用于烯烃硅氢加成反应铑配合物/离子液体催化剂体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对现有烯烃和烷(氧)基氢硅烷硅氢加成反应体系存在的若干重要基础问题,如催化剂活性、加成产物的选择性、贵金属配合物催化剂循环利用等进行研究。将过渡金属铑配合物/离子液体(有机融盐)催化剂体系用于烯烃和烷(氧)基氢硅烷硅氢加成反应,建立了催化剂结构、催化性能及循环使用性能之间的关系。
     本论文首先将Rh(PPh_3)_3Cl/离子液体(有机融盐)催化剂体系用于烯烃和烷(氧)基氢硅烷硅氢加成反应。研究发现离子液体的空间结构直接影响了β加成、加成产物的选择性。随着二烷基咪唑六氟磷酸盐、烷基吡啶六氟磷酸盐中咪唑、吡啶环上取代烷基空间位阻增大,β加成物/加成物的比值也随之增加。其中,用Rh(PPh_3)_3Cl/Bn_2ImPF_6催化苯乙烯和三乙氧基氢硅烷硅氢加成反应,β加成的选择性最高,为95.7%。
     接着将离子液体固载到无机载体,进而制备得到Rh(PPh_3)_3Cl /离子液体功能化载体的负载型催化剂。用于催化烯烃和三乙氧基氢硅烷硅氢加成反应,可获得较高的反应转化率和β加成物的选择性。反应结束后,催化剂可以比较容易地与产物分离,重复再使用。其中Rh(PPh_3)_3Cl/ Rh(PPh_3)_3Cl/SiO_2-(CH_2CH_2CH_2)MimPF6催化剂重复使用性能最佳,回收使用10次后,其活性和β加成产物的选择性基本保持不变。
     在本论文中,还制备了一系列2-咪唑膦配位的铑配合物,并将2-咪唑膦配位的铑配合物/离子液体催化剂体系用于烷(氧)基氢硅烷硅氢加成反应。利用咪唑环中的两个氮原子含有孤对电子,可通过π键向咪唑环中的2-位碳提供电子迁移,从而稳定Rh-P键,同时P原子上的电荷富集也可稳定中心金属Rh,进而稳定了Rh和底物形成的中间态,提高铑配合物的催化活性。当催化剂2-咪唑膦配位的Rh配合物的用量为苯乙烯用量的0.02mol%时,苯乙烯的转化率仍可>90.4%,β-加成产物的选择性>89.8%。
     此外,本论文还首次将超临界CO_2/室温离子液体体系应用到烷(氧)基氢硅烷硅氢加成反应。利用超临界CO_2和室温离子液体二者之间的不对称的相溶性,反应物系可在相间实现所需的转移。过渡金属铑配合物仅溶于离子液体而不溶于超临界CO_2中,而离子液体相几乎不挥发,尽可能地避免了催化剂的流失。同时产物随着超临界CO_2离开反应体系,实现了催化剂重复使用。研究还发现,N-杂环铑卡宾配合物在超临界CO_2/室温离子液体两相介质中催化烯烃硅氢加成反应可有效地抑制烯烃加氢副反应的发生,如苯乙烯和烷(氧)基氢硅烷硅氢加成反应的产物中没有检测到苯乙烷。
In this paper, issues dealing with hydrosilylation of different olefins , such as activity of catalyst, selectivity of adduct, reuse of noble metal catalyst, were focused. It was founded the relation of the catalyst structure and activity or circulation by rhodium complex/ionic liquid (molten salt) as a catalytic system for the hydrosilylation of different olefins with trialkoxysilane (trialkylsiane).
     Rh(PPh_3)_3Cl/ionic liquid (molten salt) as a thermoregulated and recyclable catalytic system for the hydrosilylation of different olefins with trialkoxysilane (trialkylsiane) have been investigated. N, N-dialkylimidazolium salts or N-alkylpyridinium salts can specifically vary their physical and chemical properties by altering the attached substituents, and it was found that both activity and selectivity of catalyst system could be influenced by the alkyl chains attached to the pyridinium or imidazolium cations. The ratio of theβ-adduct to the -adduct (β/ ) is clearly increased with increasing length of alkyl chain attached to the pyridinium or imidazolium cations. And hydrosilylation reaction of styrene with triethoxysilane was conducted by Rh(PPh_3)_3Cl/Bn_2ImPF_6. The Rh(PPh_3)_3Cl/Bn_2ImPF_6 showed the highest conversion of styrene, 95.7%。
     Along with research to minimize the amount of ionic liquid and noble metal catalyst in hydrosilylation processes, this paper reported in the present study that ionic liquid (IL)-functionalized SiO_2 can be prepared by a one-step procedure. The Rh(PPh_3)_3Cl was then supported on the IL-functionalized SiO_2 to obtain the Rh(PPh_3)_3Cl/IL-functionalized SiO_2 catalyst. Subsequently, the hydrosilylation of styrene and -olefins with triethoxysilane catalyzed with this supported catalyst was investigated. Furthermore, the catalyst system could be recovered easily. For example, the Rh(PPh_3)_3Cl/SiO_2-(CH_2CH_2CH_2)MimPF6 catalyst system could be recovered easily and reused more than 10 times without any notable loss of catalytic activity or selectivity.
     A series of rhodium complexes employing 2-imidazolium phosphines as ligands synthesized exhibited greater catalytic activity and selectivity for hydrosilylation of different olefins with trialkoxysilane (trialkylsiane). The electron-rich heterocycle provides a suitable framework that stabilizes the Rh-phosphine center located between the two nitrogen atoms. It is possible that close proximity of the positive charge to the phosphorus atom greatly enhances the catalytic activity and can afford highly efficient catalytic activity. When amounts of rhodium complexes employing 2-imidazolium phosphines as ligands were 0.02mol% of styrene, the conversion of styrene were >90.4%,the selectivity ofβ-adduct were >89.8%.
     The hydrosilylation of alkenes in a supercritical CO_2 (scCO_2) /ionic liquid system was first investigated. scCO_2 can be used to extract high boiling point organic substances from ILs without cross-contamination. During hydrosilylation in the scCO_2/IL system, the reactants were possibly transferred into the IL phase by scCO_2, in which the catalyst was dissolved. The products can be flushed with scCO_2 after the reaction and the catalyst/IL system reused. During a new hydrosilylation process in a scCO_2/IL system with a rhodium complex as the catalyst process, rhodium complexes of NHC were formed by direct carboxylation of 1,3-dialkylimidazolium hexafluorophosphate with CO_2 in situ. Herein, It was found that both the catalytic activity and selectivity of the rhodium complexes bearing NHC ligands were influenced by the attached substituents of the imidazolium cation, and no hydrogenation by-product (alkane) was detected.
引文
[1] Marciniec B.. Hydrosilylation[B]. Springer, 2009.
    [2] MarkóI. E., Stérin S., Buisine O., Mignani G., Branlard P., Tinant B., Declercq J.-P.. Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts[J]. Science, 2002, 298(5591): 204-207.
    [3] Dioumaev V. K., Bullock R. M.. A recyclable catalyst that precipitates at the end of the reaction[J]. Nature, 2003, 424(6948): 530-532.
    [4]戴延凤,李凤仪.不饱和烃硅氢加成催化剂固载化研究进展[J].化学试剂, 2005, 27(9): 525-530.
