Ag/TS-1催化剂的制备、表征及其丙烯气相环氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常压、氢氧共存下,以银改性钛硅分子筛(TS-1)为催化剂,以丙烯气相氧化合成环氧丙烷反应为探针,研究了Ag/TS-1催化剂制备条件和丙烯气相环氧化反应条件以及催化剂改性对丙烯环氧化反应性能的影响;考察了反应过程中Ag/TS-1催化剂上内外表面银物种的作用以及TS-1中不同钛物种的作用;对催化剂的失活与再生进行了初步探讨;同时采用XRD、UV-Vis、FT-IR、TEM、ESR、ICP等手段对催化剂进行了表征。结果表明:
     1.银与TS-1之间存在协同作用。以沉积-沉淀法制备的Ag/TS-1催化剂性能最佳,但是浸渍法也可以制备具有环氧丙烷选择性的催化剂,它们之间的差别关键在于银物种与载体TS-1之间不同的相互作用。
     2.Ag/TS-1催化剂的最佳制备条件为:采用沉积-沉淀法;银负载量,2wt%;TS-1硅/钛摩尔比为64;Ag/TS-1催化剂在450℃空气中焙烧5h。最佳反应条件为:反应温度,150℃;气体空速,4000h~(-1);n(C_3H_6)/n(O_2)/n(H_2)/n(N_2)为1:2:3:12。氢气在反应过程中起着重要的作用。
     3.沉积-沉淀法制备催化剂时,AgNO_3为银盐制备的催化剂性能较好;采用乙酸银为原料,制备的催化剂活性稍有提高,但环氧丙烷选择性下降。碱金属碳酸盐是一种良好的沉淀剂,尤其是K_2CO_3为沉淀剂制备的催化剂性能最佳,钾离子的存在有利于提高催化剂的活性和选择性;以0.07mol/L K_2CO_3为沉淀剂制备的2%Ag/TS-1(n_(Si)/n_(Ti)=33)在最佳条件下反应时,可得到1.9%的丙烯转化率和90.9%的环氧丙烷选择性。
     4.在Ag/TS-1催化丙烯气相氧化反应过程中,载体内外表面的银物种均具有环氧化性能,但分子筛孔道内的银物种起主要作用。
     5.在Ag/TS-1催化丙烯气相氧化反应过程中,TS-1分子筛中的骨架钛与银协同作用后有较强的环氧化性能。锐钛矿型和金红石型的二氧化钛载体负载
    
     大连理下人学博卜学位论文
    银后不具有环氧化性能,但某种形态的非骨架钦(紫外谱图中280一290nm)与
    银结合后具有一定的环氧化性能,而大量非骨架钦的存在会使催化剂的选择性
    下降。
     6.载体经过硅烷化处理再负载Zwt%Ag后,其催化性能可得到提高。当
    510:负载量为Zwt%时,Ag/Ts一1催化剂的丙烯转化率和环氧丙烷选择性分别
    为2 .1%和98%。
     7.Ag/TS一l催化剂失活主要是由沉积在催化剂上的环氧丙烷或丙烯的低聚
    物,以及反应过程中生成的水引起的。失活后的催化剂在空气中450℃焙烧可
    以再生,其再生性能可恢复到新鲜催化剂的指标水平。
     8.催化剂外表面的银颗粒过大(大于10nm)或过小(小于snm)均不利
    于提高催化剂性能。小的银颗粒不具有催化活性,而大的单质银颗粒以及大量
    的单质银会降低环氧丙烷选择性;氧化态的银离子刁‘是丙烯气相氧化过程中的
    活性物种;UV一VIS中,银物种在400~800nm范围内的吸收波长红移(大于
    45Onm),不利于丙烯气相氧化反应合成环氧丙烷,吸收波长越长,环氧化性能
    越差。
The epoxidation of propylene was carried out over silver modified titanium silicalites (TS-1) in the presence of hydrogen and oxygen at atmospheric pressure. The effects of the factors involved in the catalysts preparation and reaction conditions as well as the modification of Ag/TS-l catalyst on the catalytic properties have been investigated; Function of the internal and external silver species of the Ag/TS-1 catalyst and the titanium species for propylene epoxidation have also been investigated; The deactivation and regeneration of the Ag/TS-1 catalyst have been preliminarily discussed; at the same time the catalysts have been characterized by XRD?UV-Vis?FT-IR?TEM?ESR?ICP and GC-MS. The results show that:
    1. There is a synergy between Ag species and TS-1. The catalyst prepared by deposition-precipitation (DP) method is optimum, however the impregnation method can also get a moderate selective catalyst to propylene oxide (PO). The key factors for the two catalysts are the different interactions between silver species and TS-1 support.
    2. The optimum preparation conditions are: DP preparation method; Ag loading, 2wt%; the nsi/nTi of TS-1, 64; The Ag/TS-1 catalysts were calcined at 450℃ in air for 5h. The optimum reaction conditions are: 150℃; gas velocity 4000h-1; n (C3H6)/ n (O2)/ n (H2)/ n (N2) = 1:2:3:12. Moreover, hydrogen plays an important role in the gas-phase epoxidation of propylene.
    3. As a silver precursor, AgNO3 is better than Ag2SO4 and CH3COOAg; the selectivity to propylene oxide (PO) decreases drastically with a little increase in
    
