海洋微藻种群增长和种间竞争的动态变化及其对UV-B辐射增强的响应:基于流式细胞术的研究探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧层衰减而导致的UV-B(280-320 nm)辐射增强是全球性的重大环境问题之一,海洋生态系统不可避免会受到紫外辐射的明显影响。海洋微藻是海洋食物链的基础,是海洋的主要初级生产者,它不仅驱动着整个海洋生态系统的能流和物流,而且对调节全球变化起着重要的作用。海洋浮游植物的种群和群落的动态变化一旦受到破坏将会危及其它海洋生物及整个海洋生态系统。建立灵敏、快速的微藻生物分析方法将为预警性的指示和了解UV-B辐射增强对海洋生态系统的影响提供基础的依据,也为深入了解水生生态系统对UV-B辐射增强的响应过程与机制提供理论参考。流式细胞术(Flow Cytometry, FCM)是一种在功能水平上对单个细胞进行定量分析的检测技术,通过同步高速分析大量细胞的多个参数而对细胞生理状态进行评价,在藻类生态学和毒理学的研究领域具有广泛的应用前景。目前该技术主要用以指示污染的退化程度以及污染胁迫条件下藻类的生理响应等方面,在微藻种群增长、种间竞争及其胁迫-响应生物标志物筛选方面的研究还未见报道。
     本文因此以四种微藻:绿藻门的青岛大扁藻(Platymonas helgolandica)、金藻门的球等鞭金藻(Isochrysis galbana)、黄藻门的赤潮异弯藻(Heterosigma akashiwo)和甲藻门的米氏凯伦藻(Karenia mikimotoi)为研究目标,在实验生态条件下基于流式细胞术系统研究了微藻种群增长和种间竞争的变化对UV-B辐射增强的响应,探讨了可能的作用机制,并筛选了能灵敏指示微藻生理响应变化的生物标志物。结果如下:
     1.UV-B辐射增强对微藻的急性毒性作用研究
     (1)利用流式细胞术能灵敏区分四种微藻:青岛大扁藻、球等鞭金藻、赤潮异弯藻和米氏凯伦藻种群中微藻活体细胞、细菌、死亡微藻细胞碎片以及培养体系中的悬浮颗粒,从而对种群中微藻密度的变化进行准确判定。
     (2)根据荧光信号变化对细胞体积、内容物复杂程度、叶绿素a荧光、存活率、酯酶活性、活性氧含量和种群密度的同步检测,结果表明,不同微藻对UV-B辐射增强的响应存在较大的差别:在实验的剂量和时间范围内,a.四种微藻均呈现出活性氧含量不断增加、种群密度不断下降的变化趋势;米氏凯伦藻的存活率随辐射剂量的增加而不断下降,但对青岛大扁藻、球等鞭金藻细胞和赤潮异弯藻存活率的影响并不明显。b.UV-B辐射增强能降低四种微藻的叶绿素a荧光和酯酶活性,但对细胞体积、内容物复杂程度的影响因种而异:球等鞭金藻和米氏凯伦藻的体积大小和内容物的复杂程度不断下降,而在赤潮异弯藻中细胞体积下降、内容物复杂程度却有所增加,在青岛大扁藻中的变化不显著。
     (3)基于流式细胞术的检测研究发现不同种类微藻对UV-B辐射增强响应的敏感性指标之间存在差异:青岛大扁藻与球等鞭金藻的活性氧含量变化对胁迫最为敏感,其EC50分别为508.6 J·m-2和560.2 J·m-2;而酯酶活性则是赤潮异弯藻和米氏凯伦藻中对胁迫响应的最敏感的指标,其EC50分别为为433.3 J·m-2和455.1J·m-2。2.共培养体系中UV-B辐射增强对微藻的急性毒性作用研究
     (1)用流式细胞术能灵敏区分共培养体系中的两种不同种类的微藻;混合培养对微藻的生理指标产生了影响:与单独培养体系中的同种微藻相比,与球等鞭金藻共培养可引起青岛大扁藻和赤潮异弯藻存活率的降低,对其产生不利影响,却可导致米氏凯伦藻存活率升高,对其产生有益作用;共培养体系中的球等鞭金藻的存活率均未产生显著变化,但却出现酯酶活性下降而活性氧含量上升的变化趋势,说明混合培养虽然未对球等鞭金藻产生致死作用,但对其生理活动产生了不利影响。
     (2)UV-B辐射增强可抑制共培养体系中微藻的种群生长,与未经UV-B辐射处理的对照组相比,3种共培养体系中微藻密度均显著降低,但对微藻生理活动的影响效果存在种间差异:共培养体系中青岛大扁藻和米氏凯伦藻叶绿素a荧光降低、活性氧含量升高,表明其生理活动受到明显抑制,而赤潮异弯藻则表现出酯酶活性上升和活性氧含量下降的变化趋势;UV-B辐射对共培养体系中球等鞭金藻的作用效果与共培养体系的微藻种类有关:当与青岛大扁藻共培养时活性氧含量随UV-B辐射增强而不断升高,而与赤潮异弯藻和米氏凯伦藻共培养时则表现出相反的变化趋势,即活性氧含量随UV-B辐射的升高反而有所下降。
     (3)与单独培养体系相比,共培养体系中微藻对UV-B辐射响应的敏感性发生变化,指示指标也有所不同:球等鞭金藻-青岛大扁藻培养体系中2种微藻的生理敏感指标均为活性氧含量(EC50值分别为1187.1 J·m-2和694.6 J·m-2);球等鞭金藻-米氏凯伦藻体系中微藻敏感生化指标均为酯酶活性,EC50值分别为612.6 J·m-2和391.0 J·m-2;球等鞭金藻-米氏凯伦藻体系中敏感指标分别活性氧含量和种群密度,EC50值分别为832.8 J·m-2和578.2 J·m-2。研究结果表明,活性氧含量和酯酶活性变化可作为灵敏指示UV-B辐射胁迫-响应的生物标志物。
     3.长时间、亚致死剂量的UV-B辐射对微藻种群生长的影响
     (1)运用实验生态学方法研究了球等鞭金藻、赤潮异弯藻和米氏凯伦藻种群生长对UV-B辐射的响应。长时间、亚致死剂量的UV-B辐射能明显影响3种微藻种群的生长:3种微藻的种群密度均表现出低剂量(2.064 J·m-2·d-1)上升而高剂量(≥8.256 J·m-2·d-1)下降的趋势;球等鞭金藻与赤潮异弯藻的环境容纳量(carrying capacity, K)表现出低剂量(2.064J·m-2·d-1)上升而高剂量(≥8.256 J·m-2·d-1)下降的趋势,种群生长拐点时间(Tp)缩短;米氏凯伦藻K值无显著变化,但Tp显著延长。
     (2)长时间、亚致死剂量的UV-B辐射条件均能导致3种微藻细胞体积增大;球等鞭金藻和赤潮异弯藻的叶绿素a荧光与存活率均表现为逐渐下降的变化趋势,但前者的内容物复杂程度升高,而后者则无显著变化;米氏凯伦藻内容物复杂程度下降,叶绿素a荧光与存活率无显著变化。
     4.长时间、亚致死剂量的UV-B辐射对共培养体系中微藻种群生长和种间竞争的影响
     (1)混合培养抑制了微藻种群生长,与单独培养体系中的对照组相比球等鞭金藻、赤潮异弯藻和米氏凯伦藻K值均显著降低;
     (2)长时间、亚致死剂量的UV-B辐射能对共培养微藻的微藻种群增长的动态变化产生影响:球等鞭金藻-米氏凯伦藻体系中球等鞭金藻种群密度、K值和Tp降低,而米氏凯伦藻种群密度、K值和Tp显著上升;球等鞭金藻-赤潮异弯藻体系中球等鞭金藻种群密度和K值降低,Tp显著延长,赤潮异弯藻种群密度与K值随UV-B辐射剂量的增加呈现先升高(2.064-66.048 J·m-2·d-1)后降低(≥132.096 J·m-2·d-1)的趋势。