    [5] Onopchenko A., Sabourin E. T., Beach D. L.. Rhodium ( I )-catalyzed hydrosilylation of styrene[J]. J. Org. Chem., 1983, 48(25): 5101-5105.
    [6] Szajek L. P., Shapley J. R.. Stereodynamics and Reactivity of the Indenyliridium ( I ) Complex (5-C9H7) Ir (2-C8H14)(CO) Comparison with the Cyclopentadienyl Analog (5-C5H5) Ir (2-C8H14)(CO)[J]. Organometallics, 1994, 13(4): 1395-1403.
    [7] Ito H., Yajima T., Tateiwa J., Hosomi A.. First gold complex-catalysed selective hydrosilylation of organic compounds[J]. Chem. Commun., 2000, 11: 981-982.
    [8] Dupont J., de Souza R. F., Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis[J]. Chem. Rev., 2002, 102(10): 3667-3691.
    [9] Wasserscheid P., Keim W.. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angew. Chem. Int. Ed., 2000, 39(21): 3772-3789.
    [10] van den Broeke J.,Winter F., Deelman B. J., van Koten G.. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling[J]. Org. Lett., 2002, 4(22): 3851-3584.
    [11] Weyershausen B., Hell K., Hesse U.. Industrial application of ionic liquids as process aid[J]. Green Chem., 2005, 7(5): 283-287.
    [12] Speier J. L., Webster J. A., Barnes, G. H.. The addition of silicon hydrides to olefinic double bonds.PartⅡ.The use of group metal catalysts[J]. J. Am. Chem. Soc., 1957, 79(4): 574-579.
    [13]冯流星,宋华付,王玉生,陈玉岩,丁绍民. Ru(Ⅱ)-BINAP型手性催化剂的合成[J].精细化工, 2003, 20(5): 26-27.
    [14]常冠军,罗炫,张林,林润雄. Pd2(dba)3/BINAP催化合成1,4-双-(4’-苯胺基苯酰基)苯[J].合成化学, 2007, 15(1): 88-90.
    [15]álvarez-Corral M., Mu?oz-Dorado M., Rodríguez-García I.. Silver-Mediated Synthesis of Heterocycles[J]. Chem. Rev., 2008, 108: 3174-3198.
    [16] Yamamoto K., Hayashi T., Kumada M.. Asymmetric homogeneous hydrosilylation with platinum(II) complexes of chiral phosphines[J]. J. Am. Chem. Soc., 1971, 93(20): 5301-5302.
    [17] Fink, W.. Tetrakis(triphenylphosphine)platinum(0), a catalyst for selective hydrosilylation[J]. Helv. Chim. Acta., 1971, 54(5): 1304-1310.
    [18] Moulton C. J., Shaw B. L.. Transition metal-carbon bonds. Part XL II. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-tert-butylphosphino)methyl]phenyl[J]. J. Chem. Soc., Dalton Trans.: Inorganic Chem., 1976, 11: 1020-1024.
    [19] Murphy P. J., Spencer J. L., Procter G.. Allylsilanes in organic synthesis; convenient preparation of synthetic intermediates by catalytic hydrosilation of acetylenic alcohols[J]. Tetrahedron Lett., 1990, 31(7): 1051-1054.
    [20] Itami K., Mitsudo K., Nishino A., Yoshida J.. Metal-Catalyzed Hydrosilylation of Alkenes and Alkynes Using Dimethyl(pyridyl)silane[J]. J. Org. Chem., 2002, 67(8): 2645-2652.
    [21] Green M., Spencer J. L., Stone F., Gordon A., Tsipis, C. A.. Hydrosilylation of alkynes catalyzed by trans-di-hydrido-bis(tertiary phosphine)bis(silyl)diplatinum complexes[J]. J. Chem. Soc., Dalton Trans.: Inorganic Chem., 1977, 16: 1525-1529.
    [22] Tsipis C. A.. Investigation on the factors controlling the regioselectivity of the hydrosilylation of alkynes catalyzed by trans-di-hydridobis(tricyclohexylphosphine)bis(silyl)diplatinum complexes[J]. J. Organomet. Chem., 1980, 187: 427-446.
    [23] Tsipis C. A.. Relative reactivities of alkynes in hydrosilylation reactions catalyzed by trans-di-hydridobis(tricyclohexylphosphine)bis(silyl)diplatinum complexes[J]. J. Organomet. Chem., 1980, 188: 53-61.
    [24] Hamze A., Provot O., Brion J. D., Alami M.. Platinum chloride/Xphos-catalyzed regioselective hydrosilylation of functionalized terminal arylalkynes[J]. Tetrahedron Lett., 2008, 49: 2429-2431.
    [25] Hamze A., Provot O., Brion J. D., Alami M.. Xphos ligand and platinum catalysts: A versatile catalyst for the synthesis of functionalized-(E)-vinylsilanes from terminal alkynes[J]. J. Organomet. Chem., 2008, 693(16): 2789-2797.
    [26] Balakrishna M. S., Suresh D., George P. P., Mague J. T.. Aminophosphines derivedfrom morpholine and N-methylpiperazine: Synthesis, oxidation reactions and transition metal complexes[J]. Polyhedron, 2006, 25(16): 3215-3221.
    [27] Wu W., Li C. J.. A Highly Regio- and Stereoselective Transition Metal- Catalyzed Hydrosilylation of Terminal Alkyes under Ambient Condition of Air, Water and Room Temperature[J]. Chem. Commun., 2003: 1668-1669.
    [28] Uozumi Y., Nakai Y.. An Amphiphilic Resin-Supported Palladium Catalyst for High-Throughput Cross-Coupling in Water[J]. Org. Lett., 2002, 4(17): 2997-3000.
    [29] Aneetha H., Wu W., Verkade J. G.. Stereo- and Regioselective Pt(DVDS)/P(i-BuNCH2CH2)3N-Catalyzed Hydrosilylation of Terminal Alkynes. Organometallics, 2005, 24(11): 2590-2596.
    [30] Pedersen P. J., Henriksen J., Clausen M. H.. Regio- and stereoselective hydrosilylation of immobilized terminal alkynes[J].Tetrahedron Lett., 2008, 49(43): 6220-6223.
    [31] Skvortsov A. N.,; Reznikov A. N., Vekki D. A., Stash A. I., Belsky V. K.,; Spevak V. N., Skvortsov N. K.. Synthesis and crystal structures of platinum(II) complexes with phosphine sulfide: cis-Dichloro[dimethylsulfoxide](triphenylphosphine sulfide)platinum(II) and (-)-cis-dichloro[(S)-methyl-p-tolylsulfoxide](triphenylphosphine sulfide)platinum(II)[J]. Inorg. Chim. Acta., 2006, 359(4): 1031-1040.
    [32] Baruah J. B., Osakada K., Yamamoto T.. RhCl(PPh3)3 catalyzed hydrosilylation of styrene and phenylacetylene with phenylsilanes[J]. J. Mol. Catal. A: Chem., 1995, 101(1): 17-24.
    [33] Littke A. F., Dai C., Fu G. C.. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions[J]. J. Am. Chem. Soc., 2000, 122(17): 4020-4028.