    
    .
    the conversion of propylene, when CH3COOAg was used. Alkali metal carbonate, especially K2CO3, is favorable as the precipitator. Both the propylene conversion and the selectivity to PO can be improved with the existence of K+. Using 0.07mol/L K2CO3 as the precipitator, 1.9% propylene conversion with 90.9% PO selectivity is obtained over 2wt%Ag/TS-l (nsi/nTi-33) catalyst, when reacted at the optimum reaction conditions.
    4. Both internal and external silver species have catalytic properties, however, the internal silver species of Ag/TS-1 plays an important role in the gas-phase epoxidation of propylene.
    5. The framework titanium species of TS-1 in synergy with Ag plays an important role in the gas-phase epoxidation of propylene over Ag/TS-1 catalyst. Both anatase type and rutile type TiO2 are not effective supports for the propylene epoxidation; however, the extra framework titanium species (280~290nm in UV-Vis spectra) together with Ag also shows weak epoxidation activity, and the selectivity to PO decreases with large amount of it in the gas-phase epoxidation of propylene.
    6. During the direct gas-phase epoxidation of propylene, the catalytic properties of Ag/TS-1 can be increased when TS-1 was silylated. When 2wt%Si02 was loaded on TS-1, 2.1% propylene conversion with 98% selectivity to PO is obtained over Ag/TS-1 catalyst.
    7. Apart from the polymers of propylene or propylene oxide being the cause of the catalyst deactivation, the presence of water may be one of the reasons resulted in the deactivation of the Ag/TS-1 catalysts. The catalytic properties of the spent catalysts can be recovered to the original value, when the catalysts were calcined at450 in air.
    8. Neither big (larger than 10nm) nor small silver particles (less than 5nm) are
    IV
    
    beneficial to the formation of PO. The small silver particles less than 5nm do not show any catalytic activities, however, the metal silver particles bigger than 10nm and large amount of metal silver can decrease the PO selectivity. The oxidized silver ions are the effective silver species for the gas-phase epoxidation of propylene. In UV-Vis spectra, that the shift of the silver species' absorbance ranged at 400~800nm to a longer wavelength (longer than 450nm) does not favor the formation of PO. The longer the absorbance wavelength of the silver species has, the poorer the catalytic properties of the catalysts exhibit.
引文
[1] 张威.环氧丙烷的合成与利用[J].山东化工,1991,3:12-17
    [2] 逯文启.化工百科全书,第七卷.北京:化学工业出版社,1994,513-534
    [3] 李雅丽.环氧丙烷生产技术市场[J].石油化工快报,2003,13:8-11
    [4] 孙可华.我国环氧丙烷生产发展状况[J].辽宁化工,1992,1:1-4
    [5] 郑宝山,贾立君.对我国环氧丙烷生产现状和发展的思考[J].化工技术经济,1997,
    
