基于连续可更新动态液滴光化学生物传感技术的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光化学生物传感是以光学信号选择性表达检测体系化学、生物组分实时信息的应用技术。作为学科交叉与渗透的产物,它是伴随现代分析化学、有机合成技术、生物功能分子的应用、聚合物化学乃至光学波导器件、微电子技术的进步而迅速发展起来的分析化学前沿研究领域之一,它在生命科学、环境监测、疾病诊断、药物筛选、食品工业及材料科学等重要领域中正得到越来越多的应用。
     光化学生物传感技术的不断发展与广泛应用,也要求它自身的各种方法与理论不断完善和创新。从化学传感的角度而言,我们希望识别分析对象的化学反应为可逆反应,以便样品浓度增加或减少时能获得连续的响应信号。在已发展的许多光化学生物传感器中,大多数识别反应都符合这一要求。但仍然有一些在分析应用上很有价值的化学反应,由于反应产物稳定性高,或者反应过程中有气体或沉淀生成等原因,使得反应完成后不能返回起始状态。这些反应往往有很高的检测灵敏度和专一性,仅仅由于不可逆性而限制了它们在光化学传感器中的应用。而且在众多的光化学传感器中,敏感材料常常被物理包埋在聚合物膜中制成敏感膜,敏感物质的流失难以避免。基于新生液滴光池的光化学生物传感技术,提供了解决这些问题的办法。这种测量装置具有连续产生新鲜试剂并与样品相互作用的功能,并且液滴本身就是无需任何光窗的光池,它避免了在传统的光化学测量中,试剂和样品对比色池的污染以及因反应池池壁对光的吸收、散射或过程中产生的吸附物质等所引起的对测量信号的干扰;液滴光池近似光学透镜的形态具有聚光作用,使收集到的透射光信号比普通流通池更多,提高了光耦合效率,因而可以大大提高传感器检测的灵敏度和准确性。
     本论文在我们实验室前期开展的动态液滴光化学传感技术研究工作的基础上,充分结合现代分析技术和荧光分析手段,系统研究了液滴生长机理、光波传输与耦合效率、信号接收与重现性等涉及液滴光化学生物传感器选择性与灵敏度的技术指标问题;探讨了液滴表面更新技术及在反应体系中既可充当无光窗光池又可充当反应器的特征,从而为不可逆反应体系在光化学生物传感领域中的应用提供了新的思路和方法;通过对以光纤传导为基础的动态液滴光化学传感原理验证机的改进,发展了以F2500和LS55型荧光/磷光/发光光度计为实验平台的新型液滴光化学检测方法;构建了以流动注射分析和动态液滴传感技术相结合的多种新型荧光化学生物传感器,初步实现了自动化程度高、测试过程时间短、样品试剂消耗量低、实时在线的检测模式;首次研制开发出具有自主知识产权的集吸光检测与荧光检测于一体的动态液滴光化学生物传感仪器,从而实现了
Optical chemical biosensing is a technique applied to selectively express real-time information of chemical and biological components with optical signals in detection system. As a product of crossing and penetrating subjects, the technology is becoming one of pioneering researches in analytical chemistry, with the rapid development of the modern analytical chemistry, organic synthetic, biospecific molecular, polymer chemistry and wave-guide apparatus. It is used more and more widely in many important application fields such as life sciences, environment monitoring, illness diagnosis, medication screening, food industry and material sciences.Meanwhile, the wide application of optical chemical sensor requires the improvement of its methods and theories. In view of the principles of chemosensing, the molecular recognition reaction is expected to be reversible, in order to obtain continuous response signals when the sample concentrations increase or decrease, and most of sensing reactions, available up to know, fulfill this requirement. However, still other reactions with high sensitivity and specificity to the analyze have been limited in applying to optical chemical sensor owing to the irreversibility. Furthermore, most of optical sensors are based on the technique of polymer membranes by immobilizing sensing materials in the membrane physically, the leaching of components from membrane phase to solution phase remains a series problem. The sensing technique based on renewable drop provides a most efficient solution to this challenge, which has the function of continuously producing fresh reagents and reacting with a fresh sample. The infections of optical signal, which caused by the absorption and scattering of cell surface and some contaminations of regents and samples to cell in the conventional photometric analysis, can be avoided. The unique features of a liquid drop can be characterized in its reproducibility, renewability, defined volume, and lack of containment walls. The features, individually or in combination, may result in high sensitivity and accuracy for analytes.On the basis of the research work of dynamical droplet optical chemical sensing performed previously in our laboratory, some techniques and parameters involved in selectivity and sensitivity of droplet optical chemical biosensor, such as growth mechanism of liquid drop, transmission and coupling efficiency of light wave, receiving and reproducibility of information, have been investigated by means of fluorescence analysis and modern
    analytical technique presented in the paper. In addition to the technique of surface renewability of droplet and its characteristics as a windowless and sampler in reactions has also been studied. Some new ideas and methods have been provided for the application of the irreversible reactions in the domains of optical chemical biological sensing. A novel method of drop-based analysis, which regarding F-2500 and LS55 luminescence spectrometers as its experiment window, has been developed by improving dynamical drop-based fiber optical chemical sensor, which was constructed for principle proven. Many new fluorescence chemical biosensors combined with flow-injection analysis and the technique of dynamical drop-based sensing are developed. A model with automatization, short test time, low reagent cost and real-time assay is established. For the first time, dynamical drop-based sensor with our owner knowledge property right and two functions of absorbance assay and fluorescence detection is manufactured, which provides the possibility for optical chemical biosensors to be developed from mono-signal to multi-signal, multi-dimension, and even intelligence due to the realization of simultaneous determination with multi-channel, multi-component and multi -signal.In detail, the thesis includes the following two parts:Part I : Investigation of the principles and instruments about dynamical drop-based optical chemical biosensing techniques.The mechanism and principle of the dynamic drop-based optical chemical biosensing is systematical described. On the base of dynamical droplet sensor for principle proven based on fiber transmission, a liquid drop sensor was manufactured in combination with F-2500 and LS55 luminescence spectrometer. The apparatus was ameliorated in some components such as light source, monochromator, detector, pump and droplet forming device. Its performance has been improved dramatically. The third era dynamical drop-base instrument integrated with both fluorescence and absorbance detection was developed.Part II : The applications of dynamical drop-based optical chemical biosensing techniques in practical system.1. Applications in the determinations of inorganic ions.A fluorometry based on dynamical liquid drop has been developed for the determination of nitrite and iodate. The method is based on the fluorescence quenching of fluorescein fluoresceiniso-thiocyanate by iodine produced in the oxidation-reduction reaction. The sensors show linear responses in the range from 25 to lOOug/1 nitrite and 200 to 800ug/l iodate. The regression equations are JF=202.04+0.7435C and JF=-28.799+0.386C, respectively. The method is used to determine trace nitrite in water samples and iodate in table salt with satisfactory results.
