掺杂及碳包覆型二氧化钛纳米材料光催化及锂电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状钛酸纳米管具有大的比表面积、独特的管状和层状结构以及较强的离子交换能力,是材料科学研究领域中最活跃的研究方向之一。该类纳米管受热脱水可以生成纳米二氧化钛,其光催化活性高,充放电电压高,无毒,稳定性和安全性好,因此有望在光催化、锂离子电池电极材料、电化学电容器、太阳能电池等方面有广泛应用前景。
     本论文以锐钛矿型二氧化钛为起始物在碱液中进行水热反应,将所制备的产物经稀盐酸质子交换过程后得到质子型层状钛酸盐纳米管,研究了钛酸纳米管的物相组成、形貌及其在不同温度下进行热处理时的相变过程,研究结果表明,所得钛酸纳米管外径10-15nm,长度达数微米。
     以质子型钛酸纳米管为原料,以聚甲基氢硅氧烷(PMHS)为捆绑剂制备了高耐热稳定性二氧化钛纳米管,研究了PMHS的添加量、退火温度等因素对钛酸纳米管耐热性的影响;以高耐热稳定性二氧化钛纳米管为原料,采用化学气相沉积法制备了碳包覆的二氧化钛纳米复合材料,分别研究了不同温度下硅掺杂二氧化钛纳米管、硅掺杂及碳包覆后二氧化钛纳米管样品作为锂电池负极材料的电化学性能;研究了锡掺杂二氧化钛纳米管材料的电化学性能。
     以质子型钛酸纳米管为原料,采用离子交换法,分别利用锆、铌元素与钛酸纳米管进行离子交换,成功制备了锆掺杂、铌掺杂二氧化钛纳米光催化剂,分别研究了其物相结构、形貌、紫外可见吸收等性质;研究了其作为光催化剂可见光条件下降解二氯苯酚、罗丹明B、苯酚等的光催化效果。
Layered titanate nanotubes which has large specific surface area, unique tubular structure and layered structure and strong ability of ion exchange, is one of the most active research direction. The titanate nanoutes can transform into titanium dioxide nanomaterials after annealing, which has high photocatalytic ability, high charge and discharge voltage, non-toxic, good stability and safety, is often used in many apolicaitons ranging from photocatalysts, anode materials in lithium-ion battery, electrochemical capacity and solar cells.
     In this paper, layered protonated titanate nanotubes after ion exchange with dilute HC1were prepared by the alkaline hydrothermal method using anatase TiO2as the raw material. We have studied the phase structure, morphorogy and phase transform process at different annealing tempreture. The results show that the titanate naotube which can transform into anatase TiO2after annealing at600℃has the outer diameter of10-15nm, several micrometers length, and its morphorgy changed from nanoparticle into tubular structure.
     The titanium dioxide nanotubes with high thermal stability were prepared by toluene reflux using PMHS as the binding agent. We have studied the influence factors including the amout of PMHS and annealing temperature. Si-doped titanium dioxide nanotubes accompanying with carbon-coated through a CVD process were prepared. Electrochemical performance and thermal-gravematric property were examined. Electrochemical performance of Sn-doped titanium dioxide nanotubes were also evaluated.
     The titanium dioxide photocatysts doped by Zirconium and Niobium element respectively were successfully prepared by ion-exchange method. The morphorgy, phase structure, uv-vis property and the photocatalitic effect on dichlorophenol, rhodamine B, phenol in visible light were studied.