    17(2): 12-14
    [6] Strukul G (ED). Catalytic Oxidation with Hydrogen Peroxide as Oxidant [M]. Kluwer Academic Publishers. 1992, 6
    [7] Sherrington D C. Polymer-Supported Metal Complex Alkene Epoxidation Catalysts [J]. Catal Today, 2000, 57(1): 87-104
    [8] Duma V, Honicke D. Gas Phase Epoxidation of Propene by Nitrous Oxide over Silica-Supported Iron Oxide Catalysts [J]. J Catal, 2000, 191(1): 93-104
    [9] Pralus M, Schirmann J P, Delavarenne S Y. Catalytic epoxidation process [P]. US 4026908, 1977
    [10] 薛俊利,孟祥坤,许锡恩.环氧丙烷的洁净生产技术TS-1催化丙烯环氧化过程研究进展[J].化工进展,1999,(2):15-17
    [11] Taramasso M, Perego G, Notari B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides [P]. US 4410501, 1983
    [12] Clerici M G, Bellussi G, Romano U. Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Yianium Silicalite [J]. J Catal, 1991, 129(1): 159-167
    [13] Neri C, Anfossi B, Esposito A, Buonomo F. Process for the Epoxidation of Olefinic Compounds [P]. US 4833260, 1989
    [14] Nemeth L T, Lewis G J, Rosin R R. Titanovanadosilicalites as Epoxidation Catalysts for Olefins [P]. US 5744619, 1998
    [15] Nemeth L, Lewis G J, Rosin R R. Titanostannosilicalites: Epoxidation of Olefins [P]. US 5780654, 1998
    [16] Nemeth L T, Malloy T P, Jones R R. Epoxidation of Olefins Using a Titania-Supported Yitanosilicate [P]. US 5354875, 1994
    [17] Crocco G L, Zajacek J G. Process for Titanium Silicalite-Catalyzed Epoxidation [P]. US 5646314, 1997
    [18] Crocco G L, Zajacek J G. Epoxidation Process Using Titanium Rich Silicate Catalysts
    
    [P]. EP 568336, 1993
    [19] Crocco G L, Zajacek J G. Process for Titanium Silicalite Catalyzed Epoxidation of Alkenes in Small Amount of Non-Basic Salts [P]. EP 712852, 1996
    [20] Crocco G L, Zajacek J G. Process for Titanium Silicalite-Catalyzed Epoxidation [P]. US 5646314, 1997
    [21] Chang T, Leyshon D W, Crocco G L. Epoxidation Process [P]. US 5591875, 1997
    [22] Thiele G. Process for Preparing Epoxides from Olefins [P]. EP 757043, 1997
    [23] Omori H, Saito K, Suzuki Y, Yamada T. Crystalline Titanium-Silicalite Coated Catalyst for Epoxidation of Olefin Compound [P]. JP, 8103659, 1996
    [24] 李莳君,陈晓晖,许锡恩.丙烯双氧水环氧化过程和装置[P].CN 1256273,2000
    [25] 王祥生,李钢,陈涛等.一种复合催化剂的制备和应用[P].CN,01140509,2001
    [26] Ingallina P, Clerici M G, Rossi L, et al. Catalysis with TS-1: New Perspectives for the Industrial Use of Hydrogen Peroxide [J]. Stud Surf Sci Catal, 1995, 92: 31
    [27] Clerici M G, Ingallina P. Process for Producing Olefin Oxides [P]. US 5221795, 1993
    [28] Clerici M G, Ingallina P. Process for Oxidizing Organic Compounds [P]. US 5252758, 1993
    [29] Rodriguez C L., Zajacek J G. Integrated Process for Epoxide Production [P]. US 5463090, 1995
    [30] Zajacek J G, Jubin J C, Crocco G J. Integrated Process for Epoxide Production [P]. US 5384418, 1995
    [31] Crocco G L, Shum W F, Zajacek J G, Kesling Jr H S. Epoxidation Process [P]. US 5166372, 1992
    [32] Xi Z W, Zhou N, Sun Y, Li K L. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide [J]. Science, 2001, 292: 1139-1141
    [33] Gosser L W. Catalytic Process for Making H202 from Hydrogen and Oxygen [P]. US 4681751, 1987
    