    2. Applications in determinations of organic molecular combined with the techniques of immobilized enzyme.(D A drop-based flow-injection fluorometry based on the immobilization of enzyme on gel for determination of trace amount of L-lysine in solutions was proposed. Being illuminated or heated up, gel is formed by cross-linking when propylene amide is used as polymer, N, N'-methene-dipropylene amide as cross-linked agent and ammonium persulfate as attractant. Horseradish peroxidase (HRP) and L-amino acid oxidase are prepared to be enzyme column on the condition of uniformity dispersal of enzyme. L-lysine in solutions is oxidated to be hydrogen peroxide (H2O2) by L-amino acid oxidase. The fluorescence of 3,3',5,5'-tetramethyl-benzidine-dihydrochloride (TMB-d) is quenched by H2O2 in the catalysis of L-amino acid oxidase. The fluorescence change of TMB-d is related to the concentration of L-lysine. Trace amount of L-lysine in solutions is determined based on these mechanisms. Under the optimum conditions, the sensor shows linear response in the range from 2.0xlO"7mol/l tol.lxlO"5mol/l. The regression equation is F(//7=0.9776+2.783xl05C.(2) A method for preparation of enzyme columns based on nanoparticles by sol-gel was developed. Glucose oxidase (GOD) and horseradish peroxidase (HRP) mixed with SiC>2 nanoparticles and polyvinglbuty (PVB) medium were immobilized on the surface of capillary tube, respectively. It is proven that the catalysis effect of separate columns is higher than that of mixed columns. The enzyme columns are featured by high activity, more active centers and effective catalysis. An effective and fast method for assay of micro-amount of glucose was established. In the range from 2.0~400ng/ml, the quench value (F
引文
[1] 王柯敏.光化学传感器理论与方法.长沙:湖南教育出版社,1995,2和129
    [2] Mathewson P R, Finley J W. Biosensor design and application. American Chemical Society, Washington, D. C., 1992,11-12
    [3] Zhang Z E, Liu H Y, Deng J Q, et al. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Anal. Chem., 1996, 68 (9): 1632-1638
    [4] Liu B H, Hu R Q, Deng J Q. Characterization of immobilization of an enzyme in a modified Y Zeolite Matrix and its Application to an amperometric glucose biosensor. Anal. Chem., 1997, 69 (13): 2343-2348
    [5] Liu H Y, Deng J Q. Amperometric glucose sensor using tetrathiafulvalene in Nafion gel as electron shuttle, Anal. Chim. Acta, 1995, 300 (1): 65-70
    [6] Zeng H H, Wang K M, Yang X H, et al. Fiber-optic senor for the determination of carboxylic acid based on fluorescence enhancement of lipophilized fluorescein isologues. Anal. Chim. Acta, 1994, 287(3): 267-273
    [7] Zeng H H, Wang K M, Yu R Q, et al. Development of an optode membrane for the determination of picric acid based on fluorescence energy transfer. Anal. Chim. Acta, 1994, 298(7): 271-277
    [8] Huang T N, Warsinke A, Kuwana, Sheller. Determination of L-phenylalanine based on an NADH-detecting biosensor. Anal. Chem., 1998, 70 (5): 991-997
    [9] Lei C H, Deng J Q. Hydrogen peroxide sensor based on eoimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. Anal. Chem., 1996, 68 (19): 3344-3349
    [10] Huang H M, Wang K M, Xiao D. et al. Slective optode for o-mononitrophenol based on fluorescence quenching of a conjugated polmer. Anal. Chim. Acta, 2001, 439(1): 55-63
    [11] Janata J, Josowicz M, Vanysek P, et al. Chemical sensors. Anal. Chem., 1998, 70 (12): 179-208
    [12] Buhlmann P, Pretsch E, Bakey E. Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors. Chem. Rev., 1998, 98 (4): 1593-1687
    [13] Zeng H H, Wang K M, Liu C L, et al. A reversible optode membrane for picric acid based on the florescence quenching of pyrene. Talanta, 1993, 40 (10): 1569-1573
    [14] Hisamoto H, Suzuki K. Ion-selective optodes: Current developments and future prospects. Trends in Anal. Chem., 1999, 18(8): 513-524
    [15] Yang R H, Wang K M, Yang X H, et al. Flow injection renewable drops technique for assay of micro-amounts of DNA. Anal. Chim. Acta, 2001, 432(1): 135-141
    [16] Hage D S. Immunoassays. Anal. Chem., 1999, 71 (12): 294R-304R
    [17] Wolfbies O S. Fiber-optic chemical sensors and biosensors. Anal. Chem., 2000, 72(12): 81R-89R
    [18] Chan W H, Lee A W M, Wang K M, et al. Potassium ion-selective optodes based on the calyx [6]arene hexaester and application in human serum assay. Analyst, 1996, 121(4): 531-537