    [34] Kirchhoff J. H., Dai C., Fu G. C.. Method for palladium-catalyzed cross-couplings of simple alkyl chlorides: Suzuki reactions catalyzed by [Pd2(dba)3]/PCy3[J]. Angew. Chem., Int. Ed., 2002, 41(11): 1945-1947.
    [35] Littke A. F., Fu G. C.. Palladium-catalyzed coupling reactions of aryl chlorides[J]. Angew. Chem., Int. Ed., 2002, 41(22): 4176-4211.
    [36] Kataoka N., Shelby Q., Stambuli J. P., Hartwig J. F.. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C[bond]C, C[bond]N, and C[bond]O bond-forming cross-couplings[J]. J. Org. Chem., 2002, 67(16): 5553-5566.
    [37] Walker S. D., Barder T. E., Martinelli J. R., Buchwald, S. L.. A rationally designeduniversal catalyst for Suzuki-Miyaura coupling processes[J]. Angew. Chem., Int. Ed., 2004, 43(14): 1871-1876.
    [38] Goto K., Okumura T., Kawashima T.. Synthesis, structure, and reactions of a novel triarylsilanol with a bowl-type framework: a silanol extremely resistant to self-condensation[J]. Chem. Lett., 2001, 12: 1258-1259.
    [39] Goto K., Nagahama M., Mizushima T., Shimada K., Kawashima T., Okazaki R.. The First Direct Oxidative Conversion of a Selenol to a Stable Selenenic Acid: Experimental Demonstration of Three Processes Included in the Catalytic Cycle of Glutathione Peroxidase[J]. Org. Lett., 2001, 3(22): 3569-3572.
    [40] Ohzu Y., Goto K., Kawashima T.. A bowl-shaped triarylphosphane with a large cone angle: synthesis and crystallographic analysis of a [(PdX2)3(PR3)2]-type complex[J]. Angew. Chem., Int. Ed., 2003, 42(46): 5714-5717.
    [41] Naiki M., Shirakawa S., Kon-i K., Kondo Y., Maruoka K.. Tris(2,6-diphenylbenzyl)amine (TDA) and tris(2,6-diphenylbenzyl)phosphine (TDP) with unique bowl-shaped structures: synthetic application of functionalized TDA to chemoselective silylation of benzylic alcohols[J]. Tetrahedron Lett., 2001, 42(32): 5467-5471.
    [42] Niyomura O., Iwasawa T., Sawada N., Tokunaga M., Obora Y., Tsuji Y.. A Bowl-Shaped Phosphine as a Ligand in Rhodium-Catalyzed Hydrosilylation: Rate Enhancement by a Mono(phosphine) Rhodium Species[J]. Organometallics, 2005, 24(14): 3468-3475.
    [43] Mague J. T., Mitchener J. P.. Rhodium(I) complexes containing mono- and ditertiary phosphines and arsines[J]. Inorg. Chem., 1969, 8(1): 119-125.
    [44] Elostafa L., Lledos A., Alvarez L., Piniella J. F.. Experimental and Theoretical Study of Effects In P-Coordinated (Diphenylphosphino)alkynes[J]. Organometallics, 1995, 14(2): 1053-1060.
    [45] BardajíM., Cruz M. T., Jones P. G., Laguna A., Martínez J., Villacampa M. D.. Luminescent dinuclear gold complexes of bis(diphenylphosphano)acetylene[J]. Inorg. Chim. Acta., 2005, 358(5): 1365-1372.
    [46] Ochida A., Sawamura M.. Phosphorus ligands with a large cavity: synthesis of triethynylphosphines with bulky end caps and application to the rhodium-catalyzed hydrosilylation of ketones[J]. Chem. Asian J., 2007, 2(5): 609-618.
    [47] Reyes C., Prock A., Giering W. P.. Analysis of the enantioselectivities and initial rates of the hydrosilylation of acetophenone catalyzed by [Rh(cod)Cl]2/(chiraldiphosphine). The quantitative analysis of ligand effects[J]. J. Organomet. Chem., 2003, 671(1-2), 13-26.
    [48] Gavrilov K. N., Bondarev O. G., Lebedev R.V., Polosukhin A. I., Shyryaev A. A., Lyubimov S. E., Petrovskii P. V. , MoiseevS. K. , Kalinin V. N. , Ikonnikov N. S., Davankov V. A., Korostylev A. V.. New amino-, imino- and oxazolinophosphites based on 1,1'-bi-2-naphthol: coordination and catalytic properties[J]. J. Organomet. Chem., 2002, 655(1-2): 204-217.
    [49] Tao B., Fu G. C.. Application of a new family of P, N ligands to the highly enantioselective hydrosilylation of aryl alkyl and dialkyl ketones[J]. Angew. Chem., Int. Ed., 2002, 41(20): 3892-3894.
    [50] Coyne A. G., Guiry P. J.. Rhodium-catalyzed asymmetric hydrosilylation of ketones using HETPHOX ligands[J]. Tetrahedron Lett., 2007, 48(5): 747-750.
    [51] Katayama H., Taniguchi K., Kobayashi M., Sagawa T., Minami T.. Ruthenium-catalyzed hydrosilylation of terminal alkynes: stereodivergent synthesis of (E)- and (Z)-alkenylsilanes[J]. J. Organomet. Chem., 2002, 645(1-2): 192-200.
    [52] Katayama H., Nagao M., Moriguchi R., Ozawa F.. Stereocontrolled synthesis of (E)- and (Z)-poly(p-phenylenevinylene)s via ruthenium-catalyzed hydrosilylation of p-diethynylbenzene[J]. J. Organomet. Chem., 2003, 676(1-2): 49-54.
    [53] Takei I., Nishibayashi Y., Ishii Y., Mizobe Y., Uemura S., Hidai M.. Ruthenium-catalysed asymmetric hydrosilylation of ketoximes using chiral oxazolinylferrocenylphosphines[J]. Chem.Commun. 2001, 22: 2360-2361.
    [54] Tamao K.. In Advances in Silicon Chemistry[M]. (Ed. Larson, GL). London: JAI Press, 1996. 1.
    [55] Hayashi T.. Catalytic asymmetric hydrosilylation of olefins - catalytic asymmetric synthesis of alcohols with high enantiomeric purity[J]. Catal. Surv. Jpn., 1999, 3(2): 127-135.
    [56] Hayashi T.. Chiral Monodentate Phosphine Ligand MOP for Transition-Metal-Catalyzed Asymmetric Reactions[J]. Acc. Chem. Res., 2000, 33(6): 354-362.
    [57] Han J. W., Hayashi T.. Preparation of a new MOP ligand containing a long-chain alkyl group and its use for palladium-catalyzed asymmetric hydrosilylation of cyclic 1,3-dienes[J]. Chem. Lett., 2001, 10: 976-977.
    [58] Han J. W., Hayashi T.. Enhanced catalytic activity in asymmetric hydrosilylation of 1,3-dienes with a soluble palladium catalyst[J]. Tetrahedron: Asymmetry, 2002,13(3): 325-331.
    [59] Lantos D., Contel M., Sanz S., Bodor A., Horváth I. T.. Homogeneous gold-catalyzed hydrosilylation of aldehydes[J]. J. Organomet. Chem., 2007, 692(9): 1799-1805.
    [60] Xu Z., Lu X. H., Xia Q. H., Lou Z. W., Ye C. P., Liu Z. M.. Effective heterogenization and catalytic use of active C5H5NiLX complex for the hydrosilylation[J]. Catal. Commun., 2008, 9(8): 1793-1798.