    
    [34] Olivera P P, Patrito E M, Sellers H. Hydrogen Peroxide Synthesis over Metallic Catalysts [J]. Surf Sci, 1994, 313: 25-40
    [35] Choudhary V R, Gaikwad A G, Sansare S D. Activation of Supported Pd Metal Catalysts for Selective Oxidation of Hydrogen to Hydrogen Peroxide [J]. Catal Lett, 2002, 83(3-4): 235-239
    [36] Choudhary V R, Sansare S D, Gaikwad A G. Direct Oxidation of H_2 to H_2O_2 and Decomposition of H_2O_2 over Oxidized and Reduced Pd-containing Zeolite Catalysts in Acidic Medium [J]. Catal lett, 2002, 84(1-2): 81-87
    [37] Lunsford J H. The Direct Formation of H_2O_2 from H_2 and O_2 over Palladium Catalysts [J]. J Catal, 2003, 216(2): 455-460
    [38] Pospelova T A, Kobozev N I. Rus J Phys Chem (Trans), 1961, 35: 262
    [39] Kahn A P, Dessau R M, Grey R A. Epoxidation Process [P]. WO 9952884, 1999
    [40] Jewson J D, Kahn A P, Dessau R M, Grey R A, Jones C A. Epoxidation Process [P]. WO 9952885, 1999
    [41] Jones C A, Grey R A. Epoxidation Process [P]. US 5939569, 1999
    [42] Dorf E U, Dilcher C, Luecke B, Schuelke U, Wegener G, Weisbeck M, Schild C. Method for Improving the Operational Life of Supported Catalysts Covered with Gold Particles and Used for Oxidizing Unsaturated Hydrocarbons [P]. WO 9939826, 1999
    [43] Dorf E U, Dilcher C, Luecke B, Schuelke U, Wegener G, Weisbeck M, Schild C. Method for the Direct Catalytic Oxidation of Unsaturated Hydrocarbons in Gaseous Phase [P]. WO 9940077, 1999
    [44] Grosch G H, Muller U, Stein B, Rieber N. Oxidation of an Organic Compound Containing at Least one C-C Double Bond [P]. WO 0021945, 2000
    [45] Meiers R, Dingerdissen U, Hlderich W F. Synthesis of Propylene Oxide from Propylene, Oxygen, and Hydrogen Catalyzed by Palladium-Platinum-Containing Titanium Silicalite [J]. J Catal, 1998, 176(2): 376-386
    
    
    [46] Laufer W, Meiers R, Hlderich W F. Propylene Epoxidation with Hydrogen Peroxide over Palladium Containing Titanium Silicalite [J]. J Mol Catal A: Chem, 1999, 141(1-3): 215-221
    [47] Dalton JR A I, Skinner R W. Hydrogen Peroxide Synthesis [P]. US 4379778, 1983
    [48] Gosser L W. Catalytic Process for Making H_2O_2 from Hydrogen and Oxygen [P]. US 4681751, 1987
    [49] Laufer W, Hlderich W F. Direct Oxidation of Propylene and Other Olefins on Precious Metal Containing Ti-Catalysts [J]. Appl Catal A: Gen, 2001, 213(1-2): 163-171
    [50] Haruta M. Size-and Support-Dependency in the Catalysis of Gold [J]. Catal Today, 1997, 36(1): 153-166
    [51] Hayashi T, Tanka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO_2 Catalysts in the Presence of Oxygen and Hydrogen [J]. J Catal, 1998, 178(2): 566-575
    [52] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. Low Temperature Oxidation of CO over Gold Supported on TiO_2, α-Fe_2O_3, and Co_3O_4 [J]. J Catal, 1993, 144(1): 175-192
    [53] Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. CO Oxidation over Supported Gold Catalysts-"Inert" and "Active" Support Materials and their Role for the Oxygen Supply during Reaction [J]. J Catal, 2001, 197(1): 113-122
    [54] Bond G C, Thompson D T. Catalysis by Gold [J]. Catal Rev-Sci Eng, 1999, 41(3-4): 319-388
    [55] Haruta M, Yamada N, Kobayashi T, lijima S. Gold Catalysts Prepared by Co-precipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide [J]. J Catal, 1989, 115(2): 301-309
    [56] Uphade B S, Okumura M, Tsubota S, Haruta M. Effect of Physical Mixing of CsCl with
    
