硅提高水稻对白叶枯病抗性的生理与分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前人对硅在抵御水稻病害中的研究报道多集中在稻瘟病、纹枯病等由真菌引起的病害,而有关硅对由细菌引起的水稻白叶枯病抗性的研究,国内外鲜见报道。本文采用水培试验,研究了在不同方式硅处理条件下,硅对水稻白叶枯病的抗病效果、硅吸收以及对水稻生长的影响;硅对抗氧化系统酶活性及多种与抗病相关的生理生化指标的影响;利用实时荧光定量PCR(Real-time fluorescence quantitative PCR)技术,在水稻与白叶枯病互作过程中,硅对相关防卫基因表达的调控。从生理生化和分子水平上系统而深入地研究了硅抗白叶枯病的机制,主要结论如下:
     (1)施硅能显著提高水稻对白叶枯病的抗性,减缓白叶枯病菌的危害。施硅处理感病植株病情指数显著降低,与对照相比降低11.83%-52.12%,对白叶枯病的相对防御效果达16.55-75.82%。后期施硅对水稻抗性提高的效果明显高于前期。接种前施硅处理(+Si-Si)的植株失去部分抗性,接种后施硅处理(-Si+Si)的植株与一直加硅处理(Si+)的植株具有较高的抗性;硅作为“机械屏障”作用在水稻抗白叶枯病中有一定作用,但不是主要作用。硅对水稻生长具有促进作用,施硅能明显提高植株硅含量和干物质累积量。接种白叶枯病菌后,植株地下部和地上部干物质均显著降低。施硅处理的水稻叶片组织迅速坏死,从而阻止了病菌的发展,而不施硅处理的水稻叶片表现为明显的失水、青枯、卷曲、萎蔫现象。
     (2)接种白叶枯病菌后48 h内,施硅处理的水稻植株,叶片中丙二醛(MDA)和过氧化氢(H2O2)含量显著升高;施硅能显著提高感病植株叶片中脂氧合酶(LOX)和超氧化物歧化酶(SOD)活性,降低过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性,促进过氧化氢(H2O2)在植物体内积累,加强膜脂过氧化作用。因此,硅可通过参与植株体内代谢,调节抗氧化系统酶活性,激发机体过敏反应(HR),诱导植株对白叶枯病的抗性。
     (3)水稻感染白叶枯病后,施硅能使受白叶枯病菌侵染的水稻叶片中苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)活性以及总可溶性酚和木质素含量显著提高。结果表明,硅能够调控与抗病有关的酚类物质代谢过程,参与植物防卫反应而增强水稻对白叶枯病的抗性。
     (4)叶片感染白叶枯病菌后,β-1,3-葡聚糖酶活性和几丁质外切酶、内切酶活性均快速上升。β-1,3-葡聚糖酶活性在感染白叶枯病菌的8天内,施硅处理显著高于不施硅处理,接种后第8天达到最大值。整个试验过程中,加硅处理的水稻植株,叶片中几丁质外切酶、内切酶活性明显增加。施硅能提高病程相关蛋白β-1,3-葡聚糖酶和几丁质外切酶及内切酶的活性,从而提高水稻对白叶枯病的抗性。
     (5)感染白叶枯病菌后,施硅处理能激活Os03g0109600基因的表达,表达量也显著高于不施硅处理,有利于增强该转录因子的活性;在感病后期,施硅抑制转录阻遏物Os03g0126000基因的表达,有助于保持植物正常生理代谢和抗病反应。施硅能调控酚类物质代谢的关键酶PAL基因表达,在感病初期,施硅处理的PAL基因的表达量高于不施硅处理;施硅能诱导Pr1a和Rcht2基因更早更快表达,表达量也显著高于不施硅处理。施硅能显著提高Lox2osPil基因的表达量,同时调控CatA基因的表达,在感病前期能显著抑制CatA基因的表达。结果表明,在白叶枯病菌与水稻互作过程中,硅积极参与对相关防卫基因的诱导和调控,从而产生一系列生理生化抗病机制是硅抗白叶枯病的主要机制。
     综上所述,硅对水稻生长具有促进作用,施硅能显著提高水稻对由细菌病害引起的白叶枯病的抗性。硅能积极参与生理代谢活动,诱导和调控植物相关防卫基因,产生一系列的防御机制来阻止病原菌的入侵。本研究为防治植物细菌病害提供了既经济高效又安全环保的实用技术,对于发展新型病害综合防治措施,具有十分重要的理论和实际意义。
Previous studies on silicon-enhanced disease resistance in rice were mainly focused on rice blast and sheath blight that were caused by fungi. To date, the effect of silicon on bacterial blight (Xoo) has never been reported. A series of hydroponics experiments were performed in the present study in a controlled rice-Xoo pathosystem to examine the silicon-enhanced disease resistance, silicon absorption and rice growth. The effects of silicon on activities of antioxidant defense enzymes in rice leaves in relation to induced resistance were also investigated. The defense-related genes regulated by silicon in rice-Xoo interaction pathosystem were quantified by using real-time fluorescence quantitative PCR technique. The comprehensive and systematic study of mechanisms of silicon-enhanced resistance to bacterial blight in rice was conducted. The main results are presented as follows:
     (1) Silicon addition could significantly enhance rice resistance to Xoo, thus alleviating damage resulting from infection by Xoo strain. The severity index of the infected plants was decreased by 11.83-52.12% by addition of silicon compared with the control with the relative immunization efficiency of 16.55-75.82%. The plants that were switched from Si+ (with Si added) to Si- (without Si added) nutrient solution lost partial resistance to Xoo, however, rice plants that were switched from Si- to Si+ nutrient solution exhibited the same high resistance as the plants treated continuously with silicon. Silicon played a role as a physical barrier in controlling bacterial blight in rice, although this was not a major mechanism. Application of silicon was beneficial for rice growth, resulting in an increased silicon content and total dry weight. The shoot and root dry weights were significantly decreased by inoculation with Xoo strain. Compared to the control plants, necrosis spots caused by the programmed cell death occurred rapidly in the leaf tissues of Si-fed plants infected by Xoo, thus preventing from further disease development. However, the leaves in rice plants grown in Si- nutrient solution appeared obvious symptoms of desiccation, immature death, curliness and wilt.
     (2) The contents of malondialdehyde (MDA) and peroxide hydrogen (H2O2) in Si-fed rice plants were significantly increased during the 48-h period after inoculation with Xoo strain. The activities of superoxide dismutase (SOD) and lipoxygenase activity (LOX) were significantly higher, while the activities of catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) were lower in the Si-fed plants than in the Si-deprived Xoo-inefectd plants, resulting in accumulation of peroxide hydrogen (H2O2) accumulation in Si-fed plants and intensification of membrane lipid peroxidation intensification. It can be concluded that Si triggered hypersensitive reaction (HR) through mediating the activities of antioxidant defense enzymes, therefore inducing rice resistance to bacterial blight.
     (3) Silicon application significantly increased activities of phenylalanine ammonia-lyase (PAL) and polyphenoloxidase (PPO) , as well as contents of soluble phenolics and lignin in rice leaves infected by Xoo strain. The results demonstrated that silicon actively participated in metabolism of phenolics to accelerate accumulation of antimicrobial compounds, and therefore enhancing the resistance to bacterial blight in rice.