    [19] 冯锋,王柯敏,谌其亭等.纳米增强型毛细管酶柱用于葡萄糖液滴生物传感器的研究.高等学校化学学报,2004,25(7):1257-1259
    [20] Yang R H, Wang K M, Long L P. et al. A selective PVC membrane for di-or trinitrophenol based on N,N-dibenzyl-3,3',5,5'-tetramethylbenzidine. Analyst, 2002, 127(1): 119-124
    [21] 冯锋,王柯敏,杨荣华等.基于汞离子氧化作用的硫胺素液滴光化学传感器的研究.高等学校化学学报,2003,24(12):2189-2191
    [22] Chan W K, Yang R H, Wang K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5, 10, 15, 20-tetraphenylporphyrin. Anal. Chim.Acta, 2001, 444(2): 261-269
    [23] Yang R H, Wang K M, Yang X H, et al. A selective optical chemical sensor for the determination of Tween-60 based on fluorescence enhancement of tetraphenyl-porphyrin. Anal. Chim Acta, 2000, 404(2), 205-211
    [24] Yang R H, Wang K M, Yang X H, et al. A host-gust optical sensor for aliphatic amines based on lipophilic cyclodextrin. Fresenius J. Anal. Chem., 2000, 367(5), 429-435.
    [25] 王柯敏.“光化学传感器进展”,黄本立,章竹君主编.分析化学的成就与挑战.中国化学会第七届分析化学年会暨原子光谱学术会议论文集.西南师范大学出版社,重庆:2000,173-175
    [26] 肖文香.多通道液滴光化学传感器的研究:[湖南大学硕士论文].长沙:湖南大学化学化工学院,2001,3-5.
    [27] Adamson T W. Physcial Chemistry of Surfaces, 4th edn. New York: Wiley. 1982, 28
    [28] Heyroveska M. Progress in polargraphy, Vol 1. New York: Wily, 1962, 1
    [29] Young J P, White J C. Absorption spectra of molten fluoride salts. Solutions of praseodymium, neodymium, and samarium fluoride in molten lithium fluoride. Anal Chem., 1960,32(12): 1658-1661
    [30] Diebold G J, Zare R N. Laser fluorimetry: Subpicogram detection of aflatoxins using high-pressure liquid chromatography. Science, 1977, 196(4297): 1439-1441
    [31] Mahoney P P, Hieftje G M. Fluorimetric analysis on individual nanoliter sample droplets. Appl. Spectrosc, 1994, 48(8): 956-958
    [32] Barnes M D, Whitten W B. Homogeneous linewidths of rhodamine 6-G at room temperature from cavity enhanced spontaneous emission rates. J. Chem. Phys, 1992, 97(10): 7842-7845
    [33] Barnes M D, Ng K C, Whitten W B, et al. Detection of single rhodamine 6G molecules in levitated microdroplets. Anal. Chem., 1993, 65(17): 2360-2365
    [34] Barnes M D, Whitten W B, Ramsey J M. Single molecule detection in liquids Anal Chem., 1995, 67(13) 418A-423A
    [35] Whitten W B, Arnold S, Ramsey J M, et al. Single-molecule detection limits in levitated microdroplets. Anal. Chem., 1991, 63(10): 1027-1031
    [36] Ng K C, Whitten W B, Ramsey J M. Digital chemical analysis of dilute microdroplets. Anal. Chem., 1992, 64(23): 2914-2919
    [37] Kung C Y, Barnes M D, Lermer N, et al. Single molecule analysis of ultradilute solutions with guided streams of 1μm water droplets. Appl. Opt., 1999, 38(9): 1481-1487.
    [38] McMillan N D, Finlayson O, Fortune F M. The fibre drop analyser: a new multianalyser analytical instrument with applications in sugar processing and for the analysis of pure liquids. Meas. Sci. Technol., 1992, 3(8): 746-764
    [39] McMillan N D, Fortune F M, Finlay O, et al. A fiber drop analyser: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of a liquid. Rev. Sci. Instrum., 1992, 63(6): 3431-3454
    [40] McMillan N D, Omongain E, Walsh J E, et al. Preliminary investigation into the analytical potential of the fiber drop analyser for body fluid analysis. Proc SPIE, 1993,2005:216-217
    [41] Liu H H, Dasupta P K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem, 1996, 68(11): 1817-1821
    [42] Liu H H, Dasgupta P K. Analytical chemistry in a drop. Trends in Anal. Chem., 1996, 15(9): 468-475
    [43] Liu H H, Dasgupta P K A liquid drop: what is it good for?. Microchem. J , 1997, 57(2): 127-136
    [44] Liu H H, Dasgupta P K. A liquid: A windowless optical cell and a reactor without walls for flow injection analysis. Anal. Chim. Acta, 1996(1-3), 326:13-22
    [45] 罗侃.基于液滴装置的光化学传感器研究:[湖南大学硕士论文].长沙:湖南大学化学化工学院,1999,14-22
    [46] 杨荣华.光化学传感器超分子识别体系及新生液滴测量技术的研究:[湖南大学博士论文].长沙:湖南大学化学化工学院,2000,125-126
    [47] Standerfer J C, Vanderjagt D. Use of tetramethylbenzidine in plasma hemoglobin assay. Clin.Chem., 1977, 23(4): 749-751
    [48] Yang R H, Wang K M, Yang X H. et al. A renewable liquid drops sensors for di-or tri-nitrophenol based on fluorescence quenching of 3,3'5,5'-tetramethylbenzidine dihydrochloride. Analyst, 2000, 125(5): 877-882.