     (3)长时间、亚致死剂量的UV-B辐射影响了共培养微藻的种间竞争作用,对UV-B辐射增强条件下共培养体系中微藻的种群密度变化进行数值模拟,结果显示:随辐射剂量的增加,球等鞭金藻-米氏凯伦藻体系中种群竞争状态由球等鞭金藻占据优势转变为不稳定平衡状态,最终转变为米氏凯伦藻占据竞争优势;球等鞭金藻-赤潮异弯藻体系中种群竞争状态由不稳定平衡转变为赤潮异弯藻占据竞争优势。
Ozone-related increase in UV-B radiation (280-320 nm)can negatively influence aquatic ecosystems. Phytoplankton is the major biomass producer in the oceans, and forms the basis of the aquatic food webs. They play important role not only in material cycle and energy transportation but also in global climate change regulation. The destruction of phytoplankton population and community structure threaten other marine organisms and marine ecosystem. An algal bioassay method with rapid and sensitive endpoint will contribute to evaluating and predicting the influence of enhanced UV-B radiation on marine ecosystem, and is helpful to understanding the process and mechanism for marine ecosystem response to enhanced UV-B radiation.Flow cytometry is a rapid method for the quantitative measurement for individual cell in moving fluid.Measurements of multiple fluorescence properties of thousands of individual cells are collected simultaneously to detect physiological status of cells. Flow cytometry only recently been applied to ecotoxicological studies, but has aroused increasing interest among researchers.However, no study on the population growth and interspecific of marine microalgae based on flow cytometry has been conducted.
     In the present study, the response of population growth and interspecific competition of Platymonas helgolandica, Isochrysis galbana, Heterosigma akashiwo and Karenia mikimotoi were studied based flow cytometry to reveal its possible mechanism and choose biomarkers sensitive to enhanced UV-B radiation.
     1.Effect of acute exposure of enhanced UV-B radiation on microalgae
     (1)The four microalgae mentioned above can be distinguished from bacteria, cell debris and suspended particles.
     (2) Seven indexes-cell volume, cellular content complexity, chlorophyll a (Chl a) fluorescence, survival rate, esterase activity, content of reactive oxygen species (ROS) and population density-were detected simultaneously according to fluorescence properties. Results indicated that acute exposure of UV-B radiation showed negative effect on microalgae, and the action way was species-specific.Within the dose and time range investigated, a. the content of ROS of the four microalgae increased and their population density decreased;the survival rate of K.mikimotoi decreased with the increase in UV-B dose, but no significant changes were observed in survival rates of P. helgolandica, I. galbana and H. akashiwo.b.Chi a fluorescence and esterase activity of the four microalgae were obviously decreased when exposed to UV-B radiation, but variations of cell volume and cellular content complexity were species-specific:the cell volume and cellular content complexity decreased remarkably in cells of I.galbana and K. mikimotoi, while cell volume of H.akashiwo decreased, but cellular content incressed and no variation in P. helgolandica.