     (4) The activities ofβ-1,3-glucanase, exochitinase and endochitinase were all quickly increased after inoculation with Xoo strain. Theβ-1,3-glucanase activity was significantly higher in Si-supplied plants than that in Si-deprived plants within the eight days, and reached the maximum on the eighth day after inoculation with Xoo strain. The exochitinase and endochitinase activities in leaves of Si-fed plants significantly increased throughout the experimental period. The results showed that silicon application improved the enzyme activities ofβ-1,3-glucanase, endochitinase and exochitinase, thus enhancing the resistance to bacterial blight in rice.
     (5) Application of silicon could activate the expression level of the gene Os03g0109600, a transcript factor, after inoculation with Xoo strain. The expression quantity in Si-fed plants was significantly higher than in Si-deprived plants, which was benefical to increasing the gene’s activity, In the later stages of infection, the expression of Os03g0126000 gene was depressed, which was beneficial to maintaining normal physiological metabolisms and disease resistance. Silicon could regulate the expression of PAL gene. In the early stages of infection, its expression quantity was higher in Si-fed plants than in Si-deprived plants. Silicon induced expression of Pr1a and Rcht2 genes earlier and faster, and the expression quantity was also significantly higher in Si-fed plants than in Si-deprived plants. Application of silicon could significantly enhance the expression quantity of Lox2osPil gene and regulate the expression level of CatA gene. In the early stages of infection, silicon significantly depressed the expression of CatA gene. The results showed that silicon actively induced and regulated some defense-related genes in response to bacterial blight attack in rice-Xoo interaction and this was the main mechanism of Si-enhanced resistance to bacterial blight in rice.
     In conclusion, silicon is beneficial for rice growth. Silicon addition may significantly enhance the resistance to Xoo caused by bacilli. Silicon can actively participate in physiological metabolisms, induce and regulate defense-related genes of plant and induce a series of defense mechanisms to impede the invasion of pathogens. Using Si to control plant bacilli diseases is an economical, highly-effective and environmently-friendly technology. It is theoretically and practically important to develop alternative novel technologies for controlling plant diseases.
引文
1.陈慧勤,赵淑清.植物抗病反应及系统获得抗性研究进展[J].山西农业大学学报,2003,23 (3): 286-291.
    2.陈阳,王贺,张福锁,贾恢先.硅盐互作下小獐毛植物体内元素分布及生理特性的研究[J].植物生态学报,2003,27 (2): 189-195.
    3.董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26 (4) : 289-293.
    4.方中达,许志刚,过崇俭,殷尚智,伍尚忠,徐羡明,章琦.中国水稻白叶枯病菌致病型的研究[J].植物病理学报,1990,20 (2): 81-88.
    5.冯东昕,李宝栋.可溶性硅在植物抵御病害中的作用[J].植物病理学报,1998,28 (4): 293- 297.
    6.冯洁,陈其焕.棉株体内几种生化物质与抗枯萎之间关系的初步研究[J].植物病理学报,1991,21 (4): 291-297
    7.冯元琦.硅肥应成为我国农业发展中的新肥料[J].化肥工业,2000,27 (4): 9-11.
    8.高井康雄,敖光明,梁振英译.植物营养与技术[M].北京:农业出版社,1988.
    9.高旭辉.论茶树抗病性的生化基础[J].茶叶通讯,1998,(1): 27-29.
    10.宫海军,陈坤明,王锁民,张承烈.植物硅营养的研究进展[J].西北植物学报,2004,24 (12): 2385- 2392.
    11.郭红莲,程根武,陈捷,冯晶,崔澍,唐树戈.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J].植物病理学报,2003,33 (4): 342-346.
    12.郭玉蓉,毕阳,曹孜义.硅剂处理对‘玉金香’甜瓜红粉病的影响[J].园艺学报,2003,30 (5): 586-588.
    13.郭玉蓉,赵桦,陈德蓉,刘磊,毕阳.两种硅化物对甜瓜白粉病的抑制机理研究[J].中国农业科学,2005,38 (3): 576-581.
    14.过崇俭.水稻白叶枯病[M].中国农业科学院植物保护研究所主编,中国农作物病虫害,中国农业出版社,1995,14-24.
    15.何电源.土壤和植物中的硅[J].土壤学进展,1980,(5-6): 1-10.
    16.胡景江,文建雷,景耀,曹支敏.杨树体内苯丙烷代谢与其杨树溃疡病抗性的关系[J].植物病理学报,1992,22 (2): 185-188.
    17.胡景江,朱玮,袁雪丽.溃疡菌对杨树细胞壁中HRGP和木质素的诱导作用[J].西北林学院学报,1997,12 (3): 14-17.
    18.胡瑞芝,方水娇,陈桂秋.硅对杂交水稻生理指标及产量的影响[J].湖南农业大学学报(自然科学版),2001,(5): 132-141.
    19.黄斌民.广东晚稻产量不高不稳的主要原因及其对策[J].广东农业科学,1988,11 (4): 16-18.
    20.黄文胜,马荣群,林祥梅.利用TaqMan探针实时定量检测转基因大豆[J].植物病理学报,2001,31 (3): 73-79.
    21.江晓玲,李明,徐伟文,毕惠祥,程钢,李虎,诸欣平.恶性疟原虫荧光定量聚合酶链反应检测[J].中华检验医学杂志,2000,23 (2): 71-73.
    22.李国景,刘永华,朱祝军,吴晓花,汪宝根.外源硅对长豇豆锈病抗性的影响及其生理机制[J].浙江大学学报(农业与生命科学版),2007,33 (3): 302-310.
    23.李合生,孙群,赵世杰,章文化.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000: 167-169.
    24.李洪连,王守正,王金生,张学君.黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病机制的研究[J].植物病理学报,1993,23 (4): 327-332.
    25.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21 (4): 277-283.
    26.李淼,檀根甲,李瑶,承河元,周子燕.猕猴桃品种中糖分及木质素含量与抗溃疡病的关系[J].植物保护学报,2005,32 (2): 138-142.
    27.李荣花,陈捷,高增贵,唐保宏,刘军华.玉米纹枯病抗性与防御酶关系的研究[J].天津师范大学学报:自然科学版,2005,25 (4): 32-36.
    28.李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响[J].作物学报,2005,31 (1): 134-136.
    29.李欣,李红玉,庞新跃,冯汉青,王金生.互作对水稻白叶枯病菌JXOⅢ和JXOⅤ超氧阴离子释放的调控[J].生态学报,2006,26 (12): 4192-4197.
    30.李云锋,王振中,贾显禄.稻瘟菌激发子CSBⅠ诱导水稻防御性相关酶的活性变化[J].作物学报,2004,30 (6): 613-617.
    31.李云锋,王振中.稻瘟菌GP66激发子诱导的水稻膜脂过氧化及其保护酶活性变化[J].植物病理学报,2005,35 (1): 43-48.
    32.梁永超,丁瑞兴,刘谦.硅对大麦耐盐性的影响及其机制[J].中国农业科学,l999,32 (6): 75-83.