    [49] Yang R H, Wang K M, Yang X H, et al. Determination of low-level mercury based on a renewable-drops sensing technique. Fresenius J. Anal. Chem., 2000, 368(8): 797-802
    [50] Huang C R, Milliman A, Price H L, et al. Photoemission probes of catalysis of benzo[a]pyrene epoxide reactions in complexes with linear, double-stranded and closed-circular, single-stranded DNA J. Am. Chem. Sot., 1993, 115(17): 7794-7805
    [51] Chu X, Shen G L, Yu R Q. Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Anal. Chim. Acta, 1998, 373 (1): 29-38
    [52] Barnes N R, Scheiner AF, Dolan M A. Measurement and interpretation of Q0 and Q1 band property changes of two cationic metalloporphyrins upon binding with B-DNA: electronic MCD, CD, and optical absorption. J. Inorg. Biochem., 1998, 72(1-2): 1-12
    [53] Udenfriend S, Zaltzman P. Fluorescence characteristics of purines, pyrimidines, and their derivatives: Measurement of guanine in nucleic acid hydrolyzates. Anal. Biochem., 1962, 3:49-59
    [54] 曹瑛,李一俊,何锡文.中性红作为DNA作用方式光谱探针的研究.高等学校化学学报,1999,20(5):709-712
    [55] Wang Y T, Zhao F L, Li K A, et al. Molecular spectroscopic study of DNA binding with neutral red and application to assay of nucleic acids. Anal. Chim. Acta, 1999, 396(1): 75-81
    [56] Chen Q Y, Li D H, Zhao Y, et al. Interaction of a novel red-region fluorescent probe, nile blue, with DNA and its application to nucleic acids assay. Analyst, 1999, 124(6): 901-906
    [57] 李天剑,沈含熙.乙基紫-脱氧核糖核酸共振发光体系的研究及其分析应用.高等 学校化学学报,1998,19(10):1570—1573
    [58] 李华平,汪鹏飞,吴世康.含芘荧光化学敏感器化合物同小牛胸腺DNA分子间的相互作用.高等学校化学学报,1999,20(6):872—878
    [59] Suenaga H, Nakasima K, Mizuno T, et al. Pyrenylboronic acids as a novel entry for photochemical DNA cleavage: diradical-forming pyrene-1,6-diyldiboronic acid mimics the cleavage mechanism of enediyne antitumor antibiotics. J. Chem. Soc., Perkin Trans. 1, 1998 (7): 1263-1268
    [60] Brauer S L, Wetterhahn K E Chromium (Ⅵ) forms a thiolate complex with glutathione. J. Am. Chem. Soc., 1991,113(8): 3001-3007
    [61] Mehra H C, Frankenverger J. Single-column ion-chromatographic determination of chromium (Ⅵ) in aqueous soil and sludge extracts. Talanta, 1989, 36(9): 889-892
    [62] Jarvis I, Totland M M, Jarvis K E. Assessment of dowex 1-x8-based anion exchange procedures for the separation and determination of ruthenium, rhodium, palladium, iridium, ilatinum and gold in geological samples by inductively coupled plasma mass spectrometry. Analyst, 1997, 122(1): 19-26.
    [63] Powell M J, Boomer D W. Determination of chromium species in environmental samples using high-pressure liquid chromatography direct injection nebulization and inductively coupled plasma mass spectrometry. Anal. Chem., 1995, 67(14): 2474-2478
    [64] Giglio J J, Mike J H, Mincey D W. Analysis of steel samples employing ion chromatography-sequential inductively coupled plasma atomic emission spectroscopy. Anal. Chim. Acta, 1991, 254(1):109-112
    [65] Roychowdhury S B, Koropchak J A. Thermospray enhanced inductively coupled plasma atomic emission-spectroscopy detection for liquid chromatography. Anal. Chem., 1990, 62(5): 484-489
    [66] Xiao D, Wang K M, Xiao W X. Synchronous fluorescence and absorbance dynamic liquid drop sensor for Cr (Ⅵ) determination at the femtomole level. Analyst, 2001, 126(8): 1387-1392
    [67] Hinds W C. Aerosol technology. New York: Wiley, 1982, 161
    [68] Dasgupta P K. Automated measurement of atmospheric trace gases diffusion-based collection and analysis. Adv. Chem. Ser., 1993, 232:41-90
    [69] Ali Z, Thomas C L P, Alder J F. Denuder tubes for sampling of gaseous species. Analyst, 1989, 114(7): 759-769
    [70] Liu H H, Dasgupta P K. A renewable liquid droplet as a sampler and a windowless optical cell. Automated sensor for gaseous chlorine. Anal. Chem., 1995, 67(23): 4221-4228
    [71] Cardoso A, Dasupta P K. Analytical chemistry in a liquid film/droplet. Anal. Chem., 1995, 67(15): 2562-2566
    [72] Hung H, Dasgupta P K. Renewable liquid film-based electrochemical sensor for gaseous hydroperoxides. Talanta, 1997, 44(4): 605-615
    [73] Cardson A A, Dasupta P K. Fluorometric fiber optic drop sensor for atmospheric hydrogen sulfide. Talanta, 1997, 44(6): 1099-1106
    [74] Jeannot M A, Cantwell F F. Solvent microextraction into a single drop. Anal. Chem., 1996, 68(13): 2236-2240
    [75] Kar S, Dasgupta P K. Measurement of gases by a suppressed conductometric capillary electrophoresis separation system. Anal. Chem., 1995, 67(21): 3853-3860
    [76] Kar S, Dasgupta P K. Measurement of phenols on a loop-supported liquid film by micellar electrokinetic chromatography and direct UV detection. J. Chromatogr A, 1996, 739(1-2): 379-387.