     (3)There are differences in sensitivity of the four microalgae to enhanced UV-B radiation. The content of ROS in cells of P. helgolandica and I. galbana was most sensitive to enhanced UV-B radiation (the value of EC50 was 508.6 and 560.2 J·m-2,respectively);esterase activity is the most sensitive index in cells of H. akashiwo and K.mikimotoi (the value of EC50 was 433.3 and 455.1 J·m-2, respectively).
     2. Effect of acute exposure of enhanced UV-B radiation on microalgae in bi-algal culture
     (1)Flow cytometry could be used to distinguish cells of one species of microalga from another one and detecting physiological and biochemical indexes. Mixed culture influenced physiological and biochemical processes of microalgae, and the effect was species-specific.In co-culture with I. galbana, survival rates of P. helgolandica and H. akashiwo decreased indicating that mixed culture showed negative effect on them, but the survival rate of K. mikimotoi increased indicating that it benefit from co-culture; survival rate of I. galbana in bi-algal culture had no significant variation, but esterase activity increased and the content of ROS increased.Results indicated that mixed culture was not lethal for I.galbana, but influenced its physiological activity.
     (2) Acute exposure to enhanced UV-B radiation showed inhibitive effect to the growth of microalgae, and compared with control group, microalgal population density decreased obviously. The effect to UV-B radiation was species-specific, P. helgolandica and K. mikimotoi showed increase in the content of ROS and decrease in Chi a; the response of I. galbana to UV-B radiation differed in different co-culture system:with increased in UV-B radiation, the content of ROS increased in bi-algal culture with P. helgolandica and decreased in bi-algal culture with H. akashiwo and K. mikimotoi.
     (3)Compared with microalgae in mono-cultures, microalgae in bi-algal cultures showed different sensitivity to enhanced UV-B radiation, and their sensitive index also changed:the most sensitive biochemical index of I.galbana and P. helgolandica in bi-algal cultures of them was the content of ROS (the value of EC50 was 1187.1 and 694.6J·m-2, respectively) esterase activity was the most sensitive index of microalgae in bi-algal culture of I.galbana and K. mikimotoi, and the value of EC50 was 612.6 and 391.0 J·m-2,respectively; the most sensitive index of I.galbana and K. mikimotoi in bi-algal cultures of them was the content of ROS (EC50=832.8 J·m-2) and the population density (EC5o=578.2·m-2), respectively. Responses of sensitive indexes to enhanced UV-B radiation were observed, and the content of ROS and esterase activity could be considered as sensitive stress-response biomarkers.
     3. Effect of long-term exposure to sublethal UV-B radiation enhancement on population growth of microalgae
     (1)The responses of population growth of I.galbana, H. akashiwo and K. mikimotoi to enhanced UV-B radiation were studied in laboratory. Population growth of microalgae mentioned above was obviously affected by long-term exposure to sublethal UV-B radiation: population densities of microalgae increased under low radiation dose (2.064 J·m-2·d-1) and decreased under high radiation dose (≥8.256 J·m-2·d-1);the carrying capacity (K) of I.galbana and H. akashiwo increased under low radiation dose (2.064 J·m-2·d-1) and decreased under high radiation dose (>8.256 J·m-2·d-1),and the time for reflection point in its population growth cure (Tp) was shortened;the K value of K. mikimotoi had no obvious variation and its Tp was prolonged.
     (2) Under long-term exposure to sublethal UV-B radiation, the cell value of the three microalgae mentioned above increased remarkably;the Chl a fluorescence and survival rate of I. galbana and H. akashiwo decreased with increase in radiation dose, but the cellular content complexity of I. galbana increased and that of H.akashiwo had no variation; for K. mikimotoi, the cellular content complexity decreased, but Chl a fluorescence and survival rate had no notable change.
     4. Effect of long-term exposure to sublethal UV-B radiation enhancement on population growth and interspecific competition of microalgae in bi-algal culture
     (1)The population growth of microalgae was significantly inhibited in bi-algal culture, and the K value of I.galbana, H. akashiwo and K. mikimotoi decreased obviously.
     (2) Long-term exposure to sublethal UV-B radiation influenced population growth dynamics of microalgae:in bi-algal culture of I.galbana and K. mikimotoi, the population density and values of K and Tp of I.galbana decreased, and those of K. mikimotoi increased significantly; in bi-algal culture of I. galbana and H. akashiwo, for I.galbana the population density and the value of K decreased, whereas the value of Tp increased. The population density and value of K of H. akashiwo increased under low radiation dose (2.064-66.048 J·m-2·d-1) and decreased under high radiation dose (≥132.096 J·m-2·d-1).
     (3)Long-term exposure to sublethal UV-B radiation influenced the interactions of microalgae in bi-algal cultures, and the result of numerical simulation of effect of UV-B radiation on population density of microalgae showed that in bi-algal culture of I.galbana and K. mikimotoi, I. galbana could out-compete K. mikimotoi in control group, but with the increase in UV-B radiation, the two species might be coexistence although equilibrium is unstable, and finally K. mikimotoi could out-compete I.galbana; in bi-algal culture of I. galbana and H. akashiwo, fist the two species might be coexistence and then H. akashiwo could out-compete I.galbana with the increased in UV-B radiation.
引文
Anderson J.G., Toohey D.W.and Brune W.H.(1991)Free radicals within the Antarctic vortex:the role of CFCs in Antarctic ozone loss. Science 251:39-46.
    Arsenault G., Cvetkovic A.D. and Popovic R.(1993) Toxic effects of copper on Selenastrum capricornutum measured by a flow cytometry based method. Water Pollut. Res. J.Can.28:757-765.