    Au/Ti-MCM-41 on the Gas-Phase Epoxidation of Propene using H_2 and O_2: Drastic Depression of H_2 Consumption [J]. Appl Catal A: Gen, 2000, 190 (2): 43-50
    [57] Kalvachev Y A, Hayashi T, Tsubota S, Haruta M. Vapor-phase Selective Oxidation of Aliphatic Hydro-carbon over Gold Deposited on Meso-porous Titanium Silicalites in the Co-presence of Oxygen and Hydrogen [J]. J Catal, 1999, 186(1): 228-233
    [58] Hartwell G E, Bowman R G, Clark H W, Maj J J, Womack J L. Process for the Direct Oxidation of Olefins to Olefin Oxides [P]. WO 9800413, 1998
    [59] Hartwell G E, Bare S R, Bowman R G, Clark H J, Maj J J. Process for the Direct Oxidation of Olefins to Olefin Oxides [P]. WO 9800415, 1998
    [60] Grosch G H, Müller U, Rieber N, Schulz M, Wuerz H. Oxidation Catalyst and Process for the Production of Epoxides from Otefins, Hydrogen and Oxygen Using Said Oxidation Catalyst [P]. WO 9747386, 1997
    [61] Nijhuis T A, Huizinga B J, Makkee M, Moulijn J A. Direct Epoxidation of Propene Using Gold Dispersion on TS-1 and Other Titanium-Containing Supports [J]. Ind Eng Chem Res, 1999, 38: 884-891
    [62] Stangland E E, Stavens K B, Andres R P, Delgass W N. Characterization of Gold-Titania Catalysts via Oxidation of Propylene to Propylene Oxide [J]. J Catal, 2000, 191(2): 332-337
    [63] Uphade B S, Akita T, Nakamura T, Haruta M. Vapor-Phase Epoxidation of Propene Using H_2 and O_2 over Au/Ti-MCM-48 [J]. J Catal, 2002, 209(2): 331-340
    [64] Uphade B S, Okumura M, Yamada N, Ysubota S, Haruta M. Vapor-Phase Epoxidation of Propene Using H_2 and O_2 over Au/Ti-MCM-41 and Au/Ti-MCM-48 [J]. Stud SurfSci Catal, 2000, 130: 833-838
    [65] Haruta M, Sinha A K, Seelan S, Qi C, Uphade B S, Daté M, Ysubota S. Vapor-Phase Propylene Epoxidation over Gold Catalysts [C]. 3rd Asia-Pacific Congress on Catalysis, Dalian, China. 2003, p24-25
    
    
    [66] Qi C X, Akita T, Okumura M, Haruta M. Epoxidation of Propylene over Catalysts Supported on Non-Porous Silica [J]. Appl. Catal. A: General, 2001, 218(1): 81-89
    [67] Haruta M, Uphade B S, Tsubota S, Miyamoto A. Selective. Oxidation of Propylene over Gold Deposited on Titanium Based Oxides [J]. Res Chem Intermed, 1998, 24 (3): 329-336
    [68] Uphade B S, Tsubota S, Hayashi T, Haruta M. Selective Oxidation of Propylene to Propylene Oxide or Propionaldebyde over Au Supported on Titanosilicates in the Presence of H_2 and O_2 [J]. Chem Lett, 1998, 1277-1278
    [69] Uphade B S, Yamada Y, Akita T, Nakamura T, Haruta M. Synthesis and Characterization of Ti-MCM-41 and Vapor-Phase Epoxidation of Propylene using H_2 and O_2 over Au/Ti-MCM-41 [J]. Appl Catal A: Gen, 2001, 215(1-2): 137-148
    [70] BASF. Production of Epoxides Using Aromatic Percarboxylic Acids [P]. WO 9626198. 1996
    [71] Jubin Jr J C, Crocco G L, Zajacek J G. Integrated Process for Epoxidation [P]. US 5523426. 1996
    [72] 张旭之,陶志华,王松汉等主编.丙烯衍生物工业学[M].北京:化学工业出版社,1995.258-268
    [73] 李钢,郭新闻,王祥生.环氧丙烷合成研究进展[J].化工进展.1999,(1):8-10
    [74] Haruta M, Tsubota S, Hayashi T. Method for Production of Alcohol, Ketone, and Epoxide by Oxidation of Hydrocarbon [P]. US 5623090, 1995
    [75] Hartwell G R, Kuperman A, Meima G R, Bowman R G, Clark H W. Process for the Direct Oxidation of Olefins to Olefin Oxides [P]. WO 9900188. 1999 Arnoux D, Jones Crispin F M, Rosenberg R O. Thermosetting Poly urethane/Urea-forming Compositions [P]. WO 0035983, 2000
    [76] Dorf E U, Wegener G, Weisbeck M, Schild C. Method for Oxidizing Hydrocarbons [P]. WO 0007964. 2000
    