引文
[1]Fujishima A and Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972 238(5358):37-38
    [2]Robert D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today, 2007 122(1-2):20-26
    [3]Fujishima A, Rao T N and Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2000 1(1):1-21
    [4]C. Hulteen J and Martin C R. A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry, 1997 7(7):1075-1087
    [5]Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H and Shinkai S. Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies. Chemistry of Materials, 2000 12(6): 1523-1525
    [6]Jung J H, Kobayashi H, van Bommel K J C, Shinkai S and Shimizu T. Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template. Chemistry of Materials, 2002 14(4):1445-1447
    [7]Gundiah G, Mukhopadhyay S, Tumkurkar U G, Govindaraj A, Maitra U and Rao C N R. Hydrogel route to nanotubes of metal oxides and sulfates. Journal of Materials Chemistry, 2003 13(9):2118-2122
    [8]Peng T, Hasegawa A, Qiu J and Hirao K. Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method. Chemistry of Materials, 2003 15(10):2011-2016
    [9]Fujikawa S and Kunitake T. Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates(?). Langmuir, 2003 19(16):6545-6552
    [10]Hippe C, Wark M, Lork E and Schulz-Ekloff G Platinum-filled oxidic nanotubes. Microporous and Mesoporous Materials, 1999 31(3):235-239
    [11]Michailowski A, AlMawlawi D, Cheng G and Moskovits M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical Physics Letters, 2001 349(1-2): 1-5
    [12]Liu S M, Gan L M, Liu L H, Zhang W D and Zeng H C. Synthesis of Single-Crystalline TiO2 Nanotubes. Chemistry of Materials,2002 14(3):1391-1397
    [13]Chu S-Z, Wada K, Inoue S and Todoroki S-i. Synthesis and Characterization of Titania Nanostructures on Glass by A1 Anodization and Sol-Gel Process. Chemistry of Materials, 2002 14(1):266-272
    [14]Adachi M, Murata Y, Okada I and Yoshikawa S. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. Journal of The Electrochemical Society, 2003 150(8): G488-G493
    [15]Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z and Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001 16(12): 3331-3334
    [16]Taveira L V, Macak J M, Tsuchiya H, Dick L F P and Schmuki P. Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F□/□□(□NH4□)□2SO4 Electrolytes. Journal of The Electrochemical Society, 2005 152(10):B405-B410
    [17]Ruan C, Paulose M, Varghese O K, Mor G K and Grimes C A. Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte. The Journal of Physical Chemistry B, 2005 109(33):15754-15759
    [18]Ghicov A, Tsuchiya H, Macak J M and Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications, 2005 7(5):505-509
    [19]Tsuchiya H, Macak J M, Taveira L, Balaur E, Ghicov A, Sirotna K and Schmuki P. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochemistry Communications, 2005 7(6):576-580
    [20]Macak J M, Sirotna K and Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 2005 50(18):3679-3684
    [21]Varghese O K, Gong D, Paulose M, Ong K G, Dickey E C and Grimes C A. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials, 2003 15(7-8):624-627
    [22]Mor G K, Carvalho M A, Varghese O K, Pishko M V and Grimes C A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. Journal of Materials Research, 2004 19(02):628-634
    [23]Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A. Enhanced Photocleavage of Water Using Titania Nanotube Arrays. NANO LETTERS,20045(1):191-195
    [24]Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K. Formation of Titanium Oxide Nanotube. Langmuir, 1998 14(12):3160-3163
    [25]Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K. Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 1999 11(15):1307-1311
    [26]Lan Y, Gao X P, Zhu H Y, Zheng Z F, Yan T Y, Wu F, Ringer S P and Song D Y. Titanate Nanotubes and Nanorods Prepared from Rutile Powder. Advanced Functional Materials, 2005 15(8):1310-1318
    [27]Meng X-d, Wang D-z, Liu J-h and Zhang S-y. Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Materials Research Bulletin, 2004 39(14-15): 2163-2170
    [28]Zhu H Y, Lan Y, Gao X P, Ringer S P, Zheng Z F, Song D Y and Zhao J C. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. Journal of the American Chemical Society, 2005 127(18):6730-6736
    [29]Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 2010 3(6):715-726
    [30]Reyes C, Fernandez J, Freer J, Mondaca M A, Zaror C, Malato S and Mansilla H D. Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry, 2006 184(1-2):141-146
    [31]Fukahori S, Ichiura H, Kitaoka T and Tanaka H. Photocatalytic Decomposition of Bisphenol A in Water Using Composite TiO2-Zeolite Sheets Prepared by a Papermaking Technique. Environmental Science & Technology, 2003 37(5):1048-1051
    [32]Kaniou S, Pitarakis K, Barlagianni I and Poulios I. Photocatalytic oxidation of sulfamethazine. Chemosphere, 2005 60(3):372-380
    [33]Waldner G, Pourmodjib M, Bauer R and Neumann-Spallart M. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere, 2003 50(8):989-998
    [34]Daghrir R, Drogui P and Robert D. Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A:Chemistry, 2012 238(0):41-52
    [35]Liu Y and Du H (2011). Study on Photoelectrocatalytic Technology of Three-Dimensional Electrode. Advances in Computer Science, Intelligent System and Environment. D. Jin and S. Lin, Springer Berlin Heidelberg.104: 447-451.