    33.梁永超,孙万春.硅和诱导接种对黄瓜炭疽病的抗性研究[J].中国农业科学,2002,35 (3) : 267-271.
    34.梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21 (3): 7-14.
    35.梁元存,商明清,刘爱新,董汉松.病菌激发子诱导烟草抗赤星病的研究[J].山东农业大学学报,2000,31: 8-10.
    36.林忠平.植物对病害的防御系统[J].植物学通报,1993,10 (3): 1-13.
    37.刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望[J].土壤通报,2001,32 (4): 187-192
    38.刘品贤,周国顺.植物保护技术[M].北京:中国农业科技出版社,1998.
    39.刘树堂,韩效国,董先旺.硅对冬小麦抗逆性影响的研究[J].莱阳农学院学报,1997,14 (1): 21-25.
    40.陆景陵主编.植物营养学(上册)第2版[M].北京:中国农业大学出版社,2003.
    41.吕山花,邱丽娟,陶波.转基因植物食品检测技术研究进展[J].生物技术通报,2002,(4): 34-38.
    42.骆桂芬,邹艳华,张伟.黄瓜叶片中木质素含量与抗霜霉病的关系[J].吉林农业大学学报,1995,17 (2): 18-21.
    43.马成仓,李清芳,束良佐,张经余.硅对玉米种子萌发和幼苗生长作用机制初探[J].作物学报,2002,28 (5): 665-669.
    44.马国辉,邓启云,万宜珍,王学华.超级杂交稻抗倒生理与形态机能研究[J].湖南农业大学学报(自然科学版),2000,26 (5): 329-331.
    45.马同生.我国水稻土硅素养分与硅肥施用研究现况[J].土壤学进展,1990,18 (4): 1-5.
    46.马同生.我国水稻土中硅素丰缺原因[J].土壤通报,1997,28 (4): 169-171.
    47.南京农大等.农业植物病理学[M].江苏科学技术出版社,1996.
    48.欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及调控[J].植物生理学通讯,1988 (3): 9-26.
    49.秦引萍,彭友良.脂氧合酶的侵染诱导在植物抗病反应中的可能作用[J].农业生物技术学报,1995,3 (4): 1-9.
    50.邱永祥,柯玉琴,代红军,潘廷国.甘薯抗蔓割病的酚类物质代谢的研究[J].中国生态农业学报,2007,15 (5): 167-170.
    51.裘维蕃.农业植物病理学[M].北京:农业出版社,1982,15-23.
    52.饶力群,李劲,官春云,罗泽民.稻白叶枯病菌对水稻悬浮细胞H2O2含量及其代谢酶活性的影响[J].湖南农业大学学报,1999,25 (6): 437-442.
    53.饶立华,谭莲祥,朱玉贤,谢学民.硅对杂交稻形态结构和生理的效应[J].植物生理学通讯,l986,(3): 20-24.
    54.任军,郭金瑞,邢秀琴,戚光,袁震霖.硅肥对玉米的增产效果及增产机理初探[J].玉米科学,2002,10 (2): 84-86.
    55.邵金旺,党俊梅,张家骅,李刚强.甜菜抗(耐)丛根病生理基础的研究(Ⅰ)过氧化物酶(POX)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)与甜菜抗丛根病的关系[J].内蒙古农业大学学报,1999,20 (4): 1-6.
    56.申义珍,张秀英,常龙福,钱宏兵,张华书.砂壤质石灰性土壤水稻硅肥效果及氮硅互作效应的研究[J].土壤通报,1992,23 (3): 124-126.
    57.沈寅初.农用抗生素研究开发的新进展[J].国外医药抗生素分册,1998,19 (2): 155-160.
    58.史娟,胡景江,王红玲,满丽梅,张永丽.霜霉病菌对葡萄细胞壁水解酶的诱导作用与寄主抗病性的关系[J].西北林学院学报,2002,17 (1): 42-44.
    59.束良佐,刘英慧.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响[J].厦门大学学报(自然科学版),2001,40 (6): 1295-1300.
    60.水茂兴,陈德富,秦遂初,蒋式洪.水稻新嫩组织的硅质化及其与稻瘟病抗性的关系[J].植物营养与肥料学报,1999,5 (4): 352-358.
    61.宋凤鸣,郑重,葛秀春.酚类物质在棉花对枯萎病抗性中的作用[J].应用与环境生物学报,1997a,3 (1): 71-75.
    62.宋凤鸣,郑重,葛秀春.枯萎病菌侵染后棉苗体内多酚氧化酶活性的变化[J].植物生理学通讯,1997b,33 (3): 175-177.
    63.宋凤鸣,郑重.绿原酸和阿魏酸与棉花对枯萎病抗性的关系[J].浙江农业大学学报,1996,22 (3): 236-240.
    64.孙启明.水稻白叶枯病菌小种鉴别标准化及其群体遗传结构的初步研究.南京农业大学硕士论文.南京:南京农业大学,2001.
    65.孙万春,薛高峰,张杰,范琼花,葛高飞,李兆君,梁永超.硅对水稻病程相关蛋白活性和酚类物质含量的影响及其与诱导抗性的关系[J].植物营养与肥料学报,2009,15 (4): 756-762.
    66.汪红,王烨,袁红霞,房卫平,李洪连,王家典.酚类物质含量与棉花抗黄萎病性能关系研究[J].中国棉花,1999,26 (10) : 16-17.
    67.王璟,周慧,邢小萍,袁虹霞,李洪连.不同抗黑胚病小麦品种接菌后丙二醛和总酚含量及PPO活性的变化[J].河南科学,2007,25 (3): 423-426.
    68.王荔军.在细胞壁上构筑的纳米结构赋予植物抗逆的作用机制.华中农业大学博十学位论文.武汉:华中农业大学,2002.
    69.王文相,顾江涛,夏静,Vichai Korpraditskul.水稻白叶枯病菌抗药性现象的室内研究[J].植物保护学报,1998,25 (2): 171-174.
    70.王文相,张爱芳,徐瑞琳,叶正荷.抗噻枯唑和叶枯净的水稻白叶枯病菌株的适应度比较[J].植物保护学报,2000,27 (1): 79-82.
    71.王雅萍,吴兆苏,刘伊强.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20 (3): 327-333.
    72.王义琴,张利明,李文彬,孙勇如.植物病原相关蛋白研究进展[J].生物工程进展,2000,20 (5): 36-38.
    73.王颖,胡景江,朱玮,赵晓明.杨树溃疡病寄主诱导抗病性的研究[J].西北林学院学报,1996,11 (1): 1-6.
    74.魏国强,朱祝军,李娟,姚秋菊.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究[J].应用生态学报,2004a,15 (11): 2147-2151.
    75.魏国强,朱祝军,钱琼秋,李娟.硅对黄瓜白粉病抗性的影响及其生理机制[J].植物营养与肥料学报,2004b,10 (2): 202 -205.
    76.吴英,魏丹,高洪生.硅在水稻中的营养作用和有效条件的研究[J].土壤肥料,l992,(3): 25-27.
    77.吴英,赵秀春,李树藩.我省不同类型土壤水稻施硅肥效果的探讨[J].黑龙江农业科学,1987,(5): 8-12.
