云南龙陵黄龙玉的成因分析,以及矿物学特征、品质特征耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄龙玉原生矿体产于龙陵县小黑山矿区,原生矿体产于三叠系公养河群板岩与花岗岩接触带上,部分产于花岗岩张性裂隙中,一般呈透镜状、囊状和不规则状产出。原生矿产出山料,主要以洞坑石料为主。次生矿床分布于以小黑山为源头的苏帕河流域,分散于河底、河滩、河流两岸田地中,次生矿产出籽料。
     组成黄龙玉的硅质种类主要分为,蛋白石、玉髓、微晶石英和粗晶石英。典型的黄龙玉呈现均一或非均一的隐晶及凝胶结构,微晶结构及以上两种结构的镶嵌结构。物相分析显示黄龙玉的主要组成矿物为玉髓及石英,次要矿物为绢云母、铁泥质矿物、高岭石等。X射线粉晶衍射分析中发现的残留白云石提供了成矿硅质流体交代白云质碳酸盐岩的证据。
     本次首次发现了黄龙玉样品中含有细分散状的高岭石。黄龙玉中的高岭石呈细分散状或者细脉状并呈现出长石假象,其周围常伴有板片状绢云母颗粒,是黄龙玉围岩花岗岩发生高岭石化的产物。高岭石具有很好吸附性,能够在黄龙玉局部富集一定致色成分。是硅质黄龙玉出现类似印章石质感的根本原因,对黄龙玉的品质优越性有着极其重要的贡献。
     常量元素地球化学特征表明,黄龙玉含有较多的陆源输入物,主要为高岭石。稀土元素的特征分析显示,黄龙玉的δCe及δEu值偏高证实了黄龙玉地下水主导成岩过程的机制。通过对小黑山矿物样品的石英及玉髓的氢氧同位素分析发现,小黑山矿床具有明显偏负的δD值,介于-131‰~-179‰之间,远远低于龙陵地区地热温泉水的δD值范围,与高纬度大气降水特征相符,,进一步证明其成矿流体主要来自大气降水。
     黄龙玉的原生矿脉形成于浅地表的开放拉张裂隙环境,属于由地下水携带的二氧化硅形成的表生无矿硅质岩。黄龙玉是沉积作用、风化淋滤作用等多种过程协同而成,使原生黄龙玉的外观发生多种变化,丰富了黄龙玉的内涵并极大地扩展了其工艺设计与想象空间。
The Huanglong Jade (Chrismatite) of Longling, Yunnan, which has delicate andexquisite texture, and had been honored as Siliceous Tianhuang, is a new type of highquality chert jade appeared lately years in the Chinese jade market. The HuanglongJade occurs mainly in contact zone or tensile cracks of upper granite and slate ofGongyanghe Group (Triassic). Its secondary ores are distributed along the river bed,flood plain and fields of the Supa River.
     Field observation and modern test technologies have been used in this paper, tomake a systematic study on aspects of geochemical and petrological characteristics ofHuanglong Jade (Chrismatite). Furthermore, coupling analysis is done on the basis ofprevious studies to make a connection between its gemology and mineralogycharacteristics. In this thesis, texture types, group, evolution characteristics have beenstudied under polarizing microscopy. Geochemical characteristics of minor elements,and REE have been detailed studied, and revealed that formation of the HuanglongJade is mainly related to atmospheric precipitation, and hydrothermal fluids also takepart in its formation.
     The main siliceous mineral constituent of Huanglong Jade, aphanitic quartz,chalcedony, microcrystalline quartz and mega quarz, whose are characterized byvaried crystal form and size, have been showed different texture element features.From the microscope we can tell that the structure of the Huanglong jade is mainlyaphanitic to particulate structure, and it also contains phanerocrystalline, fine-grainedand macrograin type. The analysis of X-ray diffraction and infrared shows that themineral composition of the Huanglong Jade is mainly quartz, and also containing asmall amount of muscovite, dolomite and clay minerals of iron. And for the first timethe author discovered that finely dispersed kaolinites are contained in the HuanglongJade, which contributes greatly to the excellent quality of it.
     The Jade sample have showed negative anomalies and not clear anomalies ofδCe, even positive anomalies of δCe. The value of δEu is weak positive anomalies,which reveal the genesis of atmospheric precipitation sedimentation. The abovedistribution characteristics of main and REE have been argely controlled by theoriginal depositional environment and the activity grade of ore-forming fluid.
     Three variables, body colour, structural diversity, types and content of thesecondary minerals are the three major factors related to the quality of the HuanglongJade. The original ore, which resulted in combined actions of sedimentation,weathering and eluviation, formed in the open fracture environment of subsurface.Secondary ore is formed by subsurface effect (including biological weathering,chemical weathering and actions of water), which changed the appearance of theoriginal ore greatly and enriched the variety of the Huanglong Jade.