    [61] Wanzlick H. W., Kleiner H.-J.. Low-Energy―Carbenes‖[J]. Angew.Chem., Int. Ed. Engl., 1964, 3(1), 65-68.
    [62] SchKnherr H. J., Wanzlick H. W.. Chemistry of nucleophilic carbenes. XVIII. 1,3,4,5-Tetraphenylimidazolium perchlorate[J]. Justus Liebigs Ann. Chem., 1970, 731: 176-179.
    [63] Fischer E. O., Maashol A.. Tungsten carbonyl-carbene complex[J]. Angew. Chem., Int. Ed. Engl., 1964, 76(14), 645-646.
    [64] ?fele K.. 1,3-Dimethyl-4-imidazoline-2-pentacarbonylchromium, a new transition metal-carbene complex[J]. J. Organomet. Chem., 1968, 12(3): 42-43.
    [65] Wanzlick H. W., Schonherr H. J.. Chemistry of nucleophilic carbenes. XI V. Direct synthesis of a mercury salt-carbene complex[J]. Angew. Chem., Int. Ed. Engl., 1968, 7(2): 141-142.
    [66] Huang J., Stevens E. D., Nolan S. P.. Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand[J]. J. Am. Chem. Soc., 1999, 121(12): 2674 -2678.
    [67] Yamamura M., Moritani I., Murahashi S.. Reaction of -vinyl palladium complexes with alkyllithiums. Stereospecific synthesis of olefins from vinyl halides and alkyllithiums[J]. J. Organomet. Chem., 1975, 91(2): C39-C42.
    [68] Huang J., Nolan S.P.. Efficient Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediated by a Palladium/Imidazolium Chloride System[J]. J. Am. Chem. Soc., 1999, 121(42): 9889-9890.
    [69] B?hm V. P. W, Weskamp T., Gst?ttmayr C. W. K., Herrmann W. A.. N-Heterocyclic carbenes. Part 27. Nickel-catalyzed cross-coupling of aryl chlorides with aryl Grignard reagents[J]. Angew. Chem., Int. Ed. Engl., 2000, 39(9): 1602-1604.
    [70] Weskamp T., Bêhm V. P. W., Herrmann W. A.. Combining N-heterocyclic carbenes and phosphines: improved palladium(II) catalysts for aryl coupling reactions[J]. J. Organomet. Chem., 1999, 585(2): 348-352.
    [71] Clyne D. S., Jin J., Genest E., Gallucci J. C., RajanBabu T. V.. First Chelated Chiral N-Heterocyclic Bis-Carbene Complexes[J]. Org. Lett., 2000, 2(8): 1125-1128.
    [72] Cetinkaya B., Ozdemir I., Bruneau C.. Ruthenium-carbene catalysts for the synthesis of 2,3-dimethylfuran[J]. J. Mol. Catal. A: Chem., 1997, 118(1): L1-L4.
    [73] Field L. D., Messerle B. A., Vuong K. Q., Turner P.. Intramolecular Hydroamination with Rhodium(I) and Iridium(I) Complexes Containing a Phosphine?N-Heterocyclic Carbene Ligand[J]. Organomeallics, 2005, 24(17): 4241 -4250.
    [74] Tudose A., Demonceau A., Delaude L.. Intramolecular Hydroamination with Rhodium(I) and Iridium(I) Complexes Containing a Phosphine-N-Heterocyclic Carbene Ligand[J]. J. Organomet. Chem., 2006, 691: 5356-5365.
    [75] Yig?it M., ?zdemir I., ?etinkaya B., ?etinkaya E.. Novel N-heterocyclic-carbene-rhodium complexes as hydrosilylation catalysts[J]. J. Mol. Catal. A: Chem., 2005, 241(1-2): 88-92.
    [76] Rivera G., Crabtree R. H.. Hydrogen bonding ligand functionality and catalytic selectivity in homogeneous hydrosilylation of enones with rhodium complexes[J]. J. Mol. Catal. A: Chem., 2004, 222(1-2): 59-73.
    [77] Nonnenmacher M., Kunz D., Rominger F.. Synthesis and catalytic properties of rhodium(I) and copper(I) complexes bearing dipyrido-annulated N-heterocyclic carbene ligands[J]. Organomeallics, 2008, 27(7): 1561-1568.
    [78] Chen T., Liu X.-G., Shi M.. Synthesis of new NHC-rhodium and iridium complexes derived from 2,2'-diaminobiphenyl and their catalytic activities toward hydrosilylation of ketones[J]. Tetrahedron, 2007, 63(23): 4874-4880.
    [79] Faller J. W., Fontaine P. P.. Stereodynamics and asymmetric hydrosilylation with chiral rhodium complexes containing a monodentate N-heterocyclic carbine[J]. Organomeallics, 2006, 25(25): 5887-5893.
    [80] Xu Q., Gu X., Liu S., Dou Q., Shi M.. The use of chiral BINAM NHC-Rh(III) complexes in enantioselective hydrosilylation of 3-oxo-3-arylpropionic acid methyl or ethyl esters[J]. J. Org. Chem. 2007, 72(6): 2240-2242.
    [81] Chianese A. R., Crabtree R. H.. Axially Chiral Bidentate N-Heterocyclic Carbene Ligands Derived from BINAM: Rhodium and Iridium Complexes in Asymmetric Ketone Hydrosilylation[J]. Organomeallics, 2005, 24(18), 4432-4436.
    [82] Nishiyama H., Sakaguchi H., Nakamura T., Horihata M., Kondo M., Itoh K.. Chiral and C2-symmetrical bis(oxazolinylpyridine)rhodium(III) complexes: effectivecatalysts for asymmetric hydrosilylation of ketones[J]. Organomeallics, 1989, 8(3): 846-848.
    [83] Chianese A. R., Mo A., Datta D.. Flexible, Bowl-Shaped N-Heterocyclic Carbene Ligands: Substrate Specificity in Iridium-Catalyzed Ketone Hydrosilylation[J]. Organomeallics, 2009, 28(2): 465-472.
    [84] Enders D., Gielen H.. J. Synthesis of chiral triazolinylidene and imidazolinylidene transition metal complexes and first application in asymmetric catalysis[J]. J. Organomet. Chem., 2001, 617-618: 70-80.
    [85] MarkóI. E., Stérin S., Buisine O., Mignani G., Branlard P., Tinant B., Declercq J.-P.. Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts[J]. Science, 2002, 298(5591): 204-207.
    [86] MarkóI. E., Michaud G., Berthon-Gelloz G., Buisine O., Stérin S.. Highly active and selective platinum(0)-carbene complexes. Efficient, catalytic hydrosilylation of functionalized olefins[J]. Adv. Synth. Catal., 2004, 346(12): 1429-1434.
    [87] Berthon-Gelloz G., Buisine O., Brière J.-F., Michaud G., Stérin S., Mignani G., Tinant B., Declercq J.-P., Chapon D., MarkóI. E.. Synthetic and structural studies of NHC-Pt(dvtms) complexes and their application as alkene hydrosilylation catalysts (NHC = N-heterocyclic carbene, dvtms = divinyltetramethylsiloxane)[J]. J. Organomet. Chem., 2005, 690(24-25): 6156-6168.