    [36]Li M and Shen J. Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes. Journal of Solid State Electrochemistry, 2006 10(12):980-986
    [37]Daghrir R, Drogui P, Ka I and El Khakani M A. Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a Pulsed Laser Deposition process. Journal of Hazardous Materials, 2012 199-200(0):15-24
    [38]Yang L, Yu L E and Ray M B. Photocatalytic Oxidation of Paracetamol:Dominant Reactants, Intermediates, and Reaction Mechanisms. Environmental Science & Technology, 2008 43(2): 460-465
    [39]Sapkal R T, Shinde S S, Mahadik M A, Mohite V S, Waghmode T R, Govindwar S P, Rajpure K Y and Bhosale C H. Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. Journal of Photochemistry and Photobiology B:Biology, 2012 114(0): 102-107
    [40]Zhang Y, Xiong X, Han Y, Zhang X, Shen F, Deng S, Xiao H, Yang X, Yang G and Peng H. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes:An overview. Chemosphere, 2012 88(2):145-154
    [41]Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G and Jin L. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Journal of Hazardous Materials, 2008 158(2-3):517-522
    [42]Ojani R, Raoof J-B, Khanmohammadi A and Zarei E. Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode. Journal of Solid State Electrochemistry, 2013 17(1): 63-68
    [43]Ouyang J, Chang M and Li X. CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis. Journal of Materials Science, 2012 47(9):4187-4193
    [44]Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C and Giamello E. N-doped TiO2: Theory and experiment. Chemical Physics, 2007 339(1-3):44-56
    [45]Ren W, Ai Z, Jia F, Zhang L, Fan X and Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental,200769(3-4):138-144
    [46]Wang H and Lewis J P. Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics:Condensed Matter, 2006 18(2):421
    [47]Sakthivel S, Janczarek M and Kisch H. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 2004 108(50): 19384-19387
    [48]Wang H and Lewis J P. Effects of dopant states on photoactivity in carbon-doped TiO2. Journal of Physics:Condensed Matter, 2005 17(21):L209
    [49]Chen D, Jiang Z, Geng J, Wang Q and Yang D. Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity. Industrial & Engineering Chemistry Research, 2007 46(9):2741-2746
    [50]Park J H, Kim S and Bard A J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. NANO LETTERS, 2005 6(1):24-28
    [51]Khan S U M, Al-Shahry M and Ingler W B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 2002 297(5590):2243-2245
    [52]Irie H, Watanabe Y and Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003 32(8):772-773
    [53]Choi Y, Umebayashi T and Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science, 2004 39(5):1837-1839
    [54]Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001 293(5528):269-271
    [55]Burda C, Lou Y, Chen X, Samia A C S, Stout J and Gole J L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. NANO LETTERS, 2003 3(8):1049-1051
    [56]Diwald O, Thompson T L, Zubkov T, Walck S D and Yates J T. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light. The Journal of Physical Chemistry B, 2004 108(19):6004-6008
    [57]Ohno T, Mitsui T and Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 2003 32(4):364-365
    [58]Umebayashi T, Yamaki T, Itoh H and Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids, 2002 63(10):1909-1920
    [59]de Tacconi N R, Chenthamarakshan C R, Rajeshwar K, Pauporte T and Lincot D. Pulsed electrodeposition of WO3-TiO2 composite films. Electrochemistry Communications, 2003 5(3): 220-224
    [60]Zhang H, Chen G and Bahnemann D W. Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 2009 19(29):5089-5121
    [61]Yun H, Lin C, Li J, Wang J and Chen H. Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection. Applied Surface Science,2008255(5, Part 1):2113-2117