    [77] Ma M, Cantwell F F. Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop. Anal. Chem., 1999, 71(2): 388-393
    [78] He Y, Lee H K. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal. Chem., 1997, 69(22): 4634-4640
    [79] Barens M D, Ng K C, Whitten W B, et al. Detection of single rhodamine 6G molecules in levitated microdroplets. Anal. Chem., 1995, 65(17): 2360-2365
    [80] Arnold S, Folan L M. Fluorescence spectrometer for a single electrodynamically levitated microparticle. Rev. Sci. Instrum., 1986, 57(9): 2250-2253
    [81] Diebold G J. Apparatus for consistency control of manufactured tomato pulp. U. S. Patent, 1987, 4 650 582
    [82] Hool K, Schuchardt B. A new instrument for the measurement of liquid-liquid interfacial tension and the dynamics of interfacial tension reduction. Meas. sci. technol., 1992, 3(5): 451-457
    [83] Hool K. Method for determining liquid/liquid interfacial tension and dynamic interfacial tension reduction. U. S. Patent, 1996, 5 269 176
    [84] 李伟,陈坚,相秉仁等.基于荧光猝灭原理的光纤化学传感器定量分析模型的建立与应用.化学学报,2001,59(1):109-114
    [85] 杨荣华,王柯敏,肖丹等.基于环糊精/卟啉包络物荧光猝灭的二氧化碳光学敏感膜的研究.高等学校化学学报,2001,22(1):38-42
    [86] Wang Y, Liu W H, Wang K M, et al. Optical fiber sensor for berberine based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole. Fresenius J. Anal. Chem., 1998, 360(6): 702-706
    [87] Huang H M, Wang K M, Xiao D, et al. Selective optode for o-mononitrophenol based on fluorescence quenching of a conjugated polymer. Anal. Chim. Acta, 2001, 439(1):55-63
    [88] Chan W H, Yang R H, Wang K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin. Anal. Chim. Acta, 2001,444(2):261-269
    [89] 范哲锋,杜黎明,靳晓涛.色氨酸荧光猝灭法测定人发稀土总量.分析化学,2001,29(9):1049—1051
    [90] 王传义,刘春艳,阎晓斌等.吸附在银溶胶表面的2种卟啉化合物的荧光分析.中国科学B辑,1997,27(1):80—84
    [91] Wentzell P D, Nair S S, Guy R D. Three-Way Analysis of Fluorescence Spectra of Polycyclic Aromatic Hydrocarbons with Quenching by Nitromethane. Anal. Chem., 2001, 73(7): 1408-1415
    [92] 曾恚恚,王柯敏,俞汝勤等.基于芘的荧光熄灭的单质碘荧光敏感膜的研究.分析化学,1994,22(1):10—14
    [93] Yang R H, Wang K M, Xiao D, et al. Development of an iodine sensor based on fluorescence energy transfer. Analyst, 2000, 125(8): 1441-1445
    [94] 高甲友,金龙.催化动力学法测定痕量亚硝酸根.分析化学,1991,19(11):1329-1332
    [95] Ensafi A A, Saminifar M Kinetic spectrophotometric determinatin of low levels of nitrite by catalytic reaction between pyrogalloi red and bromate. Talanta, 1993, 40(9): 1375-1378
    [96] 马克忠,冯尚彩,庄会荣.催化光度法测定痕量亚硝酸根.分析化学,1998,24(4):494-496
    [97] 白林山,池至问.溴酸钾-溴甲酚紫催化光度法测定水中痕量亚硝酸根.分析化学,2001,29(8):926-929
    [98] 刘佳铭.过硝酸钠氧化荔枝红色素催化褪色光度法测定亚硝酸盐.分析化学,1997,25(11):1315-1317
    [99] 张贵珠,刘善军,何锡文等.停流式流动注射催化光度法测定水中痕量亚硝酸根的研究.高等学校化学学报,1993,14(4):492-494
    [100] Mikuska P, Vecera Z, Zdrahal Z. Fow-injection chemiluminescene determination of ultra low concentration of nitrite in water. Anal. Chim Acta, 1995, 316(2): 261-268
    [101] 唐宏武,罗庆尧,余席茂等.亚铁氰化钾-NO_2-鲁米诺催化学发体系测定痕量亚硝 酸盐的研究.高等学校化学学报,1994,15(11):1626-1628
    [102] 高岐.尿酸-铁氰化钾-鲁米诺化学发光法测定亚硝酸盐.分析化学,2002,30(7):812-814
    [103] 王良玉,张子红,王术皓等.催化动力学极谱法测定痕量亚硝酸根.理化检验(化学分册),2003,39(2):108-111
    [104] 王亚林,方能虎,康敬万等.基于亚硝化反应的极谱法测定亚硝酸根的研究.分析测试学报,1999,18(3):53-55
    [105] 朱展才,许文伟,汪静.氧化-还原荧光法测定亚硝酸根.分析化学,2001,29(8):941-943
    [106] 李建国,王耀荣,唐亚莲等.碘化物-罗丹明B体系荧光猝灭反应测定痕量亚硝酸根.分析化学,1997,25(5):590-593
    [107] 任慧媚,符连社,张荣冬等.中性红作试剂荧光光度法测定亚硝酸根.分析化学,1999,26(10):1264-1266
    [108] 赵康,任玉贝,李文遐等.3,3’,5,5’-四甲基联苯胺紫外分光光度法测定水中NO_2~-.光谱实验室,2002,19(2):181-183
    [109] 訾言勤,陈立国.非平衡流动注射光度法测定微量亚硝酸根的研究.分析测试学报,2000,19(2):70-72