    78.吴岳轩,曾富华,王荣臣.杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究[J].植物病理学报,1996,26 (2): 127-131.
    79.吴中伟,朱友林,尚俊军,余潮,邹燕.植物防卫基因研究进展[J].江西植保,2001,24 (1): 30-33.
    80.伍尚忠.水稻白叶枯病及其防治[M].上海:上海科学技术出版社,1983.
    81.夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的作用[J].植物生理学通讯,200l,37 (4): 356-360.
    82.萧洪东,喻敏,王惠珍.硅对草坪草褐斑病抗性的研究[J].湖北农业科学,2006,45 (1): 73-75.
    83.刑雪荣,张蕾.植物的硅素营养研究综述[J].植物学通报,1998,l5 (2): 33-40.
    84.徐建华,利容千,王建波.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化[J].植物病理学报,1995,25 (3): 239-242.
    85.许红.湖北省水稻白叶枯病区域流行特点及其防治对策[J].华中农业大学学报,1993,12 (5): 433-437.
    86.许勇,王永健,葛秀春,宋凤鸣,郑重.枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系[J].果树科学,2000,17 (2): 123-127.
    87.薛应龙,欧阳光察.植物抗病的物质代谢基础[M].见:余叔文,汤章城(主编).植物生理与分子生物学,第二版.北京:科学出版社,1998,770-783.
    88.杨秀芳,屠幼英,胡兆君,杨贤强.类黄酮化合物在茶树体内的生理功能[J].茶叶,1997,23 (4): 33-36.
    89.杨艳芳,梁永超,娄运生,孙万春.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学,2003,36 (7): 813-817
    90.袁章虎,曲健木.低酚棉抗枯萎病生化机制初探[J].棉花学报,1995,7 (2): 100-104.
    91.云兴福,崔世茂,霍秀文.黄瓜组织中几种酶活性与其对霜霉病抗性的关系[J].华北农学报,1995,10 (1): 92-98.
    92.翟晓巧,王国周,毕会涛,李培玉.泡桐丛枝病发生与叶片酚和氨基酸变化关系研究[J].河南科学,2000,18 (3): 277-279.
    93.张桂芬,鲁传涛,申效诚,高伟,王克荣,杨永升.水稻白叶枯病的发生特点及防治[J].河南农业科学,1997,6: 17-18.
    94.张国良,戴其根,张洪程.施硅增强水稻对纹枯病的抗性[J].植物生理与分子生物学学报,2006,32 (5): 600 -606.
    95.张贺,李波,周虚,谭建华.实时荧光定量PCR技术研究进展及应用[J].动物医学进展,2006,27 (增): 5-12.
    96.张鹏翀,胡增辉,沈应柏.植物诱导抗性的研究进展[J].现代农业科学,2008,15 (9): 22-23.
    97.张秋芳,刘奕平,刘波,谢小丹,林培章.烟草主要酚类物质研究进展[J].福建农业学报,2006,21 (2): 158-163.
    98.张晓燕,芦春莲,田志喜.植物诱导抗病性[J].保定师专学报,2001 (4): 9-10.
    99.张跃芳,张超英.硅在水稻花药培养中的作用研究[J].绵阳高等专科学校学报,l999,l6 (2): 11-l3.
    100.章琦,王春莲,苗东华.中国水稻白叶枯病菌群体结构的初步分析[J].中国水稻科学,1995a,9 (1): 7-14.
    101.章琦.我国水稻抗白叶枯病基因的利用及策略[J].植物保护学报,1995b,22 (3): 241-246.
    102.章元寿.植物病理生理学[M].南京:江苏科学技术出版杜,1996,216-226.
    103.赵宏儒,张彦萍,张丽清,王春辉,石晋文,马丽萍,张嘉云,任瑞丽.玉米施用硅肥的肥效初探[J].华北农学报,2004,19 (S1): 29-31.
    104.赵世杰,李德全.现代植物生理学实验指南[M].北京:科学出版社,1999: 305-306.
    105.郑爱萍,李平,王玲霞,孙惠青,陈红,马炳田.生防细菌对水稻纹枯病防效及对水稻产量形成影响的研究[J].中国农学通报,2001,17 (2): 18-20.
    106.郑爱萍,李平.微生物生物防治存在的问题及发展方向[J].中国农学通报,2000,16 (6): 28-32.
    107.郑路,何义斌,邵建国.安徽省土壤有效硅含量分布[J].安徽农业大学学报,1993,20 (4): 287-291.
    108.重庆市教育委员会.水稻主要病虫害防治技术[M].北京:高等教育出版社,1992.
    109.周明国,马忠华,党香亮,王建新,叶钟音.对噻枯唑具有抗性的水稻白叶枯病菌株的性质[J].植物保护学报,1997,24 (2): 155-158.
    110.周青,潘国庆,施作家,孟庆堂,谢宜成.玉米施用硅肥的增产效果及其对群体质量的影响[J].玉米科学,2002,10 (1): 81- 83,94.
    111.庄炳昌,王玉民,谢雪菊,廖林,刘玉芝,徐豹.抗性不同大豆品种感染灰斑病后若干生化反应[J].作物学报,1993,19 (6): 567-569.
    112.邹邦基.土壤供硅能力及Si与N、P的相互作用[J].应用生态学报,l993,4 (2): l50-l55.
    113.邹志燕,王振中.茉莉酸诱导水稻幼苗对稻瘟病抗性作用研究[J].植物病理学报,2006,36 (5): 432-438.
    114. Adhikari TB, Cruz CMV, Zhang Q, Nelson RJ, Skinner DZ, Mew TW and Leach JE. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia [J]. Applied and Environmental Microbiology, 1995, 61 (3): 966-971.
    115. Adhikari TB, Mew TW and Teng PS. Progress of bacterial blight on rice cultivars carrying different. Xa genes for resistance in the field [J]. Plant Disease, 1994, 78 (1): 73-77.
    116. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Orysae sativa L.), monitored by electrolyte leakage [J]. Plant Production Science, l998, l (2): 96-103.
    117. Allaoui, A., Sansonetti,P.J. and Parsot, C. Mxi D, an outer-membrane protein necessary for the secretion of the Shigella flexneri Ipa invasions [J]. Molecular Microbiology, 1993, 7: 59-68.
    118. Anfoka G, Buchenauer H. Induction of systemic resistance in tomato and tobacco plants against cucumber mosaic virus [J]. Journal of Plant Disease and Protection, 1997, 104: 506-516.
    119. Baker CJ, Orlandi EW. Active oxygen in plant pathogenesis [J]. Annual Review of Phytopathology, 1995, 33: 299-321.
    120. Batra GK, Kuhn CW. Polyphenoloxidase and peroxidase activities associated with acquired resistance and its infection by 2-thiouracil in virus-infected soybean [J]. Physiological Plant Pathology, 1975, 5: 239-248.
    121. Beardmore J, Ride JP, Granger JW. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust [J]. Physiological Plant Pathology, 1983, 22 (2): 209-220.
    122. Belanger RR, Benhamou N, Menzies JG. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici) [J]. Phytopathology, 2003, 93 (4): 402- 4l2.