引文
[1]葛宝荣.黄蜡石·黄龙玉.北京:地质出版社,2007
    [2]葛宝荣,刘涛,张家志.中国国家宝藏-黄龙玉.北京:地质出版社,2009
    [3]姚雪.云南黄色硅质岩玉的宝石学特征.宝石和宝石学杂志,2007,19(2):13-14
    [4]王徽枢.贺县次生石英岩,一个黄色玉石新品种.中国宝玉石,2006,(3):79
    [5]龙陵县水利电力局.龙陵县水利志.德宏:德宏民族出版社,1995
    [6]云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990
    [7]张金富,王世勋.云南龙陵玉石新品——黄蜡玉的特性及品质评述.云南地质.2007,26(1):25-31
    [8]苏琳,范建良,郭守国.紫色玉髓的矿物学特征及其呈色机理研究.矿产保护与利用,2008,5:21-26
    [9]周训华,廖义玲.红粘土颗粒之间结构连结的胶体化学特征.贵州工业大学学报(自然科学版),2004,(33):26-29
    [10]李玉娟.寿山石的矿物组分和特征.福建地质,2003,2(2):79-89
    [11]毛立音.玛瑙颜色和纹环带形成的机理.资源环境与工程,2006,20(2):126-128
    [12]席晓光.朝阳硅化木的矿物成份分析及宝石特征.辽宁工程技术大学学报,2007,26(3):464-466
    [13]林嵩山.台湾蓝玉髓.宝石和宝石学杂志,2008,10(2):5-9
    [16]林金辉,汪灵,邓苗等.川西地区微晶白云母的矿物学特征研究.矿物岩石,200525(3):14-17
    [17]钱雪雯.昌化田黄石的宝石矿物学研究:[硕士学位论文].北京:中国地质大学,2009
    [18]陈立.黄龙玉产地特征及其品级划分的研究.广东科技,2009,(18):57-58
    [19]段生杰.滇西龙陵—潞西花岗岩带成矿条件及找矿前景.西南矿产地质,1996,(3,4):9-21
    [20]秦德先.龙陵东部花岗岩及其成矿作用.矿产与地质,1990,4(16):25-35
    [21]佟星.云南黄龙玉(黄蜡)品种、雕刻实践及工艺评价:[硕士学位论文].北京:中国地质大学,2011
    [22]刘婉.云南龙陵小黑山地区“黄色系列玉髓”的宝石学特征研究:[硕士学位论文].昆明:昆明理工大学,2009
    [23]于永亭,李晓,郭爽.云南省龙陵地区温泉水化学特征及其成因分析.广东微量元素科学,2008,15(2):39-46
    [24]王玉兵,杜凡,曹顺伟.云南省小黑山自然保护区种子植物区系研究.广西植物,2006,26(3):261-267
    [25]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究.地学前缘,2000,7(2):299-320
    [26]杨竹森,侯增谦,高伟,等.藏南拆离系锑金成矿特征与成因模式.地质学报,2006,80(9):1377-1391
    [27]孟祥金,杨竹森,戚学祥,等.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应.岩石学报,2008,24(7):1649-1655
    [28]郑西来,郭建青.二氧化硅地热温标及其相关问题的处理方法.地下水,1996,18(2):85-88
    [29]盛吉虎,陈中新.硅质岩沉积地球化学研究现状.地域研究与开发,1998,17(S):117-121
    [30]黄华.江南造山带内古生代硅质岩的地球化学特征及其地质意义:[硕士学位论文].成都:成都理工大学,2011
    [31]陈振胜,张理刚.判定热液矿床成矿介质水的一种有效方法_以西华山钨矿为例.地质与勘探,1990,(4):7-12
    [32]杨海生,周永章,杨志军.热水沉积硅质岩地球化学特征及意义——以华南地区为例.中山大学学报(自然科学版),2003,42(6):111-115
    [33]陈振胜,张理刚.热液体系氢、氧同位素分馏机制及其地质意义.地质学报,1992,66(2):158-169
    [34]易发成,田煦,李虎杰.苏皖交界地区蛋白石硅岩热水沉积地球化学特征.西南工学院学报,1997,(3):57-60
    [35]王江海,张丽彦.腾冲热水沉积金矿床硅质岩特征和金银赋存状态研究.矿物岩石地球化学通报,1996,15(1):32-35
    [36]郑淑蕙,张知非,倪葆龄.西藏地热水的氢氧稳定同位素研究.北京大学学报,1982,(1):99-106
    [37]赵平,金建,张海政,等.西藏羊八井地热田热水的化学组成.地质科学,1998,33(1):61-72
    [38]董维全,陈先沛,高计元.西秦岭南亚带太阳顶群硅质岩的沉积地球化学及成因研究.地球化学,1994,23(S):145-153
    [39]王东安,陈瑞君.雅鲁藏布缝合带硅岩的地球化学成因标志及其地质意义.沉积学报,1995,3(1):27-31
    [40]刘伟.岩浆流体在热液矿床形成中的作用.地学前缘,2001,8(3):203-214
    [41]刘永涛.云南省龙陵县邦腊掌温泉水文地球化学与间歇喷泉研究:[硕士学位论文].北京:中国地质大学,2009
    [42]刘家军,郑明华.硅岩的新成因——热水沉积作用.四川地质学报,1991,11(4):251-255
    [43]冯彩霞,刘家军.硅质岩的研究现状及其成矿意义.世界地质,2001,20(2):119-123
    [44]崔春龙.硅质岩研究中的若干问题.矿物岩石,21(3):100-104
    [45]徐光明.焦作地区太原组硅质岩的沉积和构造环境:[硕士学位论文].河南:河南理工大学,2011
    [46]陈先沛.热水沉积成岩成矿作用的研究进展.矿物岩石地球化学通讯,1988,02:102-104
    [47]陈先沛,高计元,陈多福,董维全.热水沉积作用的概念和几个岩石学标志.沉积学报,1992,10(3):124-132
    [48] T.G.Lovering,谭礼国.似碧玉岩转石和河流砾石可作为热液矿床地球化学勘探的标志.地质地球化学,1982,01:34-38
    [49]黄颖,吕文超,周强.扬子地台及周边地区硅质岩的分布及其与矿产资源之间的关系研究.中山大学研究生学刊(自然科学、医学版),2010,31(1):61-66
    [50]马文辛.渝东地区震旦系灯影组硅质岩特征及成因研究:[硕士学位论文].成都:成都理工大学,2011