    [62]Yu J, Xiang Q and Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Applied Catalysis B:Environmental, 2009 90(3-4):595-602
    [63]Fang D, Luo Z, Huang K and Lagoudas D C. Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. Applied Surface Science, 2011 257(15):6451-6461
    [64]Leary R and Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011 49(3):741-772
    [65]Hernandez-Alonso M D, Fresno F, Suarez S and Coronado J M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy & Environmental Science, 2009 2(12):1231-1257
    [66]Carp O, Huisman C L and Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004 32(1-2):33-177
    [67]Diebold U. Structure and properties of TiO2 surfaces:a brief review. Applied Physics A, 2003 76(5):681-687
    [68]Tanemura S, Miao L, Wunderlich W, Tanemura M, Mori Y, Toh S and Kaneko K. Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: a review. Science and Technology of Advanced Materials, 2005 6(1):11-17
    [69]Rivera A P, Tanaka K and Hisanaga T. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Applied Catalysis B:Environmental, 1993 3(1):37-44
    [70]ye X s, sha J and Jiao Z k. Structural Phase Transition in Nanostructured TiO2. Journal of Materials Science & Technology, 1997 13(04):359-360
    [71]Thiruvenkatachari R, Vigneswaran S and Moon I. A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean Journal of Chemical Engineering, 2008 25(1):64-72
    [72]Kitazawa S-i, Choi Y, Yamamoto S and Yamaki T. Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films, 2006 515(4):1901-1904
    [73]Chen X and Mao S S. Titanium Dioxide Nanomaterials: □ Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007 107(7):2891-2959
    [74]Dunnill C W, Kafizas A and Parkin I P. CVD Production of Doped Titanium Dioxide Thin Films. Chemical Vapor Deposition, 2012 18(4-6):89-101
    [75]Ma L and Tu S X. Removal of arsenic from aqueous solution by two types of nano TiO2 crystals. Environmental Chemistry Letters, 2011 9(4):465-472
    [76]zhao M and Lv. Absorption property in visible region of TiO2-xNx films preparred by reactive sputtering. chinese Journal of Materials Research, 2004 18:108-112
    [77]Teh C M and Mohamed A R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions:A review. Journal of Alloys and Compounds, 2011 509(5):1648-1660
    [78]Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T and Hasegawa T. A transparent metal: Nb-doped anatase TiO[2-]. Applied Physics Letters, 2005 86(25): 252101-252103
    [79]Fan C, Xue P and Sun Y. Preparation of Nano-TiO2 Doped with Cerium and Its Photocatalytic Activity. Journal of Rare Earths, 2006 24(3):309-313
    [80]Stengl V, Bakardjieva S and Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials Chemistry and Physics, 2009 114(1):217-226
    [81]Shi J-w, Zheng J-t and Wu P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles. Journal of Hazardous Materials, 2009 161(1): 416-422
    [82]Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J and Zhang L. Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Applied Catalysis B:Environmental, 2006 62(3-4):329-335
    [83]Ghicov A, Schmidt B, Kunze J and Schmuki P. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters, 2007 433(4-6):323-326
    [84]Grabowska E, Remita H and Zaleska. Photocatalytic activity of TiO2 loaded with metal clusters. Physicochem. Probl. Miner. Process., 2010 45:29-38
    [85]Dozzi M V, Saccomanni A and Selli E. Cr(VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2. Journal of Hazardous Materials,2012211-212(0):188-195
    [86]Kisch H, Zang L, Lange C, Maier W F, Antonius C and Meissner D. Modified, Amorphous Titania—A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light. Angewandte Chemie International Edition, 1998 37(21):3034-3036