    [88] De Bo G., Berthon-Gelloz G., Tinant B., MarkóI. E.. Hydrosilylation of Alkynes Mediated by N-Heterocyclic Carbene Platinum(0) Complexes[J]. Organomeallics, 2006, 25(8): 1881-1890.
    [89] Berthon-Gelloz G., Schumers J.-M., De Bo G., MarkóI. E.. Highly beta-(E)-selective hydrosilylation of terminal and internal alkynes catalyzed by a (IPr)Pt(diene) complex[J]. J. Org. Chem., 2008, 73(11): 4190-4197.
    [90] Sprengers J. W., Mars M. J., Duin M. A., Cavell K. J., Elsevier C. J.. Selective hydrosilylation of styrene using an in situ formed platinum(1,3-dimesityl-dihydroimidazol-2-ylidene) catalyst[J]. J. Organomet. Chem., 2003, 679(2): 149-152.
    [91] Poyatos M., Maisse-Franois A., Bellemin-Laponnaz S., Gade L. H.. Coordination chemistry of a modular N,C-chelating oxazole-carbene ligand and its applications in hydrosilylation catalysis[J]. Organomeallics, 2006, 25(10): 2634-2641.
    [92] Hu J. J., Li F., Hor T. S. A.. Novel Pt(II) Mono- and Biscarbene Complexes: Synthesis, Structural Characterization and Application in Hydrosilylation Catalysis[J].Organomeallics, 2009, 28(4): 1212-1220.
    [93] Hill J. E., Nile T. A.. Rhodium carbene complexes as hydrosilylation catalysts[J]. J. Organomet. Chem., 1977, 137(3): 293-300.
    [94] Lappert M. F.. Optically active electron-rich olefins and their metal complexes in asymmetric synthesis and catalysis[A]. In Transition Metal Chemistry[C]. Verlag Chemie: Heidelberg: Muller, A.; Diemann, E., Eds., 1981. 287-298.
    [95] Lappert M. F., Maskell R. K.. Homogeneous catalysis. VIII. Carbene-transition-metal complexes as hydrosilylation catalysts[J]. J. Organomet. Chem.,1984, 264(1-2): 217-228.
    [96] Imlinger N., Wurst K., Buchmeiser M. R.. Rh(1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) tetrafluoroborate, an unsymmetrical Rh-homoazallylcarbene: synthesis, X-ray structure and reactivity in carbonyl arylation and hydrosilylation reactions[J]. J. Organomet. Chem. 2005, 690(20): 4433-4440.
    [97] Jiménez M. V., Pérez-Torrente J. J., BartoloméM. I., Gierz V., Lahoz F. J., Oro L. A., Rhodium(I) complexes with hemilabile N-heterocyclic carbenes: efficient alkyne hydrosilylation catalysts[J]. Organomeallics, 2008, 27(2): 224-234.
    [98] Zeng J. Y., Hsieh M.-H., Lee H. M.. Rhodium complexes of PCNHCP: Oxidative addition of dichloromethane and catalytic hydrosilylation of alkynes affording (E)-alkenylsilanes[J]. J. Organomet. Chem., 2005, 690(24-25): 5662-5671.
    [99] Poyatos M., Mas-MarzáE., Mata J. A., SanaúM., Peris. E.. Synthesis, reactivity, crystal structures and catalytic activity of new chelating bisimidazolium-carbene complexes of Rh[J]. Eur. J. Inorg. Chem., 2003, 6: 1215-1221.
    [100] Mas-MarzáE., Poyatos M., SanaúM., Peris E.. Carbene Complexes of Rhodium and Iridium from Tripodal N-Heterocyclic Carbene Ligands: Synthesis and Catalytic Properties[J]. Inorg. Chem., 2004, 43(6): 2213-2219.
    [101] Viciano M., Mas-MarzáE., Sana M., Peris E.. Synthesis and reactivity of new complexes of rhodium and iridium with bis(dichloroimidazolylidene) ligands. Electronic and catalytic implications of the introduction of the chloro substituents in the NHC rings[J]. Organomeallics, 2006, 25(12): 3063-3069.
    [102] Thangavelu G., Andavan S., Bauer E. B., Letko C. S., Keith H. T., Tham F. S.. Synthesis and characterization of a free phenylene bis(N-heterocyclic carbene) and its di-Rh complex: Catalytic activity of the di-Rh and CCC-NHC Rh pincer complexes in intermolecular hydrosilylation of alkynes[J]. J. Organomet. Chem., 2005, 690(24-25):5938-5947.
    [103] Maifeld S. V., Tran M. N., Lee D.. Hydrosilylation of alkynes catalyzed by ruthenium carbene complexes[J]. Tetrahedron Lett., 2005, 46: 105-108.
    [104] Polshettiwar V., Varma R. S.. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst[J]. J. Org. Chem., 2008, 73(18): 7417-7419.
    [105] Maciejewski H., Marciniec B., Kownacki I.. Catalysis of hydrosilylation. Part XXXIV. High catalytic efficiency of the nickel equivalent of Karstedt catalyst [{Ni(η-CH2:CHSiMe2)2O}2{μ-(η-CH2:CHSiMe2)2O}][J]. J. Organomet. Chem., 2000, 597(1-2): 175-181.
    [106] Xu Z., Lu X.-H., Xia Q.-H., Lou Z.-W., Ye C.-P., Liu Z.-M.. Effective heterogenization and catalytic use of active C5H5NiLX complex for the hydrosilylation[J]. Catal. Commun., 2008, 9(8): 1793-1798.
    [107]孙争光,黄光佛,李盛彪,朱杰,彭慧,黄世强. Ni(Ph2PCH2PPh2)2Cl2—CuCl催化MMA与PHMS硅氢加成反应的研究[J].湖北大学学报(自然科学版), 2001, 23(3): 258-260.
    [108] Tran B. L., Pink M., Mindiola D. J.. Catalytic hydrosilylation of the carbonyl functionality via a transient nickel hydride complex[J]. Organomeallics, 2009, 28(7): 2234-2243.
    [109] Chakraborty S., Krause J. A., Guan H.. Hydrosilylation of Aldehydes and Ketones Catalyzed by Nickel PCP-Pincer Hydride Complexes[J]. Organomeallics, 2009, 28(2): 582-586.
    [110] Welton T.. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem. Rev., 1999, 99(8): 2071-2083.
    [111] Schldon R.. Catalytic reactions in ionic liquids[J]. Chem. Commun., 2001, 23, 2399-2407.
    [112] Olivier-Bourbigou H., Magna L.. Ionic liquids: perspectives for organic and catalytic reactions[J]. J. Molecular. Cat. A: Chemical, 2002, 182-183: 419-437.
    [113] Goldon C. M.. New developments in catalysis using ionic liquids[J]. Appl. Cat. A, Gen., 2001, 222: 101-107.
    [114] Hofmann N., Bauer A., Frey T., Auer M., Stanjek V., Schulz P.S., Taccardi N., Wasserscheid P.. Liquid-liquid biphasic, platinum-catalyzed hydrosilylation of allyl chloride with trichlorosilane using an ionic liquid catalyst phase in a continuous loopreactor[J]. Adv. Synth. Catal., 2008, 350: 2599-2609.