    123. Bell JN, Ryder TB, Wingate VP, Bailey JA and Lamb CJ. Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction [J]. Molecular and Cellular Biology, 1986, 6 (5): 1615-1623.
    124. Bera S, Purkayastha RP. Multicomponent coordinated defense response of rice to Rhizoctonia solani causing sheath blight [J]. Current Science, 1999, 76 (10): 1376-1384.
    125. Bokura U. Bacterial leaf blight of rice [J]. Teikoku Nokaiho, 1911, 2 (9): 62-66.
    126. Bol JF, Linthorst HJM, Cornelissen BJC. Plant pathogenesis-related proteins induced by virus infection [J]. Annual Review of Phytopathology, 1990, 28: 113-138.
    127. Boller T, Gehri A, Mauch F and V?geli U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function [J]. Planta, 1983, 157 (1): 22-31.
    128. Bonello P, Pearce RB. Biochemical defence responses in primary roots of Scots pine challenged in vitro with Cylindrocarpon destructans [J]. Plant Pathology, 1993, 42: 203-211
    129. Bowles DJ. Defense-related proteins in higher plants [J]. Annual Review of Biochemistry, 1990, 59: 873-907.
    130. Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF and Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance [J]. Plant Cell, 1994, 6 (12): 1845-1857.
    131. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254.
    132. Cakmak I and Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves [J]. Plant Physiology, 1992, 98: 1222-1227.
    133. Carver TLW, Zeyen RJ, Bushnell WR, Robbins MP. Inhibition of phenylalanine ammonialyase and cinnamyl-alcohol dehydrogenase increases quantitative susceptibility of barley to powdery mildew (Erysiphe graminis DC) [J]. Physiological and Molecular Plant Pathology, 1994, 44 (4): 261-272.
    134. Cherif M, Asselin A, Belanger RR. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp [J]. Phytopathology, 1994, 84 (3): 236-242.
    135. Chérif M, Bélanger RR. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on long English cucumber [J]. Plant Disease, 1992, 76 (10): 1008-1011.
    136. Cherif M, Menzies JG, Benhamou N, Belenger RR. Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants [J]. Physiological and Molecular Plant Pathology, 1992, 41: 371-385.
    137. Cocker KM, Evans DE, Hodson MJ. The amelioration of aluminum toxicity by silicon in higher plants: Solution chemistry or an in plant mechanism? [J]. Physiologia Plantarum, 1998, 104 (4): 608-6l4.
    138. Constabel CP and Clarence AR. A survey of wound and methyl jasmonate induced leaf polyphenol oxidase in crop plants [J] . Phytochemistry, 1998, 47 (4): 507-511.
    139. Cottyn B, Bautista AT, Nelson RJ, Swings J, Mew TW. Polymerase chain reaction amplification of DNA from bacterial pathogens of rice using specific oligonucleotide primers [J]. International Rice Research Notes, 1994, 19: 30-32.
    140. Croft KPC, Juttner F, Slusarenko AJ. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiology, 1993, 101 (1): 13-24.
    141. Das KK, Panda D, Nagaraju M, Sharma SG and Sarkar RK. Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryzae sativa L.) as determinants of anaerobic seedling establishment capacity [J]. Bulgarian Journal of Plant Physiology, 2004, 30 (1-2): 34-44.
    142. Dassi B, Dumas-gaudot E, Gianinazzi S. Do pathogenesis-related (PR) proteins play a role inbioprotection of mycorrhizal tomato roots towards Phytophthora parasitica? [J]. Physiological and Molecular Plant Pathology, 1998, 52(3): 167 -183.
    143. Datnoff LE, Deren CW, Snyder GH. Silicon fertilization for disease management of rice in Florida [J]. Crop Protection, 1997, 16 (6): 525-531.
    144. Delaney TP, Friedrich L, Ryals JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance [J]. Proceedings of the National Academy of Sciences, 1995, 92 (14): 6602-6606.
    145. Dixon RA, Fuller KW. Effects of synthetic auxin levels on phaseollin production and ammonia- lyase (PAL) activity in tissue cultures of Phaseolus vulgaris L [J]. Physiological Plant Pathology, 1976, 9: 299-312.
    146. Dixon RA, Harrison MJ and Lamb CJ. Early events in the activation of plant defense responses [J]. Annual Review of Phytopathology, 1994, 32: 479-501.
    147. Durgapal JC, Pandey KR, Singh B. A method for reproducing wilt phase of bacterial blight in rice plants [J]. Indian Phytopathology, 1980, 32 (3): 493-494.
    148. Durrant WE and Dong X. Systemic acquired resistance [J]. Annual Review of Phytopathology, 2004, 42: 185-209.
    149. Dye DW. Genus IX. Xanthomonas Dowson 1939 [J]. New Zealand Journal of Agricultural Research, 1978, 21: 153-177.
    150. Ebel J and Mithofer A. Early events in the elicitation of plant defence [J]. Planta, 1998, 206: 335 -348.
    151. Elawad SH, Gascho GJ and Street JJ. Response of sugarcane to silicate source and Rate. I. Growth and Yield [J]. Agronomy Journal, 1982, 74 (3): 481-484.
    152. Epstein E. Silicon [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 641-664.
    153. Epstein E. The anomaly of silicon in plant biology [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91 (1): 11-17.
    154. Epstein, E. Silicon in plants: facts vs. concepts In: Silicon in Agriculture (Datnoff, L.E., Snyder, G.H. and Korndo¨fer, G.H., Eds.), 2001, pp. 1-16. Elsevier, Amsterdam.
    155. Ezuka A and Horino O. Classification of rice varieties and Xanthomonas oryzae strains on the basis of their differential interactions [J]. Bulletin of the Tokai-Kinki National Agricultural Experiment, 1974, 27: 1-19.
    156. Ezuka A. and Kaku H. A historical review of bacterial blight of rice [J]. Bulletin of the National Institute of Agrobiological Resources , 2000, 15: 53-54.
    157. Fawe A, Abou-Zaid M, Menzies JG, Belanger RR. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber [J]. Phytopathology, 1998, 88 (5): 396-401
    158. Fisher I. The role of exocarp thickness in the production, consumption and selection of paprika for consumption [J]. Genet Breed Capsicum, 1994, 8: 106-109.
    159. Geetha NE, Amruthesh KN, Sharathchandra, RG and Shetty HS. Resistance to downy mildew in pearl millet is associated with increased phenylalanine ammonia-lyase activity [J]. Functional plantbiology, 2005, 32 (3): 267-275.
    160. Gentile IA, Ferraris L, Matta A. Variation of Phenoloxidase activities as a consequence of stress that induce resistance to Fusarium wilt of tomato [J]. Phytopathology, 1988, 122: 45-53.
    161. George MLC, Cruz WT, Nelson RJ. DNA fingerprinting of Xanthomonas oryzae pv. oryzae by ligation-mediated polymerase chain reaction [J]. International Rice Research Notes, 1994, 19 (4): 29-30.
    162. Germar B. Some functions of silicic acid in cereals with special reference to mildew [J]. Z. Pflazenemahr Dung Bodenk, 1934, 35: 102-115. (in German)
    163. Glazener, J A. Accumaation of phenolic compounds in cells and forrnation of lignin-Like polymers in cell walls of young tomato fruits after inoculation with Botrytis cinrea [J]. Physiological Plant Pathology, 1982, 20:11-25.