    Arzul G., Seguel M., Guzman L. and Erard-Le D.E.(1999) Comparison of allelopathic properties in three toxic Alexandrum species. J. Exp. Mar. Ecol.232:285-295.
    Bancroft B.A.,Baker N J. and Blaustein A.R.(2007) Effects of UV-B radiation on marine and freshwater organisms:a synthesis through meta-analysis. Ecol. Lett.10:332-345
    Bentley-Mowat J.A.(1982) Application of fluorescence microscopy to pollution studies on marine phytoplankton. Bot. Mar.25:203-204.
    Berglund D.L. and Eversman S.(1988) Flow cytometric measurements of pollutant stresses on algal cells. Cytometry 9:150-155.
    Bjorn L.O., Callaghan T.V., Gehrke C.,Johanson U. and Sonesson M.(1999) Ozone depletion, ultraviolet radiation and plant life. Chemosphere:Global Change Sci.1:449-454.
    Blaise C.and Menard L.(1998) A micro-algal solid phase test to assess the toxic potential of freshwater sediments. Water Qual. Res. J. Can.33:133-151.
    Blaustein A.R., Kiesecker J.M., Chivers D.P., Hokit D.G, Marco A. and Belden L.K.(1998) Effects of ultraviolet radiation on amphibians:field experiments. Am. Zool.38:799-812.
    Breeuwer P., Drocourt J.L., Bunschoten N., Zwietering M.H.,Rombouts F.M. and Abee T.(1995) Characterisation of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol.61:1614-1619.
    Buma A.G.J., Van Hannen E.J.,Roza L., Veldhuis M.J.W. and Gieskes W.W.C.(1995) Monitoring UV-B-induced DNA damage in individual diatom cells by immunofluorescencent thymine dimer detection.J. Phycol.31:314-321.
    Buma A.G.J.,Van Oijen T.W., Van de Poll Veldhuis M.J. W. and Gieskes W.W.C.(2000) The sensitivity of Emiliania huxleyi (Prymnesiophyceae) to UV-B radiation. J. Phycol.36:296-303.
    Buma A.G.J., Zemmelink H.J,K., Sjollema and Gieskes W.W.C.(1996) UV-B radiation modifies protein and photosynthetic pigment content, volume and ultraestructure of marine diatoms. Mar. Ecol.Prog. Ser. 142:47-54.
    Bunthof C.J.,van den Braak S., Breeuwer P., Rombouts F.M.and Abee T.(1999) Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl.Environ. Microbiol.65:3681-3689.
    Byl T.D. and Klaine S.J.(1991)Peroxidase activity as an indicator of sublethal stress in the aquatic plant Hydrilla verticillata (Royle). In:Gorsuch J.W., Lower W.R, Wang W., Lewis M.A.(eds) Plants for toxicity assessment,2nd vol.ASTM STP 1115,American Society for Testing and Materials, Philadelphia, PA,p.101-106.
    Cadet J.,Anselmino C.,Douki T. and Voituriez L.(1992) Photochemistry of nucleic acids in cells. J. Photochem. Photobiol.15:277-298.
    Caldwell M.M.(1981)Plant response to solar ultraviolet radiation. In:Lange OL, Nobel PS, Osmond CB, Ziegler H.(eds) Encyclopedia of plant physiology, physiological plant ecology Ⅰ, vol.12A, Springer-Verlag, Berlin, p.169-197.
    Caldwell M.M., Teramura A.H. and Tevini M.(1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol.Evol.4:363-367.
    Charles S.A.and Halliwell B.(1980) Effect of hydrogen peroxide on spinach (Spinacia oleracea) chloroplast fructose biphosphatase. Biochem. J.189:373-376.
    Chow W.S., Strid A.and Anderson J.M.(1992) Short-term treatment of pea plants with supplementary ultraviolet-B radiation:Recovery time-courses of some photosynthetic functions and components. Plant Cell.4:129-134.
    Cid A.,Fidalgo P., Herrero C.and Abalde J.(1996) Toxic action of copper on the membrane system of a marine diatom meaured by flow cytometry. Cytometry.25:32-36.
    Coohill T.P.(1989) Ultraviolet action spectra (280 nm to 380 nm) and solar effectiveness spectra for higher plants. Photochem. Photobiol.50:451-457.
    Cristina Sobrino, Olimpio Monterol and Luis M.Lubian UV-B radiation increases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana Aquat. Sci.66 (2004) 421-429.
    Day T.A.and Neale P.J.(2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu. Rev. Ecol.Syst..33:371-396.
    De Lorenzo M.E., Taylor L.A.,Lund S.A.,Pennington P.L., Strozier E.D. and Fulton M.H.(2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in hytoplankton and zooplankton. Arch. Environ. Contam. Toxicol.42:173-81.
    de Mora S., Demers S. and Vernet M. (eds) (2000)The Effects of UV Radiation in the Marine Environment. Cambridge Environmental Chemistry Series:10. Cambridge University Press, Cambridge, UK.
    Debelius B.,Forja J. M., Valls A.D. and Lubia'n L.M.(2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol. Environ. Saf.72:1503-1513
    Devill R.A., Brown M.T., Donkin M. and Readman J.W. (2005) The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Aquat. Toxicol.71:25-38.
    Dorsey J., Yentsch C.,Mayo S. and McKenna C.(1989) Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry.10:622-628.
    Doughty J.C. and Hope A.B.(1973) Effects of ultraviolet radiation on the membranes of Chara corallina. J. Membr.Biol.13:185-198.
