业出版社.1993
    [38] 黄希祜.钢铁冶金原理(第三版).北京:冶金工业出版社.2002
    [39] 叶大伦,胡建华.使用无机热力学数据手册(第二版).北京:冶金工业出版社,2002
    [40] 魏庆成编著.冶金热力学(第一版),重庆:重庆大学出版社,1996
    [41] K. Narita, T. Onoe, Y. Sato, and M. Miyamoto: Tetsu-to-Hagane, 1975, vol, 61, p. S9.
    [42] S. Sugiura, M. Tokuda, and M. Ohtani: Tetsu-to-Hagane, 1966, vol. 52, p. S10
    [43] T. Minagawa, R. Inoue, M. Tokuda, and M. Ohatni: Tetsu-to-Hagane, 1977, vol, 63, p. S572
    [44] 曲英.炼钢学原理(第二版).北京:冶金工业出版社.1994
    [45] 赵珊茸主编.结晶学及矿物学.北京:高等教育出版社,2004
    [46] 崔忠圻主编.金属学与热处理.北京:机械工业出版社,2002
    [47] 华一新编著.冶金过程动力学.北京:冶金工业出版社,2004
    [48] 秦善编著.晶体学基础.北京:北京大学出版社,2004
    [49] 陈敬中主编.现代晶体化学—理论与方法.北京:高等教育出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700