    [115] Maciejewski H., Szubert K., Marciniec B., Pernak J.. Hydrosilylation of functionalised olefins catalysed by rhodium siloxide complexes in ionic liquids[J]. Green Chem., 2009, 11: 1045-1051.
    [1]黄枢,谢如刚,田宝芝,秦圣英.有机合成试剂制备手册(第二版)[M].北京:科学出版社, 2005. 1-364
    [2] Canterford J. H., Colton, R.. Halides of the Second and Third Row Transition Metals[M]. London: Wiley-Interscience, 1968. 1-200.
    [3]王西新,赵建玲,杨浩,陈文涛,朱智甲. N-烷基(C4-C16)咪唑的合成[J].化学试剂, 2001, 23(5): 306-307.
    [4] Yang C., Lee H. M., Nolan S. P.. Highly Efficient Heck Reactions of Aryl Bromides with n-Butyl Acrylate Mediated by a Palladium/Phosphine?Imidazolium Salt System[J]. Org. Lett., 2001, 3(10): 1511-1514.
    [5] Bonh?te P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gr?tzel M.. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem., 1996, 35(5): 1168-1178.
    [6] Suarez P. A. Z., Dullius J. E. L., Einloft S., de Souza R. F., Dupont J.. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes[J]. Polyhedron, 1996, 15(7): 1217-1219.
    [7] Brauer D. J., Kottsieper K. W., Liek C., Stelzer O., Waffenschmidt H., Wasserscheid P.. Phosphines with 2-imidazolium and para-phenyl-2-imidazoliummoieties—synthesis and application in two-phase catalysis[J]. J. Organomet. Chem., 2001, 630: 177-184.
    [8] Voutchkova A. M., Appelhans L. N., Chianese A. R., Crabtree R. H.. Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocyclic Carbene Complexes of Rh, Ru, Ir, and Pd[J]. J. Am. Chem. Soc., 2005, 127(50): 17624-17625.
    [9] Voutchkova A. M., Feliz M., Clot E., Eisenstein O., Crabtree R. H.. Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and Applications[J]. J. Am. Chem. Soc., 2007, 129(42):12834-12846.
    [10]张建中,孙存普.磁共振教程[M].北京:中国科学技术大学出版社, 1996.
    [11]凯尔纳,李克安,金钦汉.分析化学[M].北京:北京大学出版社, 2001.
    [12]褚小立,袁洪福,陆婉珍.近年来我国近红外光谱技术的研究与应用进展[J].分析仪器, 2006, 2: 1-10.
    [1] Dupont J., de Souza R. F., Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis[J]. Chem. Rev., 2002, 102: 3667-3691.
    [2] Chauvin Y., Mussmannl L., Olivier H.. A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1, 3-dialkylimidazolium salts[J]. Angew. Chem., Int . Ed. Engl., 1995, 34: 2698-2700.
    [3] Yang C. T., Li Y. X., Liu S.. Synthesis and structural characterization of complexes of a DO3A-conjugated triphenylphosphonium cation with diagnostically importantmetal ions[J]. Inorg. Chem., 2007, 46(21): 8988-8997.
    [4] Weyershausen B., Hell K., Hesse U.. Industrial application of ionic liquids as process aid[J]. Green Chem., 2005, 7(5): 283-287.
    [5] Bonh?te P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gr?tzel M.. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem., 1996, 35(5): 1168-1178.
    [6] Suarez P. A. Z., Dullius J. E. L., Einloft S., de Souza R. F., Dupont J.. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes[J]. Polyhedron, 1996, 15(7): 1217-1219.
    [7] Anatoli O., Edward T. S., David L. B.. Rhodium(I)-catalyzed hydrosilylation of styrene[J]. J. Org. Chem., 1983, 48(25): 5101-5105.
    [1] Wasserscheid P., Keim W.. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angew. Chem. Int. Ed., 2000, 39(21): 3772-3789.
    [2]范学森,李艳贞,张新迎,胡雪原,王键吉.离子液体介质中FeCl3?6H2O催化下芳香醛与5, 5-二甲基-1, 3-环己二酮的缩合反应[J].有机化学, 2005, 25(11): 1482-1486.
    [3] Suarez P. A. Z., Dullius J. E. L., Einloft S., de Souza R. F., Dupont J.. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes[J]. Polyhedron, 1996, 15(7): 1217-1219.
    [4] Weyershausen B., Hell K., Hesse U.. Industrial application of ionic liquids as process aid[J]. Green Chem., 2005, 7(5): 283-287.
    [5] Bonh?te P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gr?tzel M.. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem., 1996, 35(5): 1168-1178.
    [1] Tanaka M., Hayashi T., Mi Z. Y.. Ruthenium complex-catalyzed hydrosilylation of allyl chloride with trimethoxysilane[J]. J. Mol. Catal., 1993, 81(2): 207-214.
    [2] van den Broeke J.,Winter F., Deelman B. J., van Koten G.. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling[J]. Org. Lett., 2002, 4(22): 3851-3584.
    [3] Leslie D. F., Antony J.. Catalytic hydrosilylation of acetylenes mediated by phosphine complexes of cobalt(I), rhodium(I), and iridium(I)[J]. J. Organomet. Chem., 2003, 681(1-2): 91-97.
    [4] Anatoli O., Edward T. S., David L. B.. Rhodium(I)-catalyzed hydrosilylation of styrene[J]. J. Org. Chem., 1983, 48(25): 5101-5105.
    [5]厉嘉云,彭家建,邱化玉,蒋剑雄,邬继荣,倪勇,来国桥.过渡金属钌、铑配合物在室温离子液体中催化硅氢加成反应的研究[J].化学学报, 2007, 65(8): 715-721.
    [6] Peng J. J., Li J. Y., Bai Y., Gao W. H., Qiu H. Y., Wu H., Deng Y., Lai G. Q.. Rh(PPh3)3Cl/ionic liquid (molten salt) as a thermoregulated and recyclable catalytic system for hydrosilylation[J]. J. Mol. Catal. A: Chem., 2007, 278: 97-101.
    [7] Welton T.. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem. Rev., 1999, 99(8): 2071-2083.
    [8] Seddon K. R., Stark A., Torres M. J.. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure Appl. Chem., 2000, 72(12): 2275-2288.
    [9] Valkenberg M. H., de Castro C., Holderich W. F.. Immobilisation of chloroaluminate ionic liquids on silica materials[J]. Top. Cataysis, 2000, 14(1-4): 139-144.
    [10] Valkenberg M. H., de Castro C., Holderich W. F.. Immobilisation of ionic liquids on solid supports[J]. Green Chem., 2002, 4(2): 88-93.
    [11] Mehnert C. P., Mozeleski E. J., Cook R. A.. Supported ionic liquid catalysis investigated for hydrogenation reactions[J]. Chem. Commun., 2002, (24): 3010-3011.
    [12] Sasaki T., Zhong C., Tada M., Iwasawa Y.. Immobilized metal ion-containing ionic liquids: preparation, structure and catalytic performance in Kharasch addition reaction[J]. Chem. Commun., 2005, (19): 2506-2508.
    [13] Lai G. Q., Peng J. J., Li J. Y., Qiu H. Y., Jiang J. X., Jiang K. Z., Shen Y. J.. Ionic liquid functionalized silica gel: novel catalyst and fixed solvent[J]. Tetrahedron Lett., 2006, 47: 6951-6953.