    Franklin N.M., Adams M.S.,Stauber J.L. and Lim R.P. (2001)Development of an improved rapid enzyme inhibition bioassay with marine and fresh microalgae using flow cytometry. Arch. Environ. Contam. Toxicol.40:469-480.
    Franklin N.M., Stauber J.L. and Lim R.P. (2001)Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ. Toxicol. Chem.20:160-170.
    Fredrick J.E.(1993) Ultraviolet sunlight reaching the Earth's surface. A review of recent research. Photochem. Photobiol.57:175-178.
    Gala W.R. and Giesy J.P.(1990) Flow cytometirc techniques to assess toxicity to algae. In:Landis WG.,van der Schalie WH(eds) Aquatic toxicology and risk assessment,13th vol. American society for Testing and Materials, Philadelphia, PA,pp.237-246.
    Gala W.R. and Giesy J.P.(1990) Flow cytometric techniques to assess toxicity to algae. In:Landis WG, van der Schalie WH (eds) Aquatic toxicology and risk assessment,13th vol.American Society for Testing and Materials, Philadelphia, PA, pp.237-246.
    Gallego A.,Gonza'lez A.M., Ortega, R. and Gutie'rrez J.C.(2007) Flow cytometry assessment of cytotoxicity and reactive oxygen species generation by single and binary mixtures of cadmium, zinc and copper on populations of the ciliated protozoan Tetrahymena thermophila. Chemosphere 68:647-661.
    Gilbert F., Galgani F. and Cadiou Y.(1992) Rapid assessment of metabolic activity in marine microalgae: application in ecotoxicology and evaluation of water quality. Mar. Biol.112:199-205.
    Grossweiner L.I.(1984) Photochemistry of proteins:a review. Curr. Eye Res.3:137-144.
    Hader D.P.. Kumar H.D., Smith R.C.and.Worrest R.C.(2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol.Sci.6:267-285.
    Hader D.P.(1993)Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. In:Tevini M.(eds) UV-B Radiation and Ozone Depletion:Effects on Humans, Animals, Plants, Microorganisms, and Materials, Lewis Publishers, Boca Raton, FL, pp.155-192.
    Hader D.P.,Kumar H.D., Smith R.C.and Worrest R.C. (2003)Aquatic ecosystems:effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem. and Photobiol. Sci.2: 39-50.
    Hadjoudja S., Vignoles C.,Deluchat V., Lenain J., Jeune A.L. and Baudu M. (2009) Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat. Toxicol.94: 255-264
    Han T., Han Y.S., Kain J.M. and Hader D.P. (2003) Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J. Phycol. 39:712-721.
    Hanelt D., Tug H., Bischof K., Cross C.,Lippert H., Sawall T. and Wiencke C.(2001)Light regime in an Arctic fjord:a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar. Biol.138:649-658.
    Harvell C.D.(1990) The ecology and evolution of inducible defenses. Quar. Rev. Bio.65:323-340. Helbling E.W. and Zagarese H.(eds) (2003)UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK.
    Hessen D.O.(2003)UVR and pelagic metazoans. In:Helbling E.R. and Zagarese H.(eds)UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK, pp.401-430.
    Hollosy F. (2002) Effect of ultraviolet radiation on plant cells. Micron.33:179-197.
    Houghton R.A.and Woodwell G.M.(1989) Global climatic change. Sci.Am.260:18-26.
    Humphreys M.J.,Allman R. and Lloyd D.(1994) Determination of the viability of Trichomonas vaginalis using flow cytometry. Cytometry.15:343-348.
    Hutchinson F.(1987) A review of some topics concerning mutagenesis by ultraviolet light. Photochem. Photobiol.45:897-903.
    IPCC (Intergovenment Panel on Climate Change) (2001)Observed climate variability and change. In: Houghton J.T., Ding Y., Griggs D.J. (eds) Climate Change 2001:The Scientific Basis. Cambridge: Cambridge University Press, pp.99-182.
    Jiang N. and Taylor J.S.(1993)In vivo evidence that UV-induced C-T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry.32:472-481.
    Jordan B.R.(1993) The molecular biology of plants exposed to ultraviolet-B radiation and the interaction with other stresses. In:Jackson M.B. and Black C.R. (eds) Interacting Stresses on Plants in a Changing Climate NATO ASI Series,16th vol. Springer-Verlag, Berlin, p.153-170.
    Karentz D., Bothwell M.L., Coffin R.B.,Hanson A.,Herndl G.J., and Kilham S.S.(1994) Impact of UV-B radiation on pelagic freshwater ecosystems:report of working group on bacteria and phytoplankton. Archiv fur Hydrobiologie Beiheft Ergebnisse der Limnologie,43:31-69.
    Karentz D., Cleaver J.E. and Mitchell D.L.(1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to UV-B radiation. J. Phycol.27:326-341.
    Katsurgi T. and Tani Y. (2000) Screening for Microorganisms with Specific Characteristics by Flow Cytometry and Single-Cell Sorting. J. Biosci. Bioeng.89:217-222
    Khoroshilova E.V., Repeyev Y.A. and Nikogosyan D.N.(1990) UV photolysis of aromatic amino acids and related dipeptides and tripeptides. J. Photochem. Photobiol.7:159-172.
    Kohata K. and Watanabe M.(1988) Die] changes in the composition of photosynthetic pigments and cellular carbon and nitrogen in Chattonella antique (Raphidophyceae). J. Phycol.24:58-66.
    Kramer G.F., Krizek D.T. and Mirecki R.M.(1992) Influence of photosynthetically active radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochem.31:1119-1125.
    Lampert W. and Sommer U.(2007) Limnoecology. New York:Oxford University Press, pp.89-147.