    164. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P and Kavitha S. An overview of bacterial blight disease of rice and strategies for its management [J]. Current Science, 1999, 77 (11): 1435-1444.
    165. Gnanamanickam SS, Sakthivel N, Nelson RJ, Leach JE. Evaluation of Culture Media and Molecular Probes for Detection of Xanthomonas oryzae pv. oryzae in Rice. In: Verma JP, Varma A, Kumar D (eds). Detection of plant pathogens and their management . New Delhi: Angkor Publishers, 1995, 336-349.
    166. Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Mohammed SY, Morita O. Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop [J]. Plant Science, 2003, l64 (3): 349-356.
    167. Green NE, Hadwiger LA, Graham SO. Phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and lignin in wheat inoculated with Erysiphe graminis f.sp.tritici [J]. Phytopathology, 1975, 65: 1071- 1074.
    168. Hammerschimidt R, Kug J. Lignification as a mechanism for induced systemic resistance in cucumber [J]. Physiological Plant Pathology, 1982, 20 (1): 61-71.
    169. Hammerschmidt R, Kuc J. Induced resistance to disease in plants [M]. 1995, pp.86-110. Dordrecht, Netherlands: Kluwer Academic Publishers.
    170. Hartwig UA, Joseph CM, Phillips DA. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rizobium meliloti [J]. Plant Physiology, 1991, 95 (3): 797-803.
    171. Hattori T, Inanaga S, Tanimoto E Lux A, LuxováM and Sugimoto Y. Silicon induced changes in viscoelastic properties of sorghum root cell walls [J]. Plant and Cell Physiology, 2003, 44 (7): 743-749.
    172. Hossain M and Fischer KS. Rice research for food security and sustainable development in Asia: Achievement and future challenges [J]. GeoJournal, 1995, 35(3): 286-298.
    173. Hossain M. Economic prosperity in Asia: implications for rice research [J]. Rice GeneticsⅢ. Proceedings of the third international rice genetics symposium, edited by Khush GS, International Rice Research Institute. 1996, 3-16.
    174. Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T.Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings [J]. Journal of Plant Research, 2002, 115 (1l l7): 23-27.
    175. Inanaga S, Higuchi Y, Chishaki N. Effect of sillicon application on reproductive growth of rice plant [J]. Soil Science and Plant Nutrition, 2002, 48 (3): 341-345.
    176. IRRI. 1995. World rice statistics, 1993-1994. Manila, Philippines, IRRI.
    177. Ishiyama S. Studies on bacterial leaf blight of rice [J]. Report of agricultural experiment station, 1922, 45:233-361.
    178. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus [J]. Comptes Rendus Biologies, 2007, 330 (9): 674-683.
    179. Joosten MHAJ, De Wit PJGM. Identification of several pathogenesis-related proteins in tomato leaves inoculated with cladosporium fulvum (syn.fulvia fulva) as 1,3-β-glucanases and chitinases [J]. Plant Physiology, 1989, 89 (3): 945-951.
    180. Jucker EI, Foy CD, de Paula JC, Centeno JA. Electron paramagnetic resonance studies of manganese toxicity, tolerance, and amelioration with silicon in snapbean [J]. Journal of Plant Nutrition, 1999, 22: 769-782.
    181. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae [J]. Plant Disease Reporter. 1973, 57: 537-541.
    182. Khush GS, Mackill DJ, Sindhu GS. Breeding rice for resistance to bacterial blight. In: bacterial blight of rice. International Rice Research Institute, Los, Banos, Manila, Philippines, 1989, 207-217.
    183. Khush GS. Origin, dispersal, cultivation and variation of rice [J]. Plant Molecular Biology, 1997, 35 (1-2): 25-34.
    184. Kidd PS, Liugany M, Poschenrieder C, GunséB and BarcelóJ. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.) [J]. Journal of Experimental Botany, 2001, 52 (359): l339-l352.
    185. Kim SG, Kim KW, Park EW and Choi D. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast [J]. Phytopathology, 2002, 92 (10): l095-l l03.
    186. Koller W, Parker DM, Becker CM. Role of cutinase in the penetration of apple leaves by Venturia inaequalis [J]. Phytopathology, 1991, 81 (11): 1375-1379.
    187. Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 1991, 226 (29): 19758-19767.
    188. Legrand M, Fritig B, Hirth L. Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersensitive tobacco mosaic virus [J]. Phytochemistry, 1976, 15: 1353-1359.
    189. Li WB, Shi XH, Wang H, Zhang FS. Effects of silicon on rice leaves resistance to Ultraviolet-B [J]. Acta Botanica Sinica, 2004, 46 (6): 691-697.
    190. Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J]. Journal of Plant Physiology, 2003, 160 (10): 1157-1164.
    191. Liang YC, Hua HX, Zhu YG, Zhang J, Cheng CM, R?mheld V. Importance of plant species and external siliconconcentration to active silicon uptake and transport [J]. New phytologist, 2006, 172 (1): 63-72.
    192. Liang YC, Shen ZG. Interaction of silicon and boron in oilseed rape plants [J]. Journal of Plant Nutrition, l994, 17 (2-3): 4l5-425.
    193. Liang YC, Sun WC, Si J, R?mheld V. Effect of foliar- and root-applied silicon on the enhancement of induced resistance in Cucumis sativus to powdery mildew [J]. Plant Pathology, 2005, 54 (5): 678-685.
    194. Lin KC, Bushnell WR, Smith AG, Szabo LJ. Temporal accumulation patterns of defence response gene transcripts in relation to resistant reactions in oat inoculated with Puccinia graminis [J]. Physiological and Molecular Plant Pathology, 1998, 52 : 95-114.
    195. Linthorst HJM, van Loon LC, van Rossum CMA, Mayer A, Bol JF, van Roekel JSC, Meulenhoff EJS, Cornelissen BJC. Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco [J]. Molecular Plant-Microbe Interactions, 1990, 3 (4): 252-258.
    196. Lux A, Luxova M, Hattor T, Inanaga S and Sugimoto Y. Silification in sorghum(Sorghum bicolor) cultivars with different drought tolerance [J]. Physiologia Plantarum, 2002, 115 (1): 87-92.
    197. Ma JF, Higashitani A, Sato K, Takeda K. Genotypic variation in silicon concentration of barley grain [J]. Plant and Soil, 2003, 249 (2): 383-387.
    198. Ma JF, Miyake Y, Takahashi E. Silicon as a beneficial element for crop plants [J]. In: Datonoff L, Snyder G, Korndorfer G, Eds. Silicon in agriculture. Elsevier Science Publishing, New York, 2001, 17-39.
    199. Ma JF, Sasaki M and Matsumoto H. Al-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition [J]. Plant Soil, l997, l88: l7l-l76.
    200. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants [J]. Trends in Plant Science, 2006, 11 (8): 392-397.
    201. Ma JF. Plant root responses to three abundant soil minerals: silicon, aluminum and iron [J]. Critical Reviews in Plant Sciences, 2005, 24 (4): 267-281.
    202. Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses [J]. Soil Science of Plant Nutrition, 2004, 50 (1): 11-18.