    [110] 董存智,陈立国,陈明东.亚甲紫分光光度测定微量亚硝酸根.分析化学,1999,27(8):930-932
    [111] 訾言勤,陈立国,陈静.四波长光度法测定微量亚硝酸及其反应机理.分析化学,1999,27(6):691-693
    [112] Dombrowski L J, Pratt E J, Lawrence J, et al. Fluoremetric method for determining nanogram quantities of nitrite ion. Anal. Chem., 1972, 44(14): 2268-2272
    [113] Axelrod H D, Engel N A. Fluoremetric determination of subnanogram levels of nitrite using 5-aminofluorescein. Anal. Chem., 1975, 47(6): 922-924
    [114] 苑宝玲,林清赞.荧光猝灭法测定痕量亚硝酸.分析化学,2000,28(6):692-695
    [115] 孙汝东,严金龙.方波伏安法测定食盐中碘酸根.分析实验室,2001,20(3):37-38
    [116] 田媛,宋文波,姜艳霞等.微分脉冲阳极溶出伏安法测定碘离子.高等学校化学学报,1999,20(1):28-31
    [117] 杜敏,高荣杰,陈善佳.5-P22-PADAP为显色剂吸光光度法测定微量碘酸根的研究.理化检验(化学分册),1996,32(4):218-220
    [118] 张秀尧.流动注射分光光度法测定碘盐中的碘酸钾.理化检验(化学分册),1999,35(12):532-534
    [119] Jones S D, Spencer C P, Truesdale V W. Determination of total iodine and iodate-iodine in natural freshwater. Analyst, 1982, 107(1281): 1417-1424
    [120] 赵心伟,寇宗燕,王红峰等.5-Br-PADAP-IO_3~—SCN-三元离子缔合物光度测定微量IO_3~-的研究.化学试剂,1991,13(2):117-118
    [121] 龚波林,龚国权,王怀公.荧光素猝灭法测定微量碘酸根.分析化学,1997,25(8):906-908
    [122] 朱展才,袁佳英,王佩珊.异硫氧酸荧光猝灭法测定痕量碘酸根.分析测试技术与仪器,2000,6(4):225-227
    [123] Gong G Q, Zhu Q Z, Wang H G A fluorescence quenching method for the determination of iodide-ion with Salicylfluorone and hydrogen. Anal. Lett., 1994, 27(9),1719-1725
    [124] 吴敦虎,任红珊,李海燕.碘酸根的极谱特性与碘盐分析.分析化学,1998,26(8):1038
    [125] 张子红,杜凌云,王术皓等.停流流动注射-化学发光法测定碘盐中的碘酸根.光谱实验室,2001,18(5):584-587
    [126] 傅厚暾,赵俐敏,张艳丽.离子色谱法分析加碘食盐中微量的碘.分析化学,1999,27(6):684—686
    [127] Rocklin R D, Johnson E L. Determination of cyamide, sulfide, iodide and bromide by ion chromatography with electrochemical detection. Anal. Chem., 1983, 55(1): 4-7
    [128] Xu Y. Capillary, eleetrophoresis. Anal. Chem., 1993, 65(4): 425-433
    [129] Teerlink T. Derivatization of posttranslationally modified amino acids. J. Chromatogr. B Biomed Appl., 1994, 659(1-2): 185-207
    [130] 郗娟,阎宏涛.荧光光谱法测定氨基酸的新方法.分析实验室,2002,21(1):6-8
    [131] 黄智贤,许金钩,李耀群.同步荧光法同时测定色氨酸、酪氨酸和苯丙氨酸.分析化学,1987,15(3):199-202
    [132] 杜鸣,唐波,沈含熙.偏振荧光光度法同时测定氨基酸注射液及动、植物浸出液中酪氨酸、色氨酸的研究.药学学报,1997,32(9):695-698
    [133] 唐波,何锡文,沈含熙.酪氨酸、色氨酸荧光光谱计算解析与同时测定新方法研.分析科学学报,1997,13(1):16-21
    [134] 李晓燕,刘志宏,蔡汝秀等.荧光光谱PLS法同时测定氨基酸混合物.武汉大学学报,2002,48(4):423-426
    [135] Peter L, Kenneth M. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precilumn fluorescence derivatization with o-Phthaidialdehyde. Anal. Chem., 1979, 51(11): 1667-1674
    [136] 王清平,唐爱国.高效液相色谱-荧光检测法快速测定血清中的色氨酸.色谱,2002,20(1):52-55
    [137] 李正平,章竹君,万秀琴.高效液相色谱化学发光检测法测定氨基酸.分析化学,1995,23(7):751-755
    [138] 熊少祥,马会民,陈义等.高效液相色谱.激光诱导荧光.增强型电荷耦合器件检测氨基酸的研究.高等学校化学学报,2000,21(8):1191-1195
    [139] Chan K C, Janini G M, Muschik G M, et al. Laser Induced fluorescence detection of 9-fluorenylinethylchloroformate derivatized amino acids in capillary electrophoresis. J Chromatogr, 1993, 653(1): 93-97
    [140] 党福全,陈义.异硫氰酸酯衍生氨基酸的毛细管电泳.激光诱导荧光分离及其关键条件的研究.中国科学(B辑),2002,30(1):91-96
    [141] Yang R H, Wang K M, Tan W H, et al. A selective optode membrane for histidine based on fluorescence enhancement of meso-linked porphyrin dimer. Anal. Chem., 2002, 74(5): 1088-1096
    [142] 卢奎,吴养洁,李永红等.杯[4]芳烃硼酸与氨基酸配位作用的荧光光谱研究.高等学校化学学报,2001,22(4):581-583
    [143] 李军,王柯敏,羊小海等.改进溶胶-凝胶法固定酶结构剖析及在苯酚光化学传感器中的应用.高等学校化学学报,2000,21(7):1018-1022
    [144] 刘春叶,王亚明,唐辉.酶的固定化及化学修饰.云南化工,2002,29(5),29-31
    [145] Ellerby L M, Nishida C R, Nishida F, et al. Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science, 1992, 255(5048): 1113-1115
    [146] Lin J, Brown C W. Sol-gel glass as a matrix for chemical and biochemical sensing. Trends in Anal. Chem., 1997,16(4): 200-211