    Litchman E. and Neale P.J. (2005) UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad. Mar. Ecol. Prog. Ser.,300:53-62.
    Madronich S.(1992) Implications of recent total atmospheric ozone measurement for biologically active ultraviolet radiation reaching the earth's surface. Geophys. Res. Lett.19:37-40.
    Madronich S.(1993) UV radiation in the natural and perturbed atmosphere. In:Tevini M. (eds) Effects of UV-B radiation on humans, animals, plants, microorganisms and materials. Lewis Publisher, Boca Raton, FL, pp.17-69.
    Madronich S., McKenzie R.L., Bjorn L.O. and Caldwell M.M.(1998) Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B:Biol.46:5-19.
    Marwood C.A. and Greenberg B.M(1996) Effect of supplementary UVB radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochem. Photobiol.64:664-670.
    Massaro E.J., Elstein K.H.,Zucker R.M. and Bair K.W.(1989) Limitations of the fluorescent probe viability assay. Mol. Toxicol.2:271-284.
    McCormick P.V. and Cairns J.J.(1994) Algae as indicators of environmental change. J. Appl. Phycol. 6:509-26.
    McFarland M. and Kaye I.(1992) Chlorofluorocarbons and ozone. Photochem. Photobiol.55:911-929.
    McLennan A.G.and Eastwood A.C.(1986) An endonuclease activity from suspension cultures of Daucus carota which acts upon pyrimidine dimers. Plant Sci.46:151-157.
    Mirecki R.M. and Teramura A.H.(1984) Effects of ultraviolet-B irradiance on soybean-V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol.74:475-480.
    Montero O., Klisch M, Hader D.P. and Lubian L.M.(2002) Comparative Sensitivity of Seven Marine Microalgae to Cumulative Exposure to Ultraviolet-B Radiation with Daily Increasing Doses. Bot. Mar. 45:305-315.
    Moreno-Garrido I., Hampel M., Lubian L.M. and Blasco J.(2003) Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae). Ecotoxicol. Environ. Saf.54:290-295.
    Moreira-Turcq P.F., Cauwet G.And Martin J.M. (2001)Contribution of flow cytometry to estimate pipoplankton biomass in estuarine systems. Hydrobiologia 462:157-168.
    Murphy T.M.(1983) Membranes as targets of ultraviolet radiation.Physiol. Plant 58:381-388.
    Murphy T.M.(1990) Effect of broad-band ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose cells. Plant Physiol.80:63-68.
    Murphy T.M.and Vu H.(1996) Photoinactivation of superoxide synthases of the plasma membrane from rose(Rosa damascena Mill.)cells. Photochem. Photobiol.64:106-109.
    Murphy T.M. and Wilson C.(1982) The UV-stimulated K+ efflux from rose cells. Plant Physiol.70: 709-713.
    Murphy T.M., Hurrel H.C.and Sasaki T.L.(1985) Wavelength dependence of ultraviolet radiation-induced mortality and K+ efflux in cultured cells of Rosa damascena. Photochem. Photobiol.42:281-286.
    Pakker H.,Beekman C.A.C. and Breeman A.M. (2000) Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta). Eur. J. Phycol.35: 109-114.
    Panagopoulos I., Borman J.F. and Bjorn L.O.(1990) Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultraweak luminescence and peroxidase activity in sugar beet plants. J. Photochem.Photobiol.8:73-87.
    Pang Q. and Hays J.B.(1991) UV-B-inducible and temperature sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol.95:536-543.
    Peterson S.M. and Stauber J.L.(1996) New algal enzyme bioassay for the rapid assessment of aquatic toxicity. Bull. Environ. Contam. Toxicol.56:750-757.
    Pfundel E.E., Pan R.S. and Dilley R.A. (1992) Inhibition of violaxanthin deep oxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol.98:1372-1380.
    Phinney D.A. and Cucci T.L.(1989) Flow cytometry and phytoplankton. Cytometry 10:511-521.
    Piazena H. and Hader D.P.(1994) Penetration of solar UV irradiation in coastal lagoons of the southern Baltic and its effect on phytoplankton communities. Photochem. Photobiol.60:463-469.
    Predieri S., Norman H.A.,Krizek D.T., Pillai P.,Mirecki R.M. and Zimmerman R.H.(1995) Influence of UV-B radiation on membrane lipid composition and ethylene evolution in 'Doyenne D'Hiver' Pear shoots grown in vitro under different photosynthetic photon fluxes. Env. Exp. Bot.35:151-160.
    Prinsze C.,Dubbleman T.M.A.R. and Steveninck J.V.(1990) Protein damage induced by small amounts of photodinamically generated singlet oxygen or hydroxyl radicals. Biochim. Biophys. Acta.1038:152-157.
    Quesada A.,Mouget J.and Vincent W.F.(1995) Growth of Antarctic cyanobacteria under ultraviolet radiation:UV-A counteracts UV-B inhibition. J. Phycol.31:242-248.
    Rafaelli, D. (2004) How extinction patterns affect ecosystems. Science,306:1141-1142.
    Regel R.H.(1997) The response of Microcystis aeruginosa (Cyanophyceae) to heavy metals and stormwater. Honors thesis, University of Adelaide, SA, Australia.
    Regel R.H., Ferris J.M., Ganf G.G.and Brookes J.D. (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat. Toxicol.59:209-223.
    Reiriz S.,Cid C.,Torres E., Abalde J. and Herrero C.(1994) Different responses of the marine diatom P. tricornutum to copper toxicity. Microbiologiia 10:263-272.