    
    [77] Hoffmann C, Wolf A, Schüth F. Parallel Synthesis and Testing of Catalysts under Nearly Conventional Testing Conditions [J]. Angew Chem Int Ed Eng, 1999, 38(18): 2800-2803
    [78] 吴越.催化化学[M].第二版.科学出版社.1998,1184-1186
    [79] Eley D D, Pines H, Weisz P B. Selective Oxidation and Ammoxidation of Propylene by Heterogeneous Catalysis [J]. Adv Catal, 1981, 130(1): 137
    [80] Geenen P V, Boss H J, Pott G T. Study of the Vapor-Phase Epoxidation of Propylene and Ethylene on Silver and Silver-Gold Alloy Catalysts [J]. J Catal, 1982, 77(2): 499-510
    [81] Cant N W, Hall W K. Catalytic Oxidation: Oxidation of Labeled Olefins over Silver [J]. J Catal, 1978, 52(1): 81-94
    [82] Alexander J K, Colin C M, Eric A P. Process for Propylene Oxide [P]. US 3888889, 1975
    [83] Krueger F, Bauer L, Michel W. Process of Producing Amino Methylene Phosphonic Acids [P]. US 3959361, 1976
    [84] Sanderson J R, Cavitt S B, Marquis E T. Propylene Oxide by Direct Oxidation in Chlorobenzene and Halocarbons with a Silver Catalyst [P]. US 4474974, 1984
    [85] Cooker B, Gaffney A M, Jewson J D, Onimus W H. Propylene Epoxidation Using Chloride-Containing Silver Catalysts [P]. US 5780657, 1998
    [86] Kahn A P, Gaffney A M, Pitchai R. Propylene Oxide Process Using Alkaline Earth Metal Compound-Supported Silver Catalysts [P]. US 5763630, 1998
    [87] Gaffney A M. Propylene Oxide Process Using Alkaline Earth Metal Compound-Supported Silver Catalysts Containing Rhenium and Potassium [P]. WO 9845280, 1998
    [88] Kahn A P, Gaffney A M. Propylene Oxide Process Using Alkaline Earth Metal Compound-Supported Silver Catalysts Containing Tungsten and Potassium Promoters [P]. US 5861519, 1999
    
    
    [89] Pitchai R, Kahn A P. Vapor Phase Oxidation of Propylene to Propylene Oxide [P]. EP 880513, 1998
    [90] Lu G Zh, Zuo X B. Epoxidation of Propylene by Air over Modified Silver Catalyst [J]. Catal Lett, 1999, 58(1): 67-70
    [91] Lu J Q, Luo M F, Lei H, Li C. Epoxidation of Propylene on NaCl-Modified Silver Catalysts with Air as the Oxidant [J]. Appl Catal A: Gen, 2002, 237: 11-19
    [92] 刘文明.催化分子氧环氧化丙烯反应研究.华南理工大学博士学位论文,2001,5
    [93] Uphade B S, Okumura M, Tsubota S, Haruta M. Effect of Physical Mixing of CsCI with Au/Ti-MCM-41 on the Gas-Phase Epoxidation of Propene using H_2 and O_2: Drastic Depression of H_2 Consumption [J]. Appl. Catal. A: General, 2000, 190 (2): 43-50
    [94] Kalvachev Y A, Hayashi T, Tsubota S, Haruta M. Vapor-phase Selective Oxidation of Aliphatic Hydro-carbon over Gold Deposited on Meso-porous Titanium Silicalites in the Co-presence of Oxygen and Hydrogen [J]. J Catal, 1999, 186(1): 228-233
    [95] Hayashi T, Tanaka K, Haruta M. Selective Partial Oxidation of Hydrocarbons over Au/TiO_2 Catalyst [M]. Amer Chem Soc, Div Pet Chem, 1996, 41(1): 71
    [96] de Oliveira A L, Wolf A, Schüth F. Highly Selective Propene Epoxidation with Hydrogen/Oxygen Mixtures over Titania-Supported Silver Catalysts [J]. Catal Lett, 2001, 73 (2-4): 157-160
    [97] Sugita K, Yagi Y. Process for Producing Olefin Oxides [P]. US 5525741, 1996
    [98] Sugita K, Yagi T. Process for Producing Olefin Oxides [P]. US 5573989, 1996
    [99] Miyaji T, Wu P, Tatsumi T. Selective Oxidation of Propylene Oxide over Ti-MCM-41 Supporting Metal Nitrate [J]. Catal Today, 2001, 71: 169-176
    [100] Murata K, Liu Y, Mimura N, Inaba M. Direct Vapor Phase Oxidation of Propylene by Molecular Oxygen over MCM-41 or MCM-22 Based Catalysts [J]. Catal Commun, 2003, 4: 385-391
    [101] Pichat P, Herrmann I M, Disdier J. Photocatalytic Oxidation of Propene over Various
    