    203. Makino SI, Cheun HI, Watara M, Uchida I, Takeshi K. Detection of anthrax spores from the air by real-time PCR [J]. Letters in Applied Microbiology, 2001, 33: 237-240.
    204. Mauch-Mani B and Slusarenko AJ. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica [J]. Plant Cell, 1996, 8 (2): 203-212.
    205. Menzies J, Bowen P, Ehret D and Glass ADM. Foliar application of potassium silicate reduces severity of powdery mildew on cucumber, muskmelon, and zucchini squash [J]. American Society for Horticultural Science, 1992, 117: 902- 905.
    206. Menzies JG, Ehret DL, Glass ADM, Helmer T, Koch C, Seywerd F. Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus [J]. Phytopathology, l99la, 8l (1): 84-88.
    207. Menzies JG, Ehret DL, Glass ADM, Samuels AL. The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus [J]. Physiological and Molecular Plant Pathology, 1991b, 39 (6): 403-414.
    208. Mew TW, Vera Cruz CM, Medalla ES. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in Philippines [J]. Plant Disease, 1992, 76 (10): 1029-1032.
    209. Mew TW. Overview of the world bacterial blight situation [J]. In: Bacterial Blight of rice. International Rice Research Institute, Manila, Philippines, 1989, 7-12.
    210. Mew TW. Current status and future prospects of research on bacterial blight of rice [J]. Annual Review of Phytopathology, 1987, 25: 359-382.
    211. Mew TW. Xanthomonas oryzae pathovars on rice: cause of bacterial blight and bacterial leaf streak [M]. In: Swings JG and Civerolo EL (eds.), Xanthomonas. Chapman & Hall, London. 1993, 30-40.
    212. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science, 2002, 7 (9): 405-410.
    213. Moerschbacher BM, Noll U, Gorrichon L and Reisener HJ. Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust [J]. Plant Physiology, 1990, 93: 465-470.
    214. Moerschbacher BM, Flott BE, Noll U, Reisener HJ. On the specificity of an elicitor preparation from stem rust which induces lignification in wheat leaves [J]. Plant Physiology and Biochemistry, 1989, 27: 305-314.
    215. Müse G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V and Schopfer P. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes [J]. Planta, 1997, 201 (2): 146-159.
    216. Nakano Y and Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22 (5): 867-880.
    217. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice [J] . Plant Journal, 2003, 33 (5): 887-898.
    218. Neumann D and zur Nieden U. Silicon and heavy metal tolerance of higher plants [J]. Phytochemistry, 2001, 56 (7): 685-692.
    219. Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance [J]. Annual Review of Phytopathology, 1992, 30: 369-389.
    220. Niemann GJ, van der Kerk A, Niessen WMA, Versluis K. Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus L.) stems [J]. Physiological and Molecular Plant Pathology, 1991, 38 (6): 417-432.
    221. Nishimura K, Miyaki Y and Takahashi E. On silicon, aluminum, and zinc accumulators discriminated from 147 species of Angiospermae [J]. Memoirs of the College of Agriculture, KyotoUniversity, 1989, l33: 23-43.
    222. Ou SH. Rice diseases [M]. Commonwealth Agricultural Bureau, England, 1985, 380.
    223. Ou SH. Rice diseases [M]. Kew, England, Commonwealth Mycological Institute, 1972, 368.
    224. Parry DW and Smithson F. Types of opaline silica deposition in the leaves of British grasses [J]. Annals of Botany, 1964, 28 (1): 169-185.
    225. Parry DW, Hodson MJ and Sangster AG. Some recent advances in studies of silicon in higher plants [J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1984, 304: 537-549.
    226. Pellegrini L, Rohfritsch O, Frititg B, Legrand M. Phenylalanine ammonia-lyase in tobacco [J]. Plant Physiology, 1994, 106: 877-886.
    227. Peng YL, Shirano Y, Ohta H, Hibino T, Tanaka K, Shibata D. A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus [J]. Journal of Biological Chemistry, 1994, 269 (5): 3755-3761.
    228. Qin GZ and Tian SP. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved [J]. Phytopathology, 2005, 95 (1): 69-75.
    229. Ramasamy C and Jatileksona T. Intercountry comparison of insect and disease losses [M]. In: Rice Research in Asia: Progress and Priorities: Evenson RE, Herdt RW and Hossain M Eds, CAB International, IRRI, 1996, 305-316.
    230. Ramsey MD, Moffett ML. Bacterial blight in North Queensland, Australia [M]. In: Bacterial Blight of rice. International Rice Research Institute, Manila, Philippines, 1989, 219.
    231. Rance I, Fournier J, Esquerre-Tugaye MT. The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences [J]. Proceedings of the National Academy of Sciences, 1998, 95 (11): 6554-6559.
    232. Raven JA. Cycling silicon: the role of accumulation in plants [J]. New Phytologist, 2003, 158: 419-430.
    233. Reckhaus PM. Occurrence of bacterial blight of rice in Niger, West Africa [J]. Plant Disease, 1983, 67: 1039.
    234. Retig N. Changes in peroxidase and polyphenoloxidase associated with natural and induced resistance of tomato to Fusarium wilt [J]. Physiological Plant Pathology, 1974, 4: 145-150.
    235. Rivero RM, Ruiz JM, Garcia PC, López-Lefebre LR, Sánchez E, Romero L . Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants [J]. Plant Science, 2001, 160 (2): 315-321.
    236. Rodrigue VCD, Kerstin W. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure [J]. Physiological and Molecular Plant Pathology, 2007, 70 (4-6):120-129.
    237. Rodrigues Fá, Benhamou N, Datnoff LE, Jones JB and Bélanger RR. Ultrastructural and cytochemical aspects of silicon–mediated rice blast resistance [J]. Phytopathology, 2003a, 93 (5): 535-546.
    238. Rodrigues FA, Jurick WM, Datnoff LE, Jones JB, Rollins JA. Silicon influences cytological and molecular events in compatible rice-Magnaporthe grisea interactions [J]. Physiological and Molecular Plant Pathology, 2005, 66: 144-159.
    239. Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, LabbéC, Benhamou N, Menzies JG, Bélanger RR. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance [J]. Phytopathology, 2004, 94: 177-183.
    240. Rodrigues Fá, Vale FXR, Datnoff LE Prabhu AS and Kornd?rfer GH. Effects of rice growth stages and silicon on sheath blight development [J]. Phytopathology, 2003b, 93 (3): 256-261.
    241. Rodrigues Fá, Vale FXR, Kornd?rfer GH, Prabhu AS, Datnoff LE, Oliveira AMA and Zambolim L. Influence of silicon on sheath blight of rice in Brazil [J]. Crop Protection, 2003c, 22 (1): 23-29.
    242. Rogalla H, Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. [J]. Plant, Cell and Environment, 2002, 25 (4): 549-555.
    243. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY and Hunt MD. Systemic acquired resistance [J]. Plant Cell, 1996, 8 (10): 1809-1819.
    244. Ryan CA. The search for the proteinase inhibitor-inducing factor, PIIF [J]. Plant Molecular Biology, 1992, 19 (1): 123-133.