    Rioboo C.,Gonzalez O., Herrero C.and Cid A.(2002) Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat. Toxicol.59:225-35.
    Robberecht R.(1989) Environmental photobiology. In:Simt K.C. (ed.) The science of photobiology. Plenum Press, New York, p.135-154.
    Roleda M.Y., de Poll W.H., Hanelt D. and Wiencke C. (2004) PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life history stages of two coexisting Gigartinales:implications for recruitment and zonation pattern. Mar. Ecol. Prog. Ser.,281:37-50.
    Roleda M.Y., Hanelt D., Krabs G.and Wiencke C. (2004) Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia, 43:603-613.
    Sancar A. and Sancar G.B.(1988) DNA repair enzymes. Annu. Rev. Biochem.57:29-67.
    Shapiro H.M.(1995) Practical flow cytometry,3rd ed. Wiley Liss, New York.
    Siebeck O., Vail T.L., Williamson C.E., Vetter R., Hessen D. and Zagarese H.(1994). Impact of UV-B radiation on zooplankton and fish in pelagic freshwater ecosystems. Arch. Hydrobiol. Beih. Ergebn. Limnol.,43:101-114.
    Smirnoff N.(1995) Antioxidant systems and plant response to the environment. In:Smirnoff N. (eds) Environment and Plant Metabolism:Flexibility and Acclimation. Bios Scientific Publishers, Oxford, p. 217-243.
    Smith K.C.(1989) UV radiation effects:DNA repair and mutagenesis. In:Smith K.C.(eds) The Science of Photobiology. Plenum Press, New York, p.111-134.
    Smith R.C.,Prezelin B.B., Baker K.S.,Bidigare R.R., Boucher N.P.,Coley T.,Karentz D., Maclntyre S., Matlick H.A.and Menzies D.(1992) Ozone depletion:Ultraviolet radiation and phytoplankton biology in Antarctic water. Science.225:952-959.
    Sobrino C.,Montero O. and Lubian L.M.(2004) UV-B radiation increases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana. Aquat. Sci.66:421-429.
    Stauber J.L. and Davies C.M. (2000) Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environl.Rev.8:255-301.
    Stauber J.L., Franklin N.M. and Adams M.S. (2002) Trends in Biotechnology 20(4):141-143.
    Staxen I.and Bornman J.F.(1994) A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol. Plant 91:735-740.
    Stebbing A.R.D.(1982) Hormesis-the stimulation of growth by low levels of inhibitions. Sci. Tol. Environ. 22:213-234.
    Strid A.,Chow W.S. and Anderson J.M.(1994) UV-B damage and protection at the molecular level in plants. Photosynth. Res.39:475-489.
    Takuji U., Satoru T., Yukihiko M., Mineo Y., Yuichi K. and Tsuneo H. Interaction between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J.Exp. Mar. Biol.Ecol.241:285-299.
    Tapaswi P.K. and Mukhopadhyay A.(1999) Effects of environmental fluctuation on plankton allelophathy. J. Math. Biol.39:39-58.
    Villafane V.E., Sundback K., Figueroa F.L. and Helbling E.W. (2003) Photosynthesis in the aquatic environment as affected by UVR. In:Helbling E.R. and Zagarese H. (eds) UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK, pp.357-397.
    Wang Y. and Tang X.X. (2008) Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture.Harmful Algae 7:65-75.
    Wessel S.,Aoki S., Winkler P., Weller R., Gernandt H.and Schrems O.(1998) Tropospheric ozone depletion in polar regions. A comparison of observations in the Arctic and Antactic. Tellus B.50:34-50.
    Williams S.C.,Hong Y., Danavall D.C.A.,Howard-Jones M.H.,Gibson D., Frischer M.E. and Verity P.G. (1998) Distinguishing between living and nonliving bacteria:Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J.Microbiol.Meth.32:225-236.
    Wolff S.P.,Garner A.and Dean R.T.(1986) Free radicals, lipids and protein degradation. Trends Biochem. Sci.11:27-31.
    Yu Y.,Kong F.X.,Wang M.L., Qian L.L. and Shi X.L. (2007) Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicol.Environ. Saf.66:49-56.
    Zaremba T.G., LeBon T.R., Millar D.B.,Smejkal R.M.and Hawley R.J.(1984) Effects of ultraviolet light on the in vitro assembly of microtubules. Biochemistry 23:1073-1080.
    Zepp R.G. (2003) Solar UVR and aquatic cycles. In:Helbling E.R. and Zagarese H.(eds) UV Effects in Aquatic Organisms and Ecosystems. Royal Society of Chemistry, Cambridge, UK, pp.137-183.
    晁敏,张利华,张经(2003)流式细胞计在海洋浮游植物研究中的应用.海洋科学.27:18-22.
    晁敏,张利华,张经(2005)流式细胞计分析海洋微微型浮游生物:样品固定及贮存方法.应用与环境生物学报,11:448-452.
    晁敏.应用流式细胞计研究超微型浮游植物在中国东、黄海典型水域的分布:[博士学位论文].上海:华东师范大学,2002.
    陈丹丹,王鹏,高亚辉,洪伟鑫,陈长平,梁君荣(2009)假微型海链藻硅吸收及硅化作用与细胞周期偶合关系的研究.自然科学进展,19:931-935.
    陈烨,冯婧,严小军(2007)3种常见赤潮微藻间相互作用的研究.宁波大学学报,20:311-314.
    董栋,唐学玺,曲良,冯朝,王其翔(2007)UV-B辐射和多环芳烃对赤潮异弯藻生长的共同作用研究.中国海洋大学学报,37:172-174.