    [14] Mehnert C. P., Cook R. A., Dispenziere N. C., Afeworki M.. Supported Ionic Liquid Catalysis?A New Concept for Homogeneous Hydroformylation Catalysis[J]. J. Am. Chem. Soc., 2002, 124(44): 12932-12933.
    [15] Auler L. M. L. A., Silva C. R., Collins K. E., Collins C. H.. New stationary phase for anion-exchange chromatography[J]. J. Chromatogr. A., 2005, 1073(1-2): 147-153.
    [1] van den Broeke J.,Winter F., Deelman B. J., van Koten G.. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling[J]. Org. Lett., 2002, 4(22): 3851-3584.
    [2] Marciniec B., Gulinski J.. Catalysis of hydrosilylation: VII. Catalysis of hydrosilylation of C=C bonds by ruthenium phosphine complexes[J]. J. Organomet. Chem., 1983, 253: 349-362.
    [3] Onopchenko A., Sabourin E. T., Beach D. L.. Rhodium ( I )-catalyzed hydrosilylation of styrene[J]. J. Org. Chem., 1983, 48(25): 5101-5105.
    [4] Brauer D. J., Kottsieper K. W., Liek C., Stelzer O., Waffenschmidt H., Wasserscheid P.. Phosphines with 2-imidazolium and para-phenyl-2-imidazolium moieties—synthesis and application in two-phase catalysis[J]. J. Organomet. Chem., 2001, 630: 177-184.
    [5] Moore S. S., Whitesides G. M.. Synthesis and Coordinating Properties of Heterocyclic Tertiary Phosphines[J]. J. Org. Chem., 1982, 47: 1489-1493.
    [6] Kimblin C., Parkin G.. Comparison of Zinc and Cadmium Coordination Environments in Synthetic Analogues of Carbonic Anhydrase: Synthesis and Structure of {[Pimpr1, But]Cd(OH2)(OClO3)}(ClO4)[J]. Inorg. Chem., 1996, 35 : 6912-6913.
    [7] Azouri M., Andrieu J., Picquet M., Richard P., Hanquet B., Tkatchenko I.. Straightforward Synthesis of Donor-Stabilised Phosphenium Adducts from Imidazolium-2-carboxylate and Their Electronic Properties[J]. Eur. J. Inorg. Chem., 2007, 31: 4877-4883.
    [8] Canac Y., Debono N., Vendier L., Chauvin R.. NHC-Derived Bis(amidiniophosphine) Ligands of Rh(I) Complexes: Versatile cis-trans Chelation Driven by an Interplay of Electrostatic and Orbital Effects[J]. Inorg. Chem., 2009, 48: 5562-5568.
    [9] Dupont J., de Souza R. F., Suarez P. A. Z.. Ionic liquid (molten salt) phase organometallic catalysis[J]. Chem. Rev., 2002, 102: 3667-3691.
    [10] Peng J. J., Li J. Y., Bai Y., Gao W. H., Qiu H. Y., Wu H., Deng Y., Lai G. Q.. Rh(PPh3)3Cl/ionic liquid (molten salt) as a thermoregulated and recyclable catalytic system for hydrosilylation[J]. J. Mol. Catal. A: Chem., 2007, 278: 97-101.
    [11] Suarez P. A. Z., Dullius J. E. L., Einloft S., de Souza R. F., Dupont J.. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes[J]. Polyhedron, 1996, 15(7): 1217-1219.
    [12] Holbrey J. D., Seddon K. R.. the phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals[J]. Dalton Trans., 1999, (13): 2133-2139.
    [13] Senear A. E., Valient W., Wirth J.. Derivatives of triphenylphosphine and triphenylphosphine oxide[J]. J. Org. Chem., 1960, 25: 2001-2006.
    [1] Bocevska M., SovováH.. Supercritical CO2 extraction of essential oil from yarrow[J]. J. Supercrit. Fluids, 2007, 40(3): 360-367.
    [2] Bai Y., Yang H. J., Quan C., Guo C. Y.. Solubilities of 2,2’-Bipyridine and 4,4’-Dimethyl-2,2’-bipyridine in Supercritical Carbon Dioxide[J]. J. Chem. Eng. Data, 2007, 52(5): 2074-2076.
    [3] Gaspar F., Santos S., King M. B.. Extraction of Essential Oils and Cuticular Waxes with Compressed CO2: Effect of Matrix Pretreatment[J]. Ind. Eng. Chem. Res. 2000, 39(12): 4603-4608.
    [4] Michael D., Rachel M., Anthony J. M.. Kinetics and Mechanism for the Reaction of Hexafluoroacetylacetone with CuO in Supercritical Carbon Dioxide[J]. J. Am. Chem. Soc., 2008, 130(49): 16659-16668.
    [5] Sabine H., Michael S. S., Eric J. B., Dennis P. C.. Radical Reactions with Alkyl and Fluoroalkyl (Fluorous) Tin Hydride Reagents in Supercritical CO2[J]. J. Am. Chem. Soc., 1997, 119(31): 7406-7407.
    [6] Alois F., Lutz A., Karsten B., Hisao H., Daniel K., Klaus L., Monika L., Christian S., Walter L.. Olefin Metathesis in Supercritical Carbon Dioxide[J]. J. Am. Chem. Soc., 2001, 123(37): 9000-9006.
    [7] Webb P. B., Sellin M. F., Kunene T. E., Williamson S., Slawin A. M. Z., Cole-Hamilton D. J.. Continuous Flow Hydroformylation of Alkenes in Supercritical Fluid?Ionic Liquid Biphasic Systems[J]. J. Am. Chem. Soc., 2003, 125(50): 15577-15588.
    [8] Mehnert C. P., Cook R. A., Dispenziere N. C., Afeworki M., Supported Ionic Liquid Catalysis ? A New Concept for Homogeneous Hydroformylation Catalysis[J]. J. Am. Chem. Soc., 2002, 124(44), 12932-12933.
    [9] van den Broeke J.,Winter F., Deelman B. J., van Koten G.. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling[J]. Org. Lett., 2002, 4(22): 3851-3584.
    [10] Weyershausen B., Hell K., Hesse U.. Industrial application of ionic liquids as process aid[J]. Green Chem., 2005, 7(5): 283-287.
    [11] Maciejewski H., Szubert K., Marciniec B., Pernak J.. Hydrosilylation of functionalised olefins catalysed by rhodium siloxide complexes in ionic liquids[J].Green Chem., 2009, 11: 1045-1051.
    [12] Wu C., Peng J. J., Li J. Y., Bai Y., Hu Y. Q., Lai G. Q.. Synthesis of poly(ethylene glycol) (PEG) functionalized ionic liquids and the application to hydrosilylation[J]. Catal. Commun., 2008, 10: 248-250.
    [13] Hofmann N., Bauer A., Frey T., Auer M., Stanjek V., Schulz P.S., Taccardi N., Wasserscheid P.. Liquid-liquid biphasic, platinum-catalyzed hydrosilylation of allyl chloride with trichlorosilane using an ionic liquid catalyst phase in a continuous loop reactor[J]. Adv. Synth. Catal., 2008, 350: 2599-2609.