    [147] 谭佩幸,陶宗晋,祁国荣等.现代化学试剂手册.第三分册,生化试剂(一).北京:化学工业出版社,1990,411-412
    [148] Ishida J, Takada M, Hara S. et al. Development of a novel chemiluminescent probe, 4-(5',6'-Dimethoxybenzothiazolyl) phthalhydrazide. Anal. Chim. Acta, 1995, 309 (1-3): 211-219
    [149] Ishida J, Arakawa H, Takada M, et al. Development of a novel luminol-related compound, 3-propyl-7,8-dihydropyridazino-[4,5-g]quinoxaline-2,6,9(1H)-trione, and its application to hydrogen peroxide and serum glucose assays. Analyst, 1995, 120(4): 1083-1086
    [150] Fang Q, Shi X T, Fang Z L, et al. A flow injection microdialysis sampling chemi-luminesence system for in vivo on line monitoring of glucose in intravenous and subcutaneous tissue fluid microdialysates. Anal. Chem., 1997, 69(17): 3570-3577
    [151] Zhang L S, George T, Wong F. Spectrophotometric dotermination of H_2O_2 in marine waters with ieuco crystal violet. Talanta, 1994, 41(12): 2137-2145
    [152] Almuaibed A M, Townshed A. Flow spectrophotometric for determination of hydrogen peroxide using a cation exchanger for preconcentration Anal. Chim. Acta, 1994, 295(1-2): 159-163
    [153] 张琳,袁金锁,唐芳琼等.溶胶-凝胶法制备含纳米憎水SiO_2颗粒葡萄糖酶电极.中国科学(B辑),1995,25(7):701-703
    [154] 唐芳琼,孟宪伟,陈东等.纳米颗粒增强的葡萄糖生物传感器.中国科学(B辑),2000,30(2):119-124
    [155] Ballerstadt R., Schultz J. S. Fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring. Anal. Chem., 2000, 72(17): 4185-4192
    [156] 李庆阁,许金钩,黄贤智等.葡萄糖氧化酶催化荧光测定的非酶体系研究.高等学校化学学报,1997,18(1):52-54
    [157] Lev O, Tsionsky M. Organically modified sol-gel sensors Anal. Chem., 1995, 67(1): 22A-30A
    [158] Ingersoll C, Bright F V. Using sol-gel-based platforms for chemical sensors. Chem. Tech., 1997, 27(1): 26-32
    [159] Dave B, Dunn B. Sol-gel encapsulation methods for biosensors. Anal. Chem., 1994, 66(22): 1120A-1127A
    [160] 于同隐,邵正中,刘永成等.再生丝素和聚乙烯醇混合膜的结构、性能及其葡萄糖传感器的应用.高等学校化学学报,1996,17(4):651-654
    [161] 唐芳琼,沈继锋,张金芳等.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应.高等学校化学学报,1999,20(4):634-636
    [162] Shi Y, Crouch S R. Micro-scale determination of glucose by capillary flow injection with an immobilized enzyme reactor. Anal. Chim. Acta, 1999, 381 (2-3): 165-173
    [163] 宋正华,章竹君,范文哲.乙酰胆碱和胆碱化学发光生物传感器的研究.化学学报,1998,56(12):1207-1210
    [164] Berlman I B. Handbook of fluorescence spectra of aromatic molecules. 2nd ED. Academic Press, New York: 1971, 47
    [165] Josephy P D, Eling T, Mason R P. The horseradish peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine free radical and charge-transfer complex intermediates. J. Biol. Chem., 1982, 257(7): 3669-3675
    [166] 吕家根,占达东,黄玉明等.荧光素-GOD-HRP体系分光光度法测定植物果实组织中的葡萄糖.西南师范大学学报,2001,26(3):305-308
    [167] Wu K J, Choi M M F and Xiao D. A glucose biosensor with enzyme-entrapped sol-gel and an oxygen-sensitive opeode membrane. Analyst, 2000, 125(1): 157-162
    [168] Bowers L D. Applications of immobilizated biocatalysts in chemical analysis. Anal. Chem., 1986, 58(4): 513A-530A
    [169] Zhu Q Z, Li Q G, Lu J Z, et al. Application of thiamine as a fluorogenic substrate in the determination of hydrogen peroxide based on the catalytic effect of hemin. Anal. Lett., 1996, 29(10): 1729-1740
    [170] Finlayson-pitts B J, Pitts J N. Atmospheric chemistry foundamentals and atmospheric techniques. New York: Wiley, 1986:668
    [171] Schachl K, Alemu H, Kalcher K, et al. Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst, 1997, 122(9): 985-989