    高亚辉,杨军霞,骆巧琦,高华,杨晨辉,李雪松,梁君荣,陈长平(2006)海洋浮游植物自动分析和识别技术.厦门大学学报(自然科学版),45:40-45.
    郭沛涌,沈焕庭,张利华(2002)流式细胞术在水体微型生物研究中的应用.生物物理学报,18:359-364.
    郭沛涌,朱荫(2004)澹流式细胞术在富营养淡水湖泊微型浮游植物细胞中的应用.细胞生物学杂志,26:204-206.
    何学佳,彭兴跃(2003)应用流式细胞仪研究Pb对海洋微藻生长的影响.海洋环境科学,23:1-5.
    侯建军,黄邦钦,戴相辉(2004)赤潮藻细胞计数方法比较研究.中国公共卫生,20:907-908.
    侯建军,赖红艳,雷红灵,黄邦钦(2008)Takayama pulchellum原位增长率测定的研究.水生生物学报,32:141-147
    蒋霞敏,翟兴文,王丽(2003)陆开形雨生红球藻对紫外辐射的生理适应及超微结构变化.水产学报,27:105-112.
    焦念志,杨燕辉(1999)四类海洋超微型浮游生物的同步监测.海洋与湖沼,30:507-511.
    李伟英,张明,陈玲,董秉直(2009)紫外线对微囊藻毒素-RR降解动力学拟合.同济大学学报(自然科学版),37:925-928.
    梁君荣,唐川宁,陈长平,高亚辉(2006)底栖硅藻新月筒柱藻对锌胁迫的生理学效应厦门大学学报(自然科学版),45:225-229.
    林必桂,杨柳燕,肖琳,季健,袁野,姚莹(2008)赖氨酸对铜绿微囊藻细胞的抑制机理.生态与农村环境学报,24:68-72.
    刘鹏,缪锦来,阚光锋,张波涛,李光友(2003)UV-B增强对南极蓝藻形态和超微结构影响的研究.海洋科学,28:21-25.
    刘晓娟,段舜山,李爱芬(2006)绿色巴夫藻在UV2B胁迫后的生长补偿效应.生态学报,26:1763-1771.
    缪锦来,阚光锋,李光友,张波涛,王波,侯旭光(2004)UV-B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化.中国海洋药物杂志,6:1-5.
    缪锦来,王波,阚光锋,姜英辉,侯旭光,李光友(2004)南极冰藻Chlorophyceae L-4抗氧化酶活性对UV2B辐射增强的响应.海洋科学进展,22:313-319.
    孙书存,陆健健,张利华(2000)流式细胞仪在微型浮游植物生态学中的应用.生态学杂志,19:72-78.
    孙晓庆,董树刚(2008)微微型浮游植物的生态学研究进展.海洋科学,32:67-72.
    谭啸,孔繁翔,曹焕生,史小丽,于洋,张民(2006)利用流式细胞仪研究温度对两种藻竞争的影响.湖泊科学,18:419-424.
    王丹,孙军,汪岷,刘东艳(2005)海洋浮游植物病毒的研究进展.海洋科学进展,23:105-113.
    王军,肖慧,冯蕾,蔡恒江,唐学玺(2006)UV-B辐射对2种海洋微藻膜脂过氧化和脱酯化伤害.中国海洋大学学报,36:763-766.
    王悠,杨震,唐学玺,刘泳,李永祺(2002)7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,22:225-230.
    许复华,张培玉,于德爽,李悦(2006)UV B辐射对孔石莼与青岛大扁藻的生长影响.青岛大学学报(工程技术版),21:49-53.
    杨顶田,陈伟民,张运林,刘正文(2004)太湖梅梁湾水体中紫外线状况及藻体内MAAs的检测.武汉植物学研究,22:264-268.
    杨晓新.溶球细菌对球形棕榈藻溶藻机理的研究:[博士学位论文].广东:暨南大学,2008.
    杨艳辉.中国典型海域超微型生物生态学初步研究:[博士学位论文].青岛:中国科学院海洋研究所,2000.
    杨州,孔繁翔,史小丽,张民,曹焕生(2008)棕鞭毛虫牧食作用对铜绿微囊藻形态和生理特性的影响.湖泊科学,20:403-408.
    于娟,唐学玺,李永祺(2002)紫外线-B辐射对海洋微藻的生长效应.海洋科学,26:6-8.
    于仁成,唐祥海,张清春,陈洋,王云峰,颜天,周名江(2006)应用荧光原位杂交方法检测中国沿海塔玛/链状亚历山大藻复合种(亚洲温带基因型).环境科学学报,26:646-651.
    于洋,孔繁翔,钱蕾蕾,王美林,史小丽(2006a)应用流式细胞技术研究种群初始状态对藻类毒性效应的影响.环境化学,25:180-182.
    于洋,孔繁翔,史小丽(2006b)栅藻对金属离子的异质敏感性与其细胞周期的关系.环境科学27:1197-1200.
    于洋,孔繁翔,王美林,史小丽(2006c)应用流式细胞技术研究铜对藻细胞膜完整性及脂酶活性的影响.应用与环境生物学报,12:706-709.
    张艺(2005)流式细胞仪构成与工作原理.仪器原理与使用,20:25-26.
    赵旌旌,张利华,王隆华(2000)流式细胞技术对莱哈衣藻(Chlamydomonas reinhardi)配子形成过程的观察.华东师范大学学报(自然科学版),2:92-96.
    赵三军.黄东海海洋浮游细菌的生态学研究:[博士学位论文].青岛:中国科学院海洋研究所,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700