    [51]汪雄武,黄圭成,袁正新.粤西广宁地区硅质岩的成因及其找矿意义.华南地质与矿产,2001,02:13-20
    [53]周永章,刘友梅,张海垡,杨蔚华.粤西震旦纪硅岩建造的热水成因及古热水活动事件.广东地质,1996,11(2):47-54
    [54]徐嘉炜.中华黄蜡石的地质学探讨.合肥工业大学学报(自然科学版),2011,34(6):882-885
    [55]李红敬,解习农,周炼,苏明,彭伟,陈慧.扬子地区二叠系硅质岩成因分析及沉积环境研究.石油实验地质,2009,31(6):564-569
    [56]梁修睦,毛顺利,朱连根.“硅化带帅冒”成因、分类及找矿意义.浙江地质,1998,14(1):18-22
    [57]闫升好.甘肃大水特大型富赤铁矿硅质岩型金矿床成因研究:[博士学位论文].北京:中国地质科学院研究生部,1998
    [58]周永章,何俊国,杨志军,付伟,杨小强,张澄博,杨海生.华南热水沉积硅质岩建造及其成矿效应.地学前缘,2004,11(2):373-7-377
    [59]邵军.昆士兰浅成热液金矿脉中石英结构的分类、成因及意义.贵金属地质,1997,6(2):151-155
    [60]肖荣阁,张汉城,陈卉泉,张宗恒.热水沉积岩及矿物岩石标志.地学前缘2001,8(4):379-385
    [61]孟良义.热液矿床中的硅化与成矿.科学通报,1998,43(6):575-579
    [62] Bryce L. Winter and L. Paul Knauth. Stable isotope geochemistry of cherts and carbonatesfrom the2.0Ga Gunflint Iron Formation: implications for the depositional setting, and theeffects of diagenesis and metamorphism. Precambrian Research,1992,59:283-313
    [63] Douthitt C. B. The geochemistry of the stable isotopes of silicon. Geochimica etCosmochimica Acta,1976,40(10):1449-1458
    [64] Knauth L. Paul, Beeunas Mark A.. Isotope geochemistry of fluid inclusions in Permian halitewith implications for the isotopic history of ocean water and the origin of saline formationwaters. Geochimica et Cosmochimica Acta,1986,50(3):419-433
    [65] Ronald K Matheney, L.Paul Knauth. Oxygen-isotope fractionation between marine biogenicsilica and seawater. Geochimica et Cosmochimica Acta,1989,53(12):3207-3214
    [66] L.Paul Knauth, Samuel Epstein. Hydrogen and oxygen isotope ratios in nodular and beddedcherts. Geochimica et Cosmochimica Acta,1976,40(9):1095-1108
    [67] Murray R W, Buchholtz ten BrinkM R, JonesD L, Gerlach D C and Russ ⅢG P. Rare earthelements as indicators of differentmarine depositional environments in chert and shale.Geology,1990,18:268—271
    [68] Murray R W, Marilyn R B, David C G, et al., Interoceanic variation in the rare earth, major,and trace element depositional chemistry of chert:Perspectives gained form the DSDP andODP record.Geochimica et Cosmochimica Acta,1992,56:1897~1913
    [69] Murray R W. Chemical criteria to identify the depositional environment of chert:genrtalprinciples and applications. Sedimentary Geology,1994,90(3-4):213~232
    [70] Murray RW, Buchholtz Ten BrinkM R, Gerlach D C, et al. Rare earth, major, and traceelements in chert from the Franciscan Comp lex and Monterey Group, California: AssessingREE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta.1991,55:1875-1895
    [71] Murray R W, Buchholtz ten BrinkM R, JonesD L, Gerlach D C and Russ Ⅲ G P. Rareearth elements as indicators of differentmarine depositional environments in chert and shale.Geology,1990,18:268—271.
    [72] Hemley J J. Some alteration reaction in system K2O-Al2O3-SiO2-H2O. US GeologicalSurvey professional paper424-D:338-340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700