    [172] Liu Z H, Cai R X, Mao L Y, et al. Highly sensitive spectrofluorimetric determination of hydrogen peroxide with β-cyclodextrin-hemin as catalyst. Analyst, 1999, 124(2): 173-176
    [173] Elessi F, Abuzuhri A, Alkhalil S, et al. Spectrophotometric determination of enzymatically generated hydrogen peroxide using sol-gel immobilized horseradish peroxidase. Talanta, 1997, 44 (11): 2051-2058
    [174] Li J Z, Dasgupta P K. Measurement of atmospheric hydrogen peroxide and hydroxyl-methyl hydroperoxide with a diffusion scrubber and light emitting diode-liquid core waveguide-based fluorometry. Anal. Chem., 2000, 72(21): 5338-5347
    [175] Xu C L, Zhang Z J. Fluorescence determination of hydrogen peroxide using hemoglobin as a mimetic enzyme of peroxidase. Analytical Sciences, 2001, 17: 1449-1451
    [176] 杨屹,蔡汝秀,曾云鹗等.停留-荧光反应速率仪及其应用于测定维生素B_1.分析化学,1993,21(3):360-363
    [177] 陈小明,谭怡光,李松青等.维生素B_1-钼酸铵荧光光度法的研究与应用.分析化学,1999,27(8):992-993
    [178] 陈小明,黄灵芝,李松青等.钒(Ⅳ)-硫胺素荧光光度法的研究与应用.分析化学,1999,27(12):1435-1437
    [179] Ohnesorge W E, Rogers L B. Fluorometric determination of thiamine and riboflavin in mixture. Anal. Chem., 1956, 28(6): 1017-1021
    [180] Edwin E E. Methods in enzymology, In: Vitmins and coenzymes Part D, Vol62, Academic Press Inc, New York: 1979, 51-54
    [181] 陈恒武,仁一平.柱后光化学衍生检测高效液相色谱法测定食品中的维生素B_1.分析化学,2000,28(5):554-558
    [182] 程驿,林华宽,王夔.Tb~(3+)与氧合血红蛋白反应动力学的停留荧光光度法研究.高 等学校化学学报,1998,19(60):876-878
    [183] 封满良,黄玉文,章竹君等.基于固定化酶的化学发光停留法测定D-氨基酸.高等学校化学学报,1996,17(12):1859-186l
    [184] Markopoulou C K, Kagkadis K A, Koundourelis J E. An optimized method for the simultaneous determination of vitamins B_1, B_6, B_(12) in multivitamin tablets by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30(4): 1403-1410
    [185] Erdal Dincl, Dumitru Baleanuz, Feyyaz Onurl. Chemometric quantitative analysis of pyridoxine HCl and thiamine HCl in a vitamin combination by principal component analysis, classical least squares and inverse least squares techniques. Spectroscopy Letters, 2001, 34(3): 279-288
    [186] 郭祥群,许金钩,王晋玲等.光化学荧光法研究Ⅶ:维生素B_1和B_6的联合测定.分析化学,1992,20(8):910-913
    [187] 李耀群,黄贤智,许金钩等.可变角同步荧光法快速同时测定维生素B_2和B_6.分析化学,1991,19(5):538-541
    [188] Portega-garrales M L, Fernandez-de C, Molina-Diaz A. Micro-determination of vitamin B, in the presence of vitamins B_2, B_6 and B_(12) by solid-phase UV spectro-photometry. Anal.Chem., 1998, 70(2): 271-275
    [189] Monferrer-Pons L, Elisa M, Capella-Periro M. Micellar liquid chromatography determination of B vitamins with direct injection and ultraviolet absorbance detection. Journal of Chromatography A, 2003, 984(2): 223-231
    [190] 李克,王华娟,潘朝晖等.离子对反相高效液相色谱法同时测定复合维生素片中4种水溶性维生素.色谱,2003,21(1):66-68
    [191] Hitoshi Okamoto, Toshiaki Nakajima, Yuji lto. Simultaneous determination of water-soluble vitamins in a vitamin-enriched drink by in-capillary enzyme reaction method. Journal of Chromatography A, 2003, 986(1): 153-161
    [192] Aberastnril J, Jimenez A I, Arias J J, et al. Simultaneous spectrophotometric determination of folic acid pyridoxine, riboflavin and thiamine by partial least squares regression. Analytical letters, 2002, 35(10): 1677-1691
    [193] 弓晓峰,黄坚锋,倪永年.偏最小二乘法用于同步荧光法同时测定维生素B_1.维生素B_2和维生素B_6.分析化学,1994,22(9):935-938
    [194] Yang J H, Han R G, Su B Y, et al. Simultaneous determination of four components in composite vitamin B tablets using a square-root Kalman filter. Analytical Sciences, 1998, 14(8): 965-969
    [195] Li W, Chen J, Xiang B R, et al. Simultaneous on-line dissolution monitoring of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700