    [87]Yoon J-W, Sasaki T and Koshizaki N. Dispersion of nanosized noble metals in TiO2 matrix and their photoelectrode properties. Thin Solid Films, 2005 483(1-2):276-282
    [88]Seery M K, George R, Floris P and Pillai S C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2007 189(2-3):258-263
    [89]Tomas S A, Luna-Resendis A, Cortes-Cuautli L C and Jacinto D. Optical and morphological characterization of photocatalytic TiO2 thin films doped with silver. Thin Solid Films, 2009 518(4): 1337-1340
    [90]Sobana N, Muruganadham M and Swaminathan M. Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes. Journal of Molecular Catalysis A:Chemical, 2006 258(1-2):124-132
    [91]Xin B, Ren Z, Hu H, Zhang X, Dong C, Shi K, Jing L and Fu H. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films. Applied Surface Science, 2005 252(5): 2050-2055
    [92]Ambrus Z, Balazs N, Alapi T, Wittmann G, Sipos P, Dombi A and Mogyorosi K. Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Applied Catalysis B:Environmental, 2008 81(1-2):27-37
    [93]Subramanian M, Vijayalakshmi S, Venkataraj S and Jayavel R. Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process. Thin Solid Films, 2008 516(12):3776-3782
    [94]Martinez T L M, Montes de Correa C, Odriozola J A and Centeno M A. Synthesis and characterization of xerogel titania modified with Pd and Ni. Journal of Molecular Catalysis A: Chemical,2006253(1-2):252-260
    [95]Mohamed M M, Othman I and Mohamed R M. Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. Journal of Photochemistry and Photobiology A:Chemistry, 2007 191(2-3):153-161
    [96]Xin W S, Zhi M, Yong-Ning Q, Xiao-Zhou Q and Zhen-Cheng L. Photocatalytic Redox Activity of Doped Nanocrystalline TiO2. Acta Phys. Chim. Sin.,2004 20(02):138-143
    [97]Tsuyumoto I and Nawa K. Thermochromism of vanadium-titanium oxide prepared from peroxovanadate and peroxotitanate. Journal of Materials Science, 2008 43(3):985-988
    [98]Li G, Dimitrijevic N M, Chen L, Rajh T and Gray K A. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites. The Journal of Physical Chemistry C, 2008 112(48):19040-19044
    [99]Wang C L, Lee H Y, Azough F and Freer R. The microstructure and microwave dielectric properties of zirconium titanate ceramics in the solid solution system ZrTiO4-Zr5Ti7O24. Journal of Materials Science, 1997 32(7):1693-1701
    [100]Venkatachalam N, Palanichamy M, Arabindoo B and Murugesan V. Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. Journal of Molecular Catalysis A: Chemical,2007266(1-2):158-165
    [101]Zhang D and Zeng F. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts. Russian Journal of Physical Chemistry A, 2011 85(6):1077-1083
    [102]Hsieh C-T, Fan W-S, Chen W-Y and Lin J-Y. Adsorption and visible-light-derived photocatalytic kinetics of organic dye on Co-doped titania nanotubes prepared by hydrothermal synthesis. Separation and Purification Technology, 2009 67(3):312-318
    [103]Kment S, Kmentova H, Kluson P, Krysa J, Hubicka Z, Cirkva V, Gregora I, Solcova O and Jastrabik L. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. Journal of Colloid and Interface Science,2010348(1):198-205
    [104]Di Paola A, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B and Palmisano L. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002 75(1-4):87-93
    [105]He C, Yu Y, Hu X and Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 2002 200(1-4):239-247
    [106]Karakitsou K E and Verykios X E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. The Journal of Physical Chemistry, 1993 97(6): 1184-1189
    [107]Mu W, Herrmann J-M and Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catalysis Letters, 1989 3(1):73-84