    245. Ryba-White M, Notteghem JL and Leach JE. Comparison of Xanthomonas oryzae pv. Oryzae strains from Africa, north America and Asia by RFLP analysis [J]. International Rice Research Notes, 1995, 20: 25-26.
    246. Sakthivel N, Mortensen CN, Mathor SB. Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques [J]. Applied Microbiology and Biotechnology, 2001, 56: 435-441.
    247. Sato Y, Murakami T, Funatsuki H Matsuba S Saruyama H and Tanida M. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings [J]. Journal of Experimental Botany, 2001, 52 (354): 145-151.
    248. Savant NK, Snyder GH, Datnoff LE. Silicon management and sustainable rice production [J]. Advances in Agronomy, 1997, 58: 151-199.
    249. Schaad NW, Berthier-Schaad Y, Sechler A. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and automated real-time fluorescence detection system [J]. Plant Disease, 1999, 83 (12): 1095-1100.
    250. Schaad NW, Opgenorth D, Gaush P. Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce's disease of grape in early season asymptomatic vines [J]. Phytopathology, 2002, 92 (7) : 721-728.
    251. Schaad NW, Song WY. Hatziloukas E. PCR primers for detection of plant pathogenic species and subspecies of acidovorax [P]. United States Patent 6146834, 2000.
    252. Schneider S, Ullrich WR. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers [J]. Physiological and Molecular Plant Pathology, 1994, 45 (4): 291-304.
    253. Seebold Jr KW, Datnoff LE, Correa-Victoria FJ, Kucharek TA, Snyder GH. Effects of silicon andfungicides on the control of leaf and neck blast in upland rice [J]. Plant Disease, 2004, 88 (3): 253-258.
    254. Seebold KW, Kucharek TA, Datnoff LE, Correa-Victoria FJ, Marchetti MA. The influence of silicon on components of resistance to blast insusceptible, partially resistant, and resistant cultivars of rice [J]. Phytopathology, 2001, 91 (1): 63-69.
    255. Sekizawa Y, Haruyama T, Kano H Urushizaki S, Saka H, Matsumoto K and Haga M. Dependence on ethylene of the induction of peroxidase and lipoxygenase activity in rice leaf infected with blast fungus [J]. Agricultural and Biological Chemistry, 1990, 54 (2): 471-478.
    256. Sha AH, Lin XH, Huang JB, Zhang DP. Roles of defense genes PAL, LOX and PBZ1 in adult plant resistance to rice bacterial blight [J]. Chinese Journal of Biochemistry and Molecular Biology, 2005, 21 (2): 159-163.
    257. Shrestha CL, O?a I, Muthukrishnan S and Mew TW. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani [J]. European Journal of Plant Pathology, 2008, 120 (1): 69-77.
    258. Singh GP, Srivastava MK, Singh RV, Singh RM. Variation and qualitative losses caused by bacterial blight in different rice varieties [J]. Indian Phytopathology, 1997, 30: 180-185.
    259. Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzae) of rice as pathovars of Xanthomonas oryzae (ex. Ishiyama 1922) sp. Nov. Nom. Rev [J]. International Journal of Systematic Bacteriology, 1990, 40 (3): 309-311.
    260. Tagami Y, Mizukami T. Historical review of the researches on bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson [J]. Special Report of the Plant Diseases and Insect Pests Forecasting Service, 1962, 10: 112.
    261. Takahashi E, Tanaka T, Miyake Y. Distribution of silicon accumulating plants in the plant kingdom [J]. Journal of Plant Nutrition and Soil Science, 1981, 52: 511-515.
    262. Thipyapong P , Hunt MD and Steffens JC. Systemic wound induction of potato ( Solanum Tuberosum) polyphenol oxidase [J]. Phytochemistry, 1995 ,40 (3) : 673-676.
    263. Umesha S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance [J]. Phytoparasitica, 2006, 34 (1): 68-71.
    264. Vance CP, Kirk TK, Sherwood RT. Lignifcation as mechanism of disease resistance [J]. Annual Review of Phytopathology, 1980, 18: 259-288.
    265. Veronesi C, Rickauer M, Fournier J, Pouenat ML and Esquerre-Tugaye MT. Lipoxygenase gene expression in the tobacco-phytophthora parasitica nicotianae interaction [J]. Plant Physiology, 1996, 112 (3): 997-1004.
    266. Vurro M, Ellis BE. Effect of fungal toxins on induction of phenylalanine ammonia-lyase activity in elicited cultures of hybrid poplar [J]. Plant Science, 1997, 126 (1): 29-38.
    267. Wagner F. The signifance of silicon acid for the growth of certain cultivated plants, their nutrient economy, and their susceptibility to genuine mildews [J]. Phytopathology, 1940, 12: 419-427. (inGermany)
    268. Wang PF, Kang JH, Zheng RL, Yang ZH, Lu JF, Gao JJ and Jia ZJ. Scavenging effects of phenylpropanoid glycosides from Pedicularis on superoxide anion and hydroxyl radical by the Spin trapping method(95)02255-4 [J]. Biochemical Pharmacology, 1996, 51 (5): 687-691.
    269. Weller SA, Elphinstone JG, Smith NC, Stead DE. Detection of Ralstonia solanacearum from potato tissue by post-enriched TaqMan PCR [J]. EPPO Bulletin (European and Mediterranean Plant Protection Organization), 2000, 30 (3-4): 381-383.
    270. Weller SA, Stead DE. Detection of root mat associated Agrobacterium strains from plant material and other sample types by post-enrichment TaqMan PCR [J]. Journal of Applied Microbiology, 2002, 92 (1): 118-126.
    271. Winslow MD, Okada K, Correa-Victoria F. Silicon deficiency and the adaptation of tropical rice ecotypes [J]. Plant and Soil, 1997, 188 (2): 239-248.
    272. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochemical Journal, 1997, 322 (3) : 681-692.
    273. Wolski EA, Maldonado S, Daleo GR and Andreu AB. A novelα-1, 3-glucan elicits plant defense responses in potato and induces protection against Rhizoctonia solani AG-3 and Fusarium solani f. sp. eumartii [J]. Physiological and Molecular Plant Pathology, 2006, 69 (1-3): 93-103.
    274. Yamauchi M, Winslow MD. Effect of silica and magnesium on yield of upland rice in the humid tropics [J]. Plant Soil, l998, 1l3: 265-269.
    275. Yoshi H. Studies on the nature of rice blast resistance [J]. Kyusu Imp Univ Sci Fakultato Terkultura Bull, 1941, 9: 277-307.
    276. Zeyen RJ, Bushnell WR, Carver TLW, Robbins MP Clark TA, Boyles DA, Vance CP. Inhibiting phenylalanine ammonia-lyase and cinnamyl-alcohol dehydrogenase suppresses Mla1 (HR) but not mlo5 (non-HR) barley powdery mildew resistances [J]. Physiological and Molecular Plant Pathology, 1995, 47: 119-140.
    277. Zhu YJ, Qiu XH, Moore PH, Borth W, Hu J, Ferreira S and Albert HH. Systemic acquired resistance induced by BTH in papaya [J]. Physiological and Molecular Plant Pathology, 2003, 63 (5): 237-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700