    [14] Peng J. J., Li J. Y., Bai Y., Gao W. H., Qiu H. Y., Wu H., Deng Y., Lai G. Q.. Rh(PPh3)3Cl/ionic liquid (molten salt) as a thermoregulated and recyclable catalytic system for hydrosilylation[J]. J. Mol. Catal. A: Chem., 2007, 278: 97-101.
    [15] Blanchard L. A., Hancu D., Beckman E. J., Brennecke J. F.. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399, 28-29.
    [16] Jessop P. G., Stanley R. R., Brown R. A., Eckert C. A., Liotta C. L., Ngo T. T., Pollet P.. Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded ionic liquids[J]. Green Chem., 2003, 5(2): 123-128.
    [17] Richard A. B., Pamela P., Erin M., Charles A. E., Charles L. L., Philip G. J.. Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide[J]. J. Am. Chem. Soc., 2001, 123(6): 1254-1255.
    [18] Adelina M. V., Marta F., Eric C., Odile E., Robert H. C.. Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and Applications[J] J. Am. Chem. Soc., 2007, 129(42): 12834-12846.
    [19] Li J., Peng J., Bai Y., Zhang G., Lai G., Li X.. Phosphines with 2-imidazolium ligands enhance the catalytic activity and selectivity of rhodium complexes for hydrosilylation reactions[J]. J. Organomet. Chem., 2010, 695: 431-436.
    [1] Bourissou D., Guerret O., Gabbai F. P., Bertrand G.. Stable Carbenes[J]. Chem. Rev., 2000, 100(1): 39-92.
    [2] Arduengo A. J., Harlow R. L., Kline M.. A stable crystalline carbine[J]. J. Am. Chem. Soc., 1991, 113(1): 361-363.
    [3] Nair V., Bindu S., Sreekumar V.. N-Heterocyclic Carbenes: Reagents, Not Just Ligands![J]. Angew. Chem. Int. Ed., 2004, 43(39): 5130-5135.
    [4] Enders D., Balensiefer T.. Nucleophilic Carbenes in Asymmetric Organocatalysis[J]. Acc. Chem. Res., 2004, 37(8): 534-541.
    [5] Tudose A., Demonceau A., Delaude L.. Intramolecular Hydroamination with Rhodium(I) and Iridium(I) Complexes Containing a Phosphine-N-Heterocyclic Carbene Ligand[J]. J. Organomet. Chem., 2006, 691: 5356-5365.
    [6] Herrmann W. A.. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis[J]. Angew. Chem. Int. Ed. 2002, 41(8): 1290-1309.
    [7] Lin I. J. B., Vasam C. S.. Silver(I) N-heterocyclic carbenes[J]. Comments Inorg. Chem., 2004, 25(4): 75-129.
    [8] Voutchkova A. M., Appelhans L. N., Chianese A. R., Crabtree R. H.. Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocyclic Carbene Complexes of Rh, Ru, Ir, and Pd[J]. J. Am. Chem. Soc., 2005, 127(50): 17624-17625.
    [9] Marciniec B., Guliński J.. Catalysis of hydrosilylation: VII. Catalysis of hydrosilylation of C=C bonds by ruthenium phosphine complexes[J]. J. Organomet. Chem., 1983, 253(3): 349-362.
    [10] Ojima I., Patai S., Rappaport Z.. The Chemistry of Organic Silicon Compounds[M]. New York: Wiley-Interscience, 1989. Chapter 25, 1479.
    [11] van den Broeke J.,Winter F., Deelman B. J., van Koten G.. A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use incatalyst recycling[J]. Org. Lett., 2002, 4(22): 3851-3584.
    [12] Li J., Peng J., Bai Y., Zhang G., Lai G., Li X.. Phosphines with 2-imidazolium ligands enhance the catalytic activity and selectivity of rhodium complexes for hydrosilylation reactions[J]. J. Organomet. Chem., 2010, 695: 431-436.
    [13] Cesar V., Bellemin-Laponnaz S., Gade L. H.. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis[J]. Chem. Soc. Rev., 2004, 33(9): 619-636.
    [14] Katz T. J.. Olefin Metatheses and Related Reactions Initiated by Carbene Derivatives of Metals in Low Oxidation States[J]. Angew. Chem. Int. Ed. 2005, 44(20): 3010-3019.
    [15] Garrison J. C., Youngs W. J.. Ag (I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application[J]. Chem. Rev., 2005, 105(11): 3978-4008.
    [16] Bosson J., Nolan S. P.. N-Heterocyclic Carbene?Ruthenium Complexes for the Racemization of Chiral Alcohols[J]. J. Org. Chem., 2001, 75(6): 2039-2043.
    [17] Vougioukalakis G. C., Grubbs R. H.. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts[J]. Chem. Rev., 2010, 110(3): 1746-1787.
    [18] Hill J. E., Nile T. A.. Rhodium carbene complexes as hydrosilylation catalysts[J]. J. Organomet. Chem., 1977, 137(3): 293-299.
    [19] Lappert M. F., Maskell R. K.. Le bis(triméthylsilyl)-1,3-propène comme précurseur des silyl-1-butadiènes;étude de leur complexation par Fe(CO)5, Fe2(CO)9, et (MeCp)Mn(CO)3[J]. J. Organomet. Chem., 1984, 264(1-2): 217-228.
    [20] Faller J. W., D'Alliessi D. G.. Tunable Stereoselective Hydrosilylation of PhC CH Catalyzed by Cp*Rh Complexes[J]. Organometallics, 2002, 21(8): 1743-1746.
    [21] Jiménez M. V., Pérez-Torrente J. J., BartoloméM. I., Gierz V., Lahoz F. J., Oro L. A.. Rhodium(I) Complexes with Hemilabile N-Heterocyclic Carbenes: Efficient Alkyne Hydrosilylation Catalysts[J]. Organometallics, 2008, 27(2): 224-234.
    [22] Li J., Peng J., Zhang G., Bai Y., Lai G., Li X.. Hydrosilylation catalysed by a rhodium complex in a supercritical CO2/ionic liquid system[J]. New J. Chem., 2010, 34: 1330-1334.
    [23] Schl?sser W., Regitz M.. Stable dipoles from the reaction of 1,1',3,3'-tetraphenyl-2,2'-biimidazolidinylidenes with acyl isocyanates or acyl isothiocyanates[J]. Chem. Ber., 1974, 107(6): 1931-1948.
    [24] Kuhn N., Steimann M., Weyers G.. Synthesis and Properties of1,3-Diisopropyl-4,5-dimethylimidazolium-2-carboxylate. A Stable Carbene Adduct of Carbon Dioxide (In German)[J]. Zeitschrift für Naturforschung B, 1999, 54b: 427-433.
    [25] Voutchkova A. M., Feliz M., Clot E., Eisenstein O., Crabtree R. H.. Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and Applications[J]. J. Am. Chem. Soc., 2007, 129(42):12834-12846.
    [26] Holbrey J. D., Reichert W. M., Tkatchenko I., Bouajila E., Walter O., Tommasi I., Rogers R. D.. 1,3-dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct[J]. Chem. Commun., 2003, 1: 28-29.
    [27] Peng J. J., Li J. Y., Bai Y., Gao W. H., Qiu H. Y., Wu H., Deng Y., Lai G. Q.. Rh(PPh3)3Cl/ionic liquid (molten salt) as a thermoregulated and recyclable catalytic system for hydrosilylation[J]. J. Mol. Catal. A: Chem., 2007, 278: 97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700