    [108]Sun L, Li J, Wang C L, Li S F, Chen H B and Lin C J. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials and Solar Cells,200993(10):1875-1880
    [109]Asilturk M, Sayilkan F and Arpac E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A:Chemistry, 2009 203(1):64-71
    [110]Wu Y, Long M, Cai W, Dai S, Chen C, Wu D and Bai J. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Nanotechnology, 2009 20(18): 185703
    [111]Melghit K, Al-Shukeili O S and Al-Amri I. Effect of M-doping (Fe, V) on the photocatalytic activity of nanorod rutile TiO2 for Congo red degradation under the sunlight. Ceramics International,2009 35(1):433-439
    [112]Fuerte A, Hernandez-Alonso M D, Maira A J, Martinez-Arias A, Fernandez-Garcia M, Conesa J C and Soria J. Visible light-activated nanosized doped-TiO2 photocatalysts. Chemical Communications,2001 (24):2718-2719
    [113]Adan C, Bahamonde A, Fernandez-Garcia M and Martinez-Arias A. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied Catalysis B:Environmental, 2007 72(1-2):11-17
    [114]Li J, Yun H and Lin C-J. Investigations on the Fe-doped TiO2 Nanotube Arrays as a Photoanode for Cathodic Protection of Stainless Steel. ECS Transactions,20083(43):1-9
    [115]Choi Y J, Seeley Z, Bandyopadhyay A, Bose S and Akbar S A. Aluminum-doped TiO2 nano-powders for gas sensors. Sensors and Actuators B:Chemical, 2007 124(1):111-117
    [116]Depero L E, Marino A, Allieri B, Bontempi E, Sangaletti L, Casale C and Notaro M. Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. Journal of Materials Research,200015(10):2080-2086
    [117]Ji T, Yang F, Lv Y, Zhou J and Sun J. Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts. Materials Letters, 2009 63(23):2044-2046
    [118]Xu X H, Wang M, Hou Y, Yao W F, Wang D and Wang H. Preparation and characterization of Bi-doped TiO2 photocatalyst. Journal of Materials Science Letters, 2002 21(21):1655-1656
    [119]Zuo H, Sun J, Deng K, Su R, Wei F and Wang D. Preparation and Characterization of Bi3+-TiO2 and its Photocatalytic Activity. Chemical Engineering & Technology, 2007 30(5): 577-582
    [120]Jiang X, Fang Y, Deng A, Xiao F, Huang Y and Pan J Y. Preparation of Bi-doped nano TiO2 degradation of organic pollutants under visible light. Acta Energ. Sol. Sin., 2010 31:291-296
    [121]Li H, Wang D, Wang P, Fan H and Xie T. Synthesis and Studies of the Visible-Light Photocatalytic Properties of Near-Monodisperse Bi-Doped TiO2 Nanospheres. Chemistry-A European Journal, 2009 15(45):12521-12527
    [122]Jiang C Z and Dou Y L. Preparation of Sn4+- doped TiO2 andinvestigation of its photocatalytic activity. Adv. Mater. Res., 2011239-242:2671-2674
    [123]Sui R, Young J L and Berlinguette C P. Sol-gel synthesis of linear Sn-doped TiO2 nanostructures. Journal of Materials Chemistry, 2010 20(3):498-503
    [124]Tu Y-F, Huang S-Y, Sang J-P and Zou X-W. Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays. Journal of Alloys and Compounds, 2009 482(1-2):382-387
    [125]Zheng S K, Wang T M, Hao W C and Shen R. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum, 2002 65(2):155-159
    [126]Fresno F, Tudela D, Maira A J, Rivera F, Coronado J M and Soria J. Triphenyltin hydroxide as a precursor for the synthesis of nanosized tin-doped TiO2 photocatalysts. Applied Organometallic Chemistry, 2006 20(3):220-225
    [127]Lu Y-M, Liu C-K and Huang C-M. The Visible Photocatalysis Properties of Nitrogen-doped TiO2 Thin Film. ECS Transactions,2007 2(20):101-107
    [128]Tan Y N, Wong C L and Mohamed A R. An Overview on the Photocatalytic Activity of Nano-Doped-Ti02 in the Degradation of Organic Pollutants. ISRN Materials Science, 2011 2011: 18
    [129]Shen M, Wu Z, Huang H, Du Y, Zou Z and Yang P. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters, 2006 60(5):693-697