    Oxides at 320K Selectivity [J]. J Phys Chem, 1979, 83: 122-126
    [102] Tanaka T, Nojima H, Yoshida H. Preparation of Highly Dispersed Niobium Oxide on Silica by Equilibrium Adsorption Method [J]. Catal Today, 1993, 16: 297
    [103] Yoshida H, Tanaka T, Yamamoto M. Photooxidation of Propene by O_2 over Silica and Mg-loaded Silica [J]. Chem Commun, 1996, 2125
    [104] Blatter F, Sun H, Frei H. Selective Oxidation of Propylene by O_2 with Visible Light in a Zeolite [J]. Catal Lett, 1995, 35(1): 1-12
    [105] Yoshida H, Tanaka T, Yamamoto M, Yoshida T, Funabiki T, Yoshida S. Epoxidation of Propene by Gaseous Oxygen over Silica and Mg-loaded Silica under Photoirradation [J]. J Catal, 1997, 171(2): 351-357
    [106] Yoshida H, Murata C, Hattori T. Photooxidation of Propene Oxide by Molecular Oxygen over Zinc Oxide Dispersed on Silica [J]. Chem Lett, 1990, 901-902
    [107] Ohno T, Nakabeya K, Matsumura M. Epoxidation of Olefins on Photoirradiated Titanium Dioxide Powder Using Molecular Oxygen as an Oxidant [J]. J Catal, 1998, 176(1): 76-81
    [108] Yoshida H, Murata C, Hattori T. Screening Study of Silica-Supported Catalysts for Photoepoxidation of Propene by Molecular Oxygen [J]. J Catal, 2000, 194(2): 364-372
    [109] Rolisen D R, Stemple J Z. Electrified Microheterogeneous Catalysis in Low Ionic Strength Media [J]. J Chem Soc Chem, Commun 1993, 25-27
    [110] Otsuba K, Ushiyama T, Yamanaka I, Ebitani K. Electrocatalytic Synthesis of Propylene Oxide during Water Electrolysis [J]. J Catal, 1995, 157(2): 450-460
    [111] Scharbert B, Zersberger E, Paulus E. Aerobic Epoxidation with a Ruthenium Porphyrin Catalyst: Formation of an Inactive Carbonyl Complex [J]. J Organometallic Chemistry, 1995, 193: 143-147
    [112] Haber J, Mlodnicka T, Witko M. Reactivity-Structure Correlations in Oxidation with
    
    Metalloporphyrins [J]. J Mol Catal, 1989, 52: 85-97
    [113] Jorgensen K A. Transition-Metal-Catalyzed Epoxidation [J]. Chem Rev, 1989, 89(3): 431-458
    [114] Pennington D, Timothy B. Alkylene Oxides Production from Alkanes or Alkyklaromatics Using Molten Nitrate Salt Catalyst [P]. US 4885374. 1989
    [115] Pennington D, Timothy B, Fullington M C. Molten Salt Catalyzed Oxidation of Epoxidation from Alkanes or Olefins Using Lower Temperature Nitrate Salts [P]. US 4943643. 1990
    [116] Nijhuis T A, Musch S, Makkee M, Moulijn J A. The Direct Epoxidation of Propene by Molten Salts [J]. Appl Catal A: Gen, 2000, 196(2): 217-224
    [117] 陆仕灿,陶坚铭,邱蔚然,俞俊棠.固定化甲烷氧化菌Z201催化丙烯合成环氧丙烷[J].华东理工大学学报.1994,20(1):21-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700