    [130]Viswanathan B and Krishanmurthy K R. Nitrogen Incorporation in TiO2:Does It Make a Visible Light Photo-Active Material? International Journal of Photoenergy, 2012 2012:10
    [131]Guo Y, Zhang X-w, Weng W-H and Han G-r. Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition. Thin Solid Films,2007515(18):7117-7121
    [132]Peng F, Cai L, Huang L, Yu H and Wang H. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. Journal of Physics and Chemistry of Solids, 2008 69(7):1657-1664
    [133]Ao Y, Xu J, Fu D and Yuan C. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Journal of Hazardous Materials, 2009 167(1-3):413-417
    [134]Nosaka Y, Matsushita M, Nishino J and Nosaka A Y. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Science and Technology of Advanced Materials,20056(2):143-148
    [135]Rehman S, Ullah R, Butt A M and Gohar N D. Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 2009 170(2-3):560-569
    [136]Jo W-K and Yang C-H. Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide. Building and Environment, 2010 45(4):819-824
    [137]Tian H, Ma J, Li K and Li J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceramics International, 2009 35(3): 1289-1292
    [138]Bruce P G, Scrosati B and Tarascon J-M. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008 47(16):2930-2946
    [139]Lin C-H, Chien S-H, Chao J-H, Sheu C-Y, Cheng Y-C, Huang Y-J and Tsai C-H. The Synthesis of Sulfated Titanium Oxide Nanotubes. Catalysis Letters, 2002 80(3-4):153-159
    [140]Kleinhammes A, Wagner G W, Kulkarni H, Jia Y, Zhang Q, Qin L-C and Wu Y. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls. Chemical Physics Letters,2005411(1-3):81-85
    [141]Cao J, Sun J-Z, Li H-Y, Hong J and Wang M. A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires. Journal of Materials Chemistry, 2004 14(7):1203-1206
    [142]Xu J-C, Lu M, Guo X-Y and Li H-L. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. Journal of Molecular Catalysis A:Chemical, 2005 226(1):123-127
    [143]Wang M, Guo D-j and Li H-l. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry, 2005 178(6):1996-2000
    [144]Lin C H, Lee C H, Chao J H, Kuo C Y, Cheng Y C, Huang W N, Chang H W, Huang Y M and Shih M K. Photocatalytic Generation of H2 Gas from Neat Ethanol over Pt/TiO2 Nanotube Catalysts. Catalysis Letters, 2004 98(1):61-66
    [145]Idakiev V, Yuan Z Y, Tabakova T and Su B L. Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Applied Catalysis A: General,2005281(1-2):149-155
    [146]Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S and Haruta M. Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst. Surface and Interface Analysis, 2005 37(2):265-269
    [147]Bavykin D V, Lapkin A A, Plucinski P K, Friedrich J M and Walsh F C. TiO2 nanotube-supported ruthenium(III) hydrated oxide:A highly active catalyst for selective oxidation of alcohols by oxygen. Journal of Catalysis, 2005 235(1):10-17
    [148]Bavykin D V, Lapkin A A, Plucinski P K, Friedrich J M and Walsh F C. Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes. The Journal of Physical Chemistry B, 2005 109(41):19422-19427
    [149]Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R and Graetzel M. Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of Materials, 2004 16(3):477-485
    [150]Li J, Tang Z and Zhang Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochemistry Communications, 2005 7(9): 894-899
    [151]Li J, Tang Z and Zhang Z. Layered Hydrogen Titanate Nanowires with Novel Lithium Intercalation Properties. Chemistry of Materials, 2005 17(23):5848-5855
    [152]Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K and Yanagida S. Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization. Physical Chemistry Chemical Physics,2005 7(24):